Analisi e Geometria 1 Primo appello, 18 febbraio Punteggi degli esercizi: Es.1: 9 punti; Es.2: 6 punti; Es.3: 6 punti; Es.4: 9 punti.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi e Geometria 1 Primo appello, 18 febbraio Punteggi degli esercizi: Es.1: 9 punti; Es.2: 6 punti; Es.3: 6 punti; Es.4: 9 punti."

Transcript

1 Analisi e Geometia 1 Pimo appello, 18 febbaio 13 Punteggi degli esecizi: Es.1: 9 punti; Es.: 6 punti; Es.3: 6 punti; Es.4: 9 punti. 1. (a) Scivee la definizione di: g(x) = o(h(x)), pe x a. (b) Sia f una funzione deivabile n volte in un intono di un punto x R. Scivee la fomula di Taylo di odine n di f, con il cento in x e il esto nella foma di Peano. (c) Calcolando le oppotune deivate, tovae lo sviluppo di Taylo di f(x) = tan x, con cento in x =, aestato al tezo odine, con il esto di Peano. (d) Calcolae il ite Soluzione. (d) Utilizziamo gli sviluppi: e x 1 + ln(1 x) x tan x x e x = 1 + x + x! + x3 3! + o(x3 ) ln(1 + x) = x x + x3 (1) da cui icaviamo e x = 1 x + x! x3 3! + o(x3 ) ln(1 x) = x x x3 () e tan x = x + x3 actan x = x x3 Alloa: Vesione A e x 1 + ln(1 x) x tan x x x + x! + x3 = x = 6 + o(x3 ) 3! + o(x3 ) x x x3 = 1

2 Vesione B e x 1 + ln(1 x) x actan x x x + x! + x3 3! = + o(x3 ) x x x3 x x3 = 6 + o(x3 ) x3 = 1 Vesione C e x 1 + ln(1 + x) x tan x x x + x! x3 3! + o( ) + x x = x = 6 + o(x3 ) + x3 = 1 Vesione D e x 1 + ln(1 + x) x actan x x x + x! x3 3! + o( ) + x x = + x3 x x3 = 6 + o(x3 ) x3 = 1

3 . (a) Tovae la soluzione f = f(t) del poblema di Cauchy: x (t) = 4t 3 x(t) x(1) = 1 (b) Tovae il valoe minimo e il valoe massimo di f sull intevallo [1, 3]. Soluzione. Vesione A (a) L equazione x (t) = 4t 3 x(t) è a vaiabili sepaabili, e anche lineae omogenea del pimo odine. Risolviamola come equazione a vaiabili sepaabili. L equazione x (t) = 4t 3 x(t) ha la soluzione identicamente nulla x(t) =, t R, che peò non soddisfa la condizione iniziale x(1) = 1. Vicino x = 1, la soluzione x(t) del poblema di Cauchy si manteà sicuamente divesa da zeo (più pecisamente si manteà negativa, poiché x(1) = 1). Alloa, dividendo pe x(t), si ha x (t) x(t) = 4t3 da cui si icava con C costante positiva, ossia ln x(t) = t 4 + c, x(t) = Ce t4, x(t) = Ke t4 con K costante abitaia. La condizione x(1) = 1 impone K = 1/e. Quindi la soluzione del poblema di Cauchy è x(t) = 1 e et4 (Contollae la soluzione con un calcolo dietto). (b) Sull intevallo I = [1, 3] la funzione x(t) = 1 e et4 è decescente (peché x (t) < pe ogni t I). Quindi il valoe massimo M e il valoe minimo m sono assunti agli estemi dell intevallo I = [1, 3]: M = x(1) = 1 m = x(3) = 1 e e34 = 1 e e81 Vesione B (a) La soluzione del poblema di Cauchy x (t) = 4t 3 x(t) x(1) = è x(t) = e et4. (b) Il valoe massimo M e il valoe minimo m di x = x(t) su I = [1, 4] sono: M = x(1) = m = x(4) = e e44 = 1 e e56 Vesione C (a) La soluzione del poblema di Cauchy x (t) = 4t 3 x(t) x(1) = 3

4 è x(t) = 3 e et4. (b) Il valoe massimo M e il valoe minimo m di x(t) = 3 e et4 su I = [ 3, 1] sono: M = x( 1) = 3 m = x( 3) = 3 e e81 Vesione D (a) La soluzione del poblema di Cauchy x (t) = 4t 3 x(t) x(1) = 4 è x(t) = 4 e et4. (b) Il valoe massimo M e il valoe minimo m di x(t) = 4 e et4 su I = [ 4, 1] sono: M = x( 1) = 4 m = x( 3) = 4 e e81

