AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AUTOVALORI ED AUTOVETTORI DI UNA MATRICE"

Transcript

1 AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante det(a I) si chiama deteminante caatteistico della matice A; l equazione det(a I) si chiama equazione caatteistica della matice A. In foma sviluppata, il deteminante caatteistico det(a - I) si scive: a11 a1... a1n a a... a det( A I) = 1 n an1 an... ann Se si considea come uno scalae vaiabile in K, questo deteminante è un polinomio ϕ(), di gado n, che si chiama polinomio caatteistico della matice A. il gado del polinomio caatteistico di una matice quadata è uguale all odine n di questa matice; il coefficiente del temine di gado massimo è ±1 a seconda che n sia pai o dispai; la somma degli elementi diagonali di una matice A, si chiama taccia di A, e si indica con la scittua t(a), cioè si pone: n t( A) = aii = a11 + a ann i = 1 Risulta alloa che: il coefficiente del temine in (n-1) è uguale alla taccia della matice A, moltiplicata pe ±1 a seconda che n sia dispai o pai; il temine noto del polinomio caatteistico di una matice A è uguale al deteminante di tale matice, cioè ϕ() = det(a). Se la matice A ha gli autovaloi 1,,..., n tutti distinti, alloa i coispondenti autovettoi x 1, x,..., x n sono lineamente indipendenti. O è un autovaloe di A, se e solo se O è una adice del polinomio caatteistico di A, cioè se: det( A OI ) La deteminazione degli autovaloi di una matice A equivale, quindi, alla iceca delle adici del polinomio caatteistico ϕ() di gado n. Tovato un autovaloe O, alloa gli autovettoi coispondenti sono le soluzioni del sistema omogeneo: ( A OI ) X ESERCIZIO 1.:Deteminae gli autovaloi e gli autovettoi della matice A = 1 3 Dobbiamo deteminae uno scalae x ed un vettoe x = 1, tali che: x x x A x = x 1 1 = x 1 3 x

2 L equazione maticiale sopa scitta è equivalente al seguente sistema lineae omogeneo: x1 + x = x1 3x1 + x = x cioè: ( 1 ) x1 + x 3x1 + ( ) x Un sistema omogeneo ha una soluzione non nulla (soluzione non banale) solo se il deteminante della matice incompleta vale zeo, cioè se isulta: det ( 1 ) = ( 1 ) ( ) ( ) ovveo: 3 4 ( 4)( + 1) Petanto, è un autovaloe solo se: = 4 o = -1. Pe = 4, il sistema (1) diventa: 3x1 + x = = + = x = cioè: x 3 1 x 1 x x x x Il vettoe x = (, 3) è un autovettoe elativo all autovaloe = 4; ogni alto autovettoe elativo a = 4, è un multiplo di x = (, 3). Pe = 1, il sistema (1) diventa: x1 + x x1 1 cioè: x 3x1 3x 1 = x x = = = x Si ottiene, petanto, che il vettoe x = (x 1, x ) = (, 1) è un autovettoe elativo all autovaloe = 1; ogni alto autovettoe elativo a = 1, è un multiplo di x = (1, 1). ESERCIZIO.:Deteminae gli autovaloi e gli autovettoi della seguente matice: 4 6 A = Il polinomio caatteistico è dato dalla elazione seguente: 4 6 p( ) = det( A I) = det Sviluppando il deteminante secondo gli elementi dell ultima colonna, si peviene alla scittua: p( ) = (5 + ) [ (5 + ) ( 4 ) + 18] = ( + 5) ( + ) = = ( + 5) ( + ) ( ) ( 1) Petanto, gli autovaloi sono ottenuti come soluzione dell equazione seguente: p ( ) ( + 5) ( + ) ( 1) ovveo: = 5 = = 1 Indichiamo, oa, un autovettoe x come vettoe colonna nella foma seguente: v x Se è l autovaloe ad esso coispondente, dovà essee: ( A I ) x = a = b ; ossia:

3 4 6 ( 4 ) a + 6b = b a ( + ) = ( ) a 6b ( 5 + ) c Pe = 5, il sistema () assume la foma: 9a + 6b 3a a b c = abitaio 3a 6b Si può dunque poe abitaiamente c = 1 e poe l autovettoe x 1 nella foma: x 1 = 1 Pe =, il sistema () assume la foma: 6a + 6b + b 3a 3b a + b = a = c = b c = b 3a 6b 3c c + b Si può dunque poe abitaiamente b = 1 e poe l autovettoe x nella foma: x 1 = 1 1 Pe = 1, il sistema () assume la foma: 3a + 6b + b 3a 6b a + b = c 3a 6b 6c c Si può dunque poe abitaiamente b = 1 e poe l autovettoe x 3 nella foma: x 3 = 1 ESERCIZIO 3.: Deteminae tutti gli autovaloi della matice assegnata A ed una base pe ogni autospazio. 3 A = 1 1 Il polinomio caatteistico è individuato dalla elazione di seguito ipotata: 3 p( ) = det( A I) = det 1 ( ) [ ( )] = 1 3 = 1 = ( 1 )( 3 + ) = ( 1) ( 1) ( ) = ( )( 1) Petanto, gli autovaloi sono = 1, con odine di molteplicità ν =, e =. Pe tovae un autovettoe x elativo all autovaloe doppio 1 = 1, bisogna isolvee la seguente equazione: ( A 1 I ) ; ovveo:

4 + b 1 1 = b ossia il seguente sistema: a b le cui soluzioni c sono: a = b e c qualsiasi, e dipendono quindi da due scalai abitai b e c. Il sistema, dunque, ha due soluzioni indipendenti, e pecisamente: x 1 = ottenuto ponendo b e c = 1; 1 x = 1 ottenuto ponendo b = 1 e c ; 1 Quindi, i vettoi x 1 ed x sono degli autovettoi indipendenti che geneano l autospazio di 1 = 1, che isulta, alloa, a due dimensioni. Ciò significa che tutti gli alti autovettoi di A, associati all autovaloe 1 = 1, sono combinazioni lineai di questi vettoi base e copono il piano geneato dai vettoi x 1 ed x. Pe = si ottiene, agionando analogamente, il sistema di seguito icavato: 1 + b 1 = b ossia il seguente sistema: a b le cui soluzioni 1 c sono: a = -b e c, e dipendono, quindi, da uno scalae abitaio (a oppue b). Il sistema pesenta una soluzione indipendente e pecisamente: x 3 = 1 ottenuto ponendo b = 1. L autospazio di = è ad una dimensione, ed ha pe base, pe esempio, il vettoe x 3. Ciò significa che tutti gli alti autovettoi di A, associati allo autovaloe =, sono combinazioni lineai del vettoe base x 3. ESERCIZIO 4.:Deteminae il paameto h in modo che la matice assegnata A ammetta un autovaloe = 1; in coispondenza di tale valoe del paameto deteminae gli autovaloi della matice A. h 1 A = 1 h 1 1 h Deteminiamo, dappima, la matice (A I), si ottiene: h 1 ( A I ) = 1 h 1 1 h Poiché = 1 è un autovaloe della matice A, alloa il deteminante di (A I) calcolato pe = 1 deve essee uguale a zeo. Pe questo deteminiamo: h 1 1 ( A I ) ( ) = h = e imponiamo che: det[( A I) ( ) ]. = h 1 Si ottiene la elazione seguente:

5 ( h 1) ( h 1) + ( h 1)( 1 h) ( h 1) + ( h 1) ( h 1) ( h 1 1) h = Pe tale valoe del paameto h, la matice A e (A - I) assumono, ispettivamente, la foma: 1 1 A h= = A h= I = 1 ( ( ) ) Gli autovaloi di A sono definiti dalle soluzioni dell equazione che si ottiene uguagliando a zeo il polinomio caatteistico, ovveo: p( ) = det( A I) ( ) + ( ) + ( ) ovveo: ( ) ( 1) ( 3) Pe h =, la matice A pesenta, petanto, i seguenti autovaloi: = 1 = ESERCIZIO 5.:Deteminae te autovettoi, lineamente indipendenti, della seguente matice A = Si devono deteminae, dappima, gli autovaloi i della matice A, ovveo tutte le soluzioni della equazione ottenuta uguagliando a zeo il polinomio caatteistico p(). Si ottiene: det( A I) = det ( ) ( ) = Svolgendo le opeazioni ichieste, si ottiene: 3 3 det( A I) = = 3 = ( 3) Ne consegue che: det( A I) ( 3) = 3 L autovaloe 1 pesenta un odine di molteplicità pai a, mente è un autovaloe semplice. Gli autovettoi di A sono deteminati dalle soluzioni dell equazione fa matici del tipo: ( A i I) xi Pe 1, si ottiene la elazione fa matici ed il elativo sistema di seguito mostati: b + c = b a + b + c = c = ( a + b) a + b + c

6 Le soluzioni dipendono da due scalai abitai a e b. Il sistema ha, quindi, due soluzioni indipendenti; peciò i vettoi: 1 x 1 = deteminato da a = 1 e b ; x = 1 deteminato da a e b = 1 sono degli autovettoi indipendenti che geneano l autospazio di 1, che isulta, quindi, a due dimensioni. Ciò significa che tutti gli alti autovettoi di A, associati all autovaloe 1, sono combinazioni lineai dei vettoi base x 1 ed x e copono il piano geneato dai vettoi x 1 ed x stessi. Pe = 3, si ottiene, analogamente, la elazione fa le matici ed il elativo sistema associato di seguito mostati: 1 1 a + b + c c = a b = 1 1 b a b + c 3a 3b 1 1 a + b c 3a + 3b ovveo: a = b e c = a. Tali soluzioni dipendono da un solo scalae abitaio a. Il sistema ha, dunque, una soluzione indipendente; peciò il vettoe seguente, ottenuto ponendo a = 1: 1 x 3 = 1 1 è l autovettoe che genea l autospazio di = 3 che è ad una dimensione ed ha come base appunto x 3. I te autovettoi lineamente indipendenti della matice A sono: 1 x1 = x = 1 x 3 = ESERCIZIO 6.:Si detemini la matice A associata alla applicazione lineae ƒ : R R, sapendo che la ƒ ammette gli autovaloi 1 = 1 e = a cui coispondono, ispettivamente, gli autovettoi seguenti: x1 = 1 x = 1 Se x 1 ed x sono gli autovettoi elativi, ispettivamente, agli autovaloi 1 = 1 e =, dovà, pe definizione di autovaloe e di autovettoe, isultae veificata la seguente elazione: A xi = i xi in cui A è la matice associata alla applicazione lineae ƒ : R R. Si tatta, petanto, di una matice quadata di odine. Nel caso specifico poposto dalla taccia, la elazione sopa scitta, fonisce la coppia di scittue di seguito ipotate: A x1 = 1 x1 A x = x La geneica matice quadata A di odine assume la foma: A =. Dovà, alloa, veificasi che: c d

7 A x = x c d 1 = + = c + d = A x = x c d = + = c + d = Le soluzioni del pimo sistema, data l unicità della matice associata all applicazione lineae devono essee le soluzioni anche del secondo sistema; petanto, dovà veificasi che: = 1 b = 1 b = 1 b = d = d = d b + b = ( 1 ) 4 4b + b = 4 3 b = 6 ( d ) + d = 4 4d