5 3. Sia γ il filo di equazioni paametiche x = cos θ y = sin θ θ [, π] (con > ) munito della densità di massa δ(θ) = e θ. (a) Calcolae la massa totale M di γ. (b) Calcolae le coodinate del baicento B del filo γ. Vesione A Risposta: (a) Indicata con f(θ) = ( cos θ, sin θ) la funzione vettoiale che paametizza la cuva γ, si ha f (θ) = ( sin θ, cos θ) e f (θ) =. i. La massa totale di γ è M = δ ds = γ π δ(θ) f (θ) dθ = π ii. Le coodinate del baicento B di γ sono x B = 1 δ x ds = 1 π δ(θ) x(θ) f (θ) dθ = M γ M M y B = 1 δ y ds = 1 π δ(θ) y(θ) f (θ) dθ = M M M γ e θ dθ = (e π 1). π π e θ cos θ dθ e θ sin θ dθ. Integando due volte pe pati, si ha e θ cos θ dθ = e θ cos θ + e θ sin θ dθ = e θ cos θ + e θ sin θ e θ cos θ dθ da cui si ottiene e θ cos θ dθ = eθ (cos θ + sin θ). Integando ancoa pe pati e usando l integale appena tovato, si ha Petanto, si ha e θ sin θ dθ = e θ sin θ x B = y B = In conclusione, si ha (e π 1) (e π 1) B [ e θ e θ cos θ dθ = eθ ] π (sin θ + cos θ) [ e θ (sin θ cos θ) ( eπ + 1 e π 1 ] π, eπ + 1 e π 1 (sin θ cos θ). = eπ + 1 e π 1 = eπ + 1 e π 1 ). Ossevazione. Pe la posizione del baicento ispetto alla cuva, si veda la figua seguente.

6 Vesione B Sia γ il filo di equazioni paametiche x = cos θ θ [π, π] (con > ) y = sin θ munito della densità di massa δ(θ) = e θ. Tovae la massa totale M e il baicento B del filo. ( e Risposta: M = (e π 1)e π π ) + 1 e B e π 1, + 1 eπ e π. 1 Vesione C Sia γ il filo di equazioni paametiche x = cos θ y = sin θ θ [, π] (con > ) munito della densità di massa δ(θ) = e θ. Tovae la massa totale M e il baicento B del filo. ( 1 + e Risposta: M = (1 e π π ) e B 1 e π, 1 + ) e π 1 e π. Vesione D Sia γ il filo di equazioni paametiche x = cos θ y = sin θ θ [π, π] (con > ) munito della densità di massa δ(θ) = e θ. Tovae la massa totale M e il baicento B del filo. ( 1 + e Risposta: M = (e π 1)e π π e B 1 e π, 1 + ) eπ 1 e π.

7 4. Nello spazio R 3, sia la etta passante pe A = (1,, ) e B = (3, 4, 1) e sia s la etta intesezione dei piani x y 1 = e y + z =. (a) Stabilie se e s sono incidenti, paallele o sghembe. (b) Nel fascio di piani il cui sostegno è la etta s, deteminae il piano P paallelo alla etta. (c) Calcolae la distanza ta le ette e s. SOLUZIONE (Vesione A) a) Le equazioni paametiche di e di s sono x = 1 + t, y = 4t, z = t; e x = t + 1, y = t, z = t. Le ette sono sghembe. b) Il fascio di sostegno s ha equazione: x y 1 + λ(y + z) =. I piani del fascio hanno vettoe nomale n = (1, + λ, λ). Imponendo che n (, 4, 1) = si tova λ =. Il piano del fascio paallelo a ha equazione x + z 1 = c) La distanza ta le due ette si può calcolae scegliendo un punto qualunque P e calcolando la distanza di P da π. Quindi d(, s) = d(a, π) = 4. 5 Vesione B Sia la etta passante pe A = (, 1, ) e B = (4, 3, 1) e s la etta di equazione catesiana x z 1 = y + z =. (a) Stabilie se e s sono incidenti, paallele o sghembe. (b) Nel fascio di sostegno la etta s deteminae il piano π paallelo alla etta. (c) Calcolae la distanza ta e s. SOLUZIONE (Vesione B) a) Le equazioni paametiche di e di s sono x = 4t, y = 1 + t, z = t; e x = t + 1, y = t, z = t. Le ette sono sghembe. b) Il fascio di sostegno s ha equazione: x z 1 + λ(y + z) =. I piani del fascio hanno vettoe nomale n = (1, λ, + λ). Imponendo che n (4,, 1) = si tova λ = 6. Il piano del fascio paallelo a ha equazione x 6y 8z 1 = c) La distanza ta le due ette si può calcolae scegliendo un punto qualunque P e calcolando la distanza di P da π. Se P = (, 1, ), si ha che d(a, π) = Vesione C Sia la etta passante pe A = (1,, ) e B = (3, 1, 4) e s la etta di equazione catesiana x y 1 = x + z =. (a) Stabilie se e s sono incidenti, paallele o sghembe. (b) Nel fascio di sostegno la etta s deteminae il piano π paallelo alla etta. (c) Calcolae la distanza ta e s.

8 SOLUZIONE (Vesione C) a) Le equazioni paametiche di e di s sono x = 1 + t, y = t, z = 4t; e x = t, y = t + 1, z = t. Le ette sono sghembe. b) Il fascio di sostegno s ha equazione: x y 1 + λ(x + z) =. I piani del fascio hanno vettoe nomale n = ( + λ, 1, λ). Imponendo che n (, 1, 4) = si tova λ = 5. Il piano del fascio 6 paallelo a ha equazione 7x 6y 5z 6 = c) La distanza ta le due ette si può calcolae scegliendo un punto qualunque P e calcolando la distanza di P da π. Quindi d(, s) = d(a, π) = Vesione D Sia la etta passante pe A = (, 1, ) e B = (1, 4, 3) e s la etta di equazione catesiana y z + 1 = x + y =. (a) Stabilie se e s sono incidenti, paallele o sghembe. (b) Nel fascio di sostegno la etta s deteminae il piano π paallelo alla etta. (c) Calcolae la distanza ta e s. SOLUZIONE (Vesione D) a) Le equazioni paametiche di e di s sono x = t, y = 1 + 3t, z = 3t; e x = t, y = t, z = t + 1. Le ette sono sghembe. b) Il fascio di sostegno s ha equazione: y z λ(x + y) =. I piani del fascio hanno vettoe nomale n = (λ, + λ, 1). Imponendo che n ( 1, 3, 3) = si tova λ = 3. Il piano del fascio paallelo a ha equazione 3x y + z = c) La distanza ta le due ette si può calcolae scegliendo un punto qualunque P e calcolando la distanza di P da π. Quindi d(, s) = d(a, π) = 3 14.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 9 punti; Es.2: 6 punti; Es.3: 6 punti; Es.4: 9 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 9 punti; Es.2: 6 punti; Es.3: 6 punti; Es.4: 9 punti. Es. 1 Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Primo Appello 18 febbraio 13 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi:

Dettagli

AA MECCANICA CLASSICA e MECCANICA dei SISTEMI CONTINUI PROVA di ESAME 10 Settembre Canali A-B-C-D

AA MECCANICA CLASSICA e MECCANICA dei SISTEMI CONTINUI PROVA di ESAME 10 Settembre Canali A-B-C-D Esecizio n. 1 Un oggetto di piccole dimensioni scivola su un piano oizzontale e la sua velocità iniziale vale v =4. m/sec. La supeficie del piano ha una uvidità cescente e la coispondente foza di attito

Dettagli

Esercizio 1. Date le rette

Esercizio 1. Date le rette Date le ette Eseciio y : : y a) Scivee le equaioni paametiche delle ette e. b) Dopo ave veificato che le ette ed sono sghembe, tovae l equaione di un piano σ contenente e paallelo a. c) Deteminae le equaioni

Dettagli

Scuole italiane all estero Americhe

Scuole italiane all estero Americhe PRVA D ESAME SESSINE RDINARIA 6 Scuole italiane all esteo Ameiche PRBLEMA Consideata la funzione G: R " R così definita: t G ^ h= e sin ^thdt, svolgi le ichieste che seguono.. Discuti campo di esistenza,

Dettagli

Esercitazione N.4. Rette e piani nello spazio. Parallelismo e ortogonalità. Proiezioni ortogonali. Mutue posizioni di rette e piani.

Esercitazione N.4. Rette e piani nello spazio. Parallelismo e ortogonalità. Proiezioni ortogonali. Mutue posizioni di rette e piani. Esecitazione N.4 4 apile 2007 Rette e piani nello spazio Rette e piani : appesentazione paametica e catesiana aallelismo e otogonalità oiezioni otogonali Mutue posizioni di ette e piani Rosalba Baatteo

Dettagli

Laboratorio di matematica Le serie di taylor con derive

Laboratorio di matematica Le serie di taylor con derive Laboatoio di matematica Le seie di taylo con deive esercitazione guidata Data la funzione f( ) + 7 + -, + deteminiamo il gado n del polinomio T n di Maclauin, in modo che l eoe di appossimazione che si

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Tabella 2: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale:

Tabella 2: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale: Tabella 2: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 3 Meccanica Razionale 1: Scitto Geneale: 19.7.211 Cognome e nome:....................................maticola:......... 1. Consideiamo

Dettagli

Si considerino le rette:

Si considerino le rette: Si consideino le ette: Eseciio (tipo tema d esame) : s : + () ) Si dica pe quali valoi del paameto eale le ette e s isultano sghembe, paallele o incidenti. ) Nel caso paallele si emino i paameti diettoi

Dettagli

Soluzione fondamentale dell Equazione di Helmholtz

Soluzione fondamentale dell Equazione di Helmholtz Soluzione fondamentale dell Equazione di Helmholtz Seminaio pe l esame di Analisi 4 Loenzo Stipani Univesità di Pisa 6 Settembe 23 Definizione Sia Ω R N, se la funzione u(x) C 2 (Ω) soddisfa l equazione

Dettagli

Lezione VI. La lezione inizia con la lettura della prefazione di Grassmann alla sua Ausdehnungslehre. che viene distribuita agli studenti.

Lezione VI. La lezione inizia con la lettura della prefazione di Grassmann alla sua Ausdehnungslehre. che viene distribuita agli studenti. Lezione VI 1. I vettoi: estensioni di dimensione uno Il calcolo geometico, in geneale, consiste in un sistema di opeazioni a eseguisi su enti geometici, analoghe a quelle che l'algeba fa sopa i numei.

Dettagli

( ) = gdt = g dt = gt +

( ) = gdt = g dt = gt + Gave lanicato veso l alto (1/3) Vogliamo studiae il moto di un copo lanciato veso l alto con una ceta velocità iniziale v =, soggetto unicamente alla foza di attazione gavitazionale teeste (si tascua l

Dettagli

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo:

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo: m@th_cone di Enzo Zanghì pag Distanza di due punti Pe deteminae la distanza ta i punti ( ; ) ( ; ) applichiamo il teoema di Pitagoa e otteniamo: = ( ) + ( ) Punto medio di un segmento M O M + Osseviamo

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

SPAZIO CARTESIANO E 3 (R) Sia [O,B] un riferimento euclideo nello spazio euclideo E 3 (R). B è una base ortonormale. condizioni di ortogonalità

SPAZIO CARTESIANO E 3 (R) Sia [O,B] un riferimento euclideo nello spazio euclideo E 3 (R). B è una base ortonormale. condizioni di ortogonalità SPZIO CRTESINO E (R) Sia [O,B] un ifeimento euclideo nello spaio euclideo E (R). B è una base otonomale. P P e e e P P condiioni di otogonalità ) etta-etta di paameti diettoi [(l,m,n )],[(l,m,n )] (l,m,n

Dettagli

32. Significato geometrico della derivata. 32. Significato geometrico della derivata.

32. Significato geometrico della derivata. 32. Significato geometrico della derivata. 32. Significato geometico della deivata. Deivata Definizione deivata di una funzione in un punto (30) Definizione deivata di una funzione (30) Significato della deivata Deivata in un punto (32) Deivata

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

1. Qualche elemento di geometria dello spazio

1. Qualche elemento di geometria dello spazio Scuola Inteateneo di Specializzazione pe la Fomazione degli Insegnanti della Scuola Secondaia del Veneto ANNO ACCADEMICO 2005-2006 INDIRIZZO SCIENTIFICO TECNOLOGICO DIDATTICA DELLA MATEMATICA - LUCIDI

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

Esercizi 1. Verificare che la somma dei cubi di due numeri naturali reali di assegnato prodotto p > 0 è

Esercizi 1. Verificare che la somma dei cubi di due numeri naturali reali di assegnato prodotto p > 0 è Esecizi. Veiicae che la somma dei cubi di due numei natuali eali di assegnato odotto > è y smin y s minima quando i due numei sono uguali. y s min 6 6 Studio il segno della deivata ima: 6 Poiché il denominatoe

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

retta retta orientata

retta retta orientata etta etta oientata PER INDIVIDUARE UN ASSE NEL PIANO: -fissiamo un asse di ifeimento -fissiamo un veso positivo di otazione: quello antioaio -l angolo ϕ ta l asse di ifeimento e l asse è sufficiente pe

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

L area S compresa fra l arco e la corda AB si ottiene come differenza fra l area del settore circolare e l area del triangolo: x 2 1 2

L area S compresa fra l arco e la corda AB si ottiene come differenza fra l area del settore circolare e l area del triangolo: x 2 1 2 EAME DI TATO DI LICEO CIENTIFICO essione Odinaia 009 CORO DI ORDINAMENTO Poblema È assegnato il settoe cicolae AOB di aggio e ampiezza x ( e x sono misuati, ispettivamente, in meti e adianti) i povi che

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PROVA D ESAME SESSIONE ORDINARIA 8 Liceo scientifico comunicazione opzione spotiva Lo studente isolva uno dei due poblemi e isponda a 5 quesiti del questionaio Duata massima della pova: oe È consentito

Dettagli

LABORATORIO DI MATEMATICA LE SERIE DI FOURIER CON DERIVE

LABORATORIO DI MATEMATICA LE SERIE DI FOURIER CON DERIVE LABORATORIO DI MATEMATICA La seie di Fouie con Deive LABORATORIO DI MATEMATICA LE SERIE DI FOURIER CON DERIVE ESERCITAZIONE GUIDATA Deteminiamo la idotta s (x) di odine dello sviluppo in seie di Fouie

Dettagli

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani Campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui esiste un campo magnetico B1T otogonale al piano

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 5 settembre 2002 Soluzioni

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 5 settembre 2002 Soluzioni Univesità di Pavia Facoltà di Ingegneia Esame di Meccanica Razionale Appello del 5 settembe 2002 Soluzioni D1. Una lamina quadata omogenea Q di massa 2m e lato di lunghezza l viene divisa in due lungo

Dettagli

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica Anno Scolastico 7-8 4 maggio 8 - Esecitazione Pova Scitta di Matematica Il candidato svolga, a sua scelta, uno dei poblemi e quatto dei quesiti poposti. ➊ Si vuole costuie un basamento in mamo pe una statua.

Dettagli

Lezione 27 - Torsione nelle sezioni circolari ed ellittiche

Lezione 27 - Torsione nelle sezioni circolari ed ellittiche Lezione 7 - Tosione nelle sezioni cicolai ed ellittiche ü [A.a. 11-1 : ultima evisione 7 agosto 11] In questa lezione si applicano i isultati della lezione pecedente allo studio di alcune sezione di foma

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

3. Ricavare la relazione che esiste tra i simboli di Christoffel e il tensore metrico.

3. Ricavare la relazione che esiste tra i simboli di Christoffel e il tensore metrico. 1. Mostae che, note la metica g µν e i coefficienti della connessione affine Γ α µν in un punto, è sempe possibile tovae un sistema di coodinate localmente minkowskiane. 2. Dimostae che il vettoe tangente

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

La gravitazione. Matteo Gallone 26 giugno 2011

La gravitazione. Matteo Gallone 26 giugno 2011 La gavitazione Matteo Gallone 26 giugno 2011 1 Il agionamento di Newton Pe icavae la legge di gavitazione univesale Newton si ispiò alle ossevazioni speimentali di Kepleo. Ripoto qui pe bevità le te leggi

Dettagli

Lezione Minima distanza tra insiemi

Lezione Minima distanza tra insiemi Lezione 11 111 Minima distanza ta insiemi Definizione 111 In S n, n =2, 3, siafissataun unitàdimisuau Dati due punti A, B 2 S n,definiamodistanza fa A e B, esciviamod(a, B), la lunghezza del segmento AB

Dettagli

Capitolo 20:La Circonferenza nel piano Cartesiano

Capitolo 20:La Circonferenza nel piano Cartesiano Capitolo 20:La Ciconfeenza nel piano Catesiano 20.1) Una ciconfeenza è una conica la cui equazione geneale è del tipo x 2 + y 2 + ax + by + c = 0 oppue (x α) 2 + (y β) 2 = 2 ed individua il luogo geometico

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

Modulo di Matematica ed Informatica per il Corso di Laurea in Farmacia Soluzioni dello scritto del 3 giugno 2014

Modulo di Matematica ed Informatica per il Corso di Laurea in Farmacia Soluzioni dello scritto del 3 giugno 2014 Modulo di Matematica ed Infomatica pe il Coso di Lauea in Famacia Soluzioni dello scitto del 3 giugno 04 Esecizio. Indichiamo con i il numeo di battiti cadiaci al minuto, in odine cescente, e con f i le

Dettagli

1) In un piano sono assegnate una circonferenza k di raggio di lunghezza nota r ed una parabola p che seca k nei punti A e B

1) In un piano sono assegnate una circonferenza k di raggio di lunghezza nota r ed una parabola p che seca k nei punti A e B Sessione odinaia 7 Liceo di odinamento ) n un piano sono assegnate una ciconeenza di aggio di lunghezza nota ed una paabola p che seca nei punti A e B e passa pe il suo cento C. nolte l'asse di simmetia

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Analisi e Geometria 1 Docente: Gianluca Mola 27/1/29 Ing. Industriale Cognome: Nome: Matr. Nello spazio sottostante gli esercizi devono essere riportati sia i risultati

Dettagli

Nicola De Rosa maturità 2015

Nicola De Rosa maturità 2015 www.matematicamente.it Nicola De Rosa matuità 5 Esame di stato di istuzione secondaia supeioe Indiizzi: LI SCIENTIFICO LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica (Testo valevole anche

Dettagli

LABORATORIO DI MATEMATICA LE TRASFORMAZIONI GEOMETRICHE

LABORATORIO DI MATEMATICA LE TRASFORMAZIONI GEOMETRICHE LABORATORIO DI MATEMATICA LE TRASFORMAZIONI GEOMETRICHE ESERCITAZIONE GUIDATA Toviamo, con l aiuto di Deive, le coodinate dei vetici del tiangolo ABC l l l, ottenuto con una otazione di attono all oigine

Dettagli

Si assegneranno 6 punti a ognuno degli esercizi, e 12 punti alla domanda

Si assegneranno 6 punti a ognuno degli esercizi, e 12 punti alla domanda PROVA SCRITTA PER IL CORSO DI INTRODUZIONE ALLA RELATIVITÀ GENERALE 12-9-5 PARTE I Sia data la metica, nel sistema di ifeimento O di coodinate {x µ } = {t,, θ, φ}, ds 2 = dt 2 + 2 + a 2 cos 2 θ d 2 + cos

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA Sessione odinaia 00 Seconda pova scitta Y7 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA QUESTIONARIO. Si dimosti che il lato del decagono egolae

Dettagli

q, m O R ESERCIZIO 3

q, m O R ESERCIZIO 3 ESERCIZIO 3 SI HA UN ANELLO UNIFORMEMENTE CARICO CON CARICA Q = 10-7 C E RAGGIO R = 5 cm. SULL ASSE VERTICALE DELL ANELLO ALLA DISTANZA = 2 cm DAL CENTRO DELL ANELLO E IN EQUILIBRIO UNA PARTICELLA CON

Dettagli

SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2003 Calendario australe SECONDA PROVA SCRITTA Tema di Matematica

SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2003 Calendario australe SECONDA PROVA SCRITTA Tema di Matematica essione odinaia Ameica Latina - CUOLE ITALIANE ALL ETERO EAMI DI TATO DI LICEO CIENTIFICO essione Odinaia Calendaio austale ECONDA PROVA CRITTA Tema di Matematica Il candidato isolva uno dei due poblemi

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettomagnetismo Pof. Fancesco agusa nivesità degli Studi di Milano Leione n. 6 9..8 Divegena e teoema della divegena Foma diffeeniale della Legge di Gauss Enegia del campo elettostatico Anno Accademico

Dettagli

Approssimazioni alle differenze finite

Approssimazioni alle differenze finite Capitolo 2 Appossimazioni alle diffeenze finite 2. Diffeenze finite del pimo e del secondo odine Si considei lo sviluppo in seie di Taylo della funzione u(x sufficientemente egolae nell intono h del punto

Dettagli

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I.

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. SIMULAZINE DELLA PRVA D ESAME DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. Risolvi uno dei due poblemi e 5 dei quesiti del questionaio. PRBLEMA In un piano è data la ciconfeenza di cento e aggio A ; conduci

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

RISOLUZIONE PROVA SCRITTA Classe 4 A - aprile 2011

RISOLUZIONE PROVA SCRITTA Classe 4 A - aprile 2011 RISOLUZIONE PROVA SCRITTA Classe A - apile 011 PROVA A 1. Dato il tiangolo isoscele ABC avente AC = CB = l e cos  = cos B = 1, calcolae: a) il peimeto p; b) le misue delle te altezze; c) la distanza CM,

Dettagli

Laboratorio di Dinamica dei Fluidi Esercitazione 04 a.a

Laboratorio di Dinamica dei Fluidi Esercitazione 04 a.a Laboatoio di Dinamica dei Fluidi Esecitazione 4 a.a. 28-29 Dott. Simone Zucche 5 Giugno 29 Nota. Queste pagine potebbeo contenee degli eoi: chi li tova è pegato di segnalali all autoe zucche@sci.univ.it.

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio e ampiezza (

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettomagnetismo Pof. Fancesco Ragusa Univesità degli Studi di Milano Lezione n. 9 7..8 Soluzioni dell'equazione di Laplace Equazione di Poisson Funzione delta di Diac Anno Accademico 8/9 Sepaazione Vaiabili:

Dettagli

Guido Corbò Note di elettromagnetismo. Forza di Lorentz su un circuito arbitrario e correnti indotte

Guido Corbò Note di elettromagnetismo. Forza di Lorentz su un circuito arbitrario e correnti indotte Guido Cobò Note di elettomagnetismo Foza di Loentz su un cicuito abitaio e coenti indotte Consideiamo una spia di foma abitaia che si muove in un campo magnetico B. Duante il moto, la foma e la lunghezza

Dettagli

PROBLEMA Si sciva equazione della ciconfeenza passante pe i punti A ( B ( ed avente il cento sulla etta e si calcolino le coodinate degli estemi del diameto paallelo all asse delle L equazione geneica

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 0 gennaio 0. Due quati di coona cicolae, di aggio inteno ed esteno, ciascuno omogeneo e di massa m, sono disposti come in figua. a) Deteminae la matice d inezia. b) Deteminae

Dettagli

La parabola come luogo geometrico

La parabola come luogo geometrico La paabola come luogo geometico Definizioni e pime popietà Definizioni. Si chiama paabola il luogo ei punti equiistanti a un punto, etto fuoco, e a una etta etta iettice.. Il punto ella paabola che ha

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 PRV RDINMENT 009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio

Dettagli

Appunti sul Moto dei corpi in un Campo Gravitazionale

Appunti sul Moto dei corpi in un Campo Gravitazionale Appunti sul Moto dei copi in un Campo Gavitazionale Stefano Ranfone Keywods: Gavitazione, Moto dei Copi Celesti, Leggi di Kepleo. Questi Appunti si possono consideae un Appofondimento, o se vogliamo un

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

FISICA GENERALE II COMPITO SCRITTO

FISICA GENERALE II COMPITO SCRITTO ISIA GENEALE II Ingegneia ivile, Ambientale, Industiale (A.A. 56) OMPITO SITTO 3..6 ognome.. maticola.. Nome anno di coso ALTAZIONE quesito 6 quesito 6. poblema poblema puneggio. totale ATTENZIONE! Pe

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

APPROSSIMAZIONE DI BORN

APPROSSIMAZIONE DI BORN 4/ APPROSSIMAZIONE DI BORN 5/6 APPROSSIMAZIONE DI BORN L applicazione più impotante della teoia delle petubazioni degli stati del continuo è costituita dalla isoluzione appossimata dei poblemi di diffusione.

Dettagli

F m. 3) Le forze di azione e reazione tra corpi che interagiscono sono uguali in modulo hanno la stessa retta d azione e sono opposte in verso.

F m. 3) Le forze di azione e reazione tra corpi che interagiscono sono uguali in modulo hanno la stessa retta d azione e sono opposte in verso. I TE PINCIPI DELLA DINAMICA 1) Una paticella imane a iposo o continua a muovesi di moto ettilineo unifome se la isultante di tutte le foze agenti su di essa è nulla (detto anche pincipio d inezia) 2) L

Dettagli

ANALISI MATEMATICA III A.A Traccia delle lezioni del 20 e 22 aprile 2016

ANALISI MATEMATICA III A.A Traccia delle lezioni del 20 e 22 aprile 2016 ANALISI MATEMATICA III A.A. 05-06 Taccia delle lezioni del 0 e apile 06 May 9, 06 L equazione di Bessel (n inteo positivo) Come detto in una pecedente lezione, si chiama equazione di Bessel l equazione

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

la prospettiva - III 08corso tecniche di rappresentazione dello spazio docente Arch. Emilio Di Gristina

la prospettiva - III 08corso tecniche di rappresentazione dello spazio docente Arch. Emilio Di Gristina la pospettiva - III 08coso tecnice di appesentazione dello spazio docente c. Emilio i Gistina pospettiva lineae la pospettiva lineae è una poiezione conica eseguita su un piano veticale ciamato quado pospettico

Dettagli

dove dl del satellite nel suo moto, T il periodo di rivoluzione ed F r e la risultante delle forze sul satellite.

dove dl del satellite nel suo moto, T il periodo di rivoluzione ed F r e la risultante delle forze sul satellite. PRIMA PROVA SCRITTA PARZIALE 31 mazo 3 compito A COGNOME NOME NOTA: questo foglio deve essee estituito; e obbligatoio giustificae le isposte. 11 domande: 3 punti a domanda + da a 3 punti pe la chiaezza

Dettagli

1) Consideriamo una sfera di raggio R, con densita` di carica uniforme positiva. Alla distanza Re

1) Consideriamo una sfera di raggio R, con densita` di carica uniforme positiva. Alla distanza Re 1) Consideiamo una sfea di aggio, con densita` di caica unifome positiva Alla distanza e k dal cento si tova un elettone, inizialmente femo Calcolae: a) la velocita` dell elettone, lasciato libeo, nel

Dettagli

Esercizio n. 1 ELEMENTI DI MECCANICA RAZIONALE. 1 Esercizi. 1) Dati i vettori

Esercizio n. 1 ELEMENTI DI MECCANICA RAZIONALE. 1 Esercizi. 1) Dati i vettori Politecnico di Toino CeTeM Esecizi Esecizio n. ) Dati i vettoi u 3i + 4 j + k v i + 3j k w i + j applicato in P (,,) applicato in P applicato P 3 (,,) (,,) a: deteminae la loo isultante. b: calcolae il

Dettagli

ESERCIZI VARI di GEOMETRIA AFFINE

ESERCIZI VARI di GEOMETRIA AFFINE ESERCIZI VARI di GEOMETRIA AFFINE Un ovvio coniglio : i giutifichi la ipota ad ogni eecizio ( o pate di eecizio ) poto in foma di domanda. Eecizio 1. Sia K un campo, e i conidei il K-pazio vettoiale K

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II 19 luglio Compito A

Facoltà di Ingegneria Prova scritta di Fisica II 19 luglio Compito A Facoltà di Ingegneia Pova scitta di Fisica II 9 luglio 7 - Compito A ε = 8.85 Esecizio n. C N m, µ = 4π 7 T m A Te paticelle con la stessa caica = 6 C si tovano in te dei vetici di un uadato di lato L

Dettagli

Soluzione Homework N o 4

Soluzione Homework N o 4 Soluzione Homewok N o a. 1. Si possono fomulae le seguenti ipotesi semplificative: fluido Newtoniano incompimibile µ e ρ cost) ) moto completamente sviluppato z = ) moto piano y = linee di flusso paallele

Dettagli

GRAVITAZIONE: ENERGIA POTENZIALE EFFICACE

GRAVITAZIONE: ENERGIA POTENZIALE EFFICACE GRAVITAZIONE: ENERGIA POTENZIALE EFFICACE Sommaio. In queste pagine studiamo il poblema delle obite dei copi soggetti ad un campo gavitazionale centale, g = G m 3 (dove m è la massa del copo centale e

Dettagli

Vettori e rette in R 2

Vettori e rette in R 2 Vettoi e ette in R odotto calae. Eecizi. Calcolae il podotto calae dei vettoi: v = [ ] e v = [ ] v_ v_ Il podotto calae è dato da: v v = ( ) + =. Calcolae l'angolo compeo ta i vettoi: v = [ ] e v = [ ]

Dettagli

Il Problema di Keplero

Il Problema di Keplero Il Poblema di Kepleo Il poblema di Kepleo nel campo gavitazionale Intoduzione Con Poblema di Kepleo viene indicato il poblema del moto di un copo in un campo di foze centali. Nel caso specifico gavitazionale

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 5-6 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

1) Assenza di 'poli magnetici' Flusso di B attraverso una superficie chiusa sempre nullo. teo. di Gauss per il magnetismo

1) Assenza di 'poli magnetici' Flusso di B attraverso una superficie chiusa sempre nullo. teo. di Gauss per il magnetismo Oigine campo magnetico: coenti elettiche Analogo a campo elettico: oigine nelle caiche elettiche Riceca delle elazioni matematiche che legano il campo B alle coenti Relazioni deteminate in base all evidenza

Dettagli

Geometria analitica: assi e punti

Geometria analitica: assi e punti Geometia analitica: ai e punti itema di ai cateiani monometico otogonale è l oigine degli ai cateiani è l ae delle acie : è l ae delle odinate ditanza ta due punti O(0,0): oigine degli ai cateiani : punto

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es Es Es Es Totale Analisi e Geometria Secondo compito in itinere 0 Gennaio 0 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es: 8 punti;

Dettagli

2. Risolvi la seguente equazione e verifica che la sua radice è uguale alla misura del raggio di base del cilindro. + 5

2. Risolvi la seguente equazione e verifica che la sua radice è uguale alla misura del raggio di base del cilindro. + 5 Pova d esame n.. Lo sviluppo della supeficie lateale di un cono è un settoe cicolae con angolo al cento di 6 e aea di 40 π cm. alcola: (a) il aggio del cechio al quale appatiene il settoe cicolae; (b)

Dettagli

v t V o cos t Re r v t

v t V o cos t Re r v t Metodo Simbolico, o metodo dei Fasoi Questo metodo applicato a eti lineai pemanenti consente di deteminae la soluzione in egime sinusoidale solamente pe quanto attiene il egime stazionaio. idea di appesentae

Dettagli

Elementi di Dinamica

Elementi di Dinamica Elementi di Dinamica ELEMENTI DI DINAMICA Mente la cinematica si limita allo studio delle possibilità di movimento di un ceto sistema ed alla elativa descizione matematica, la dinamica si occupa delle

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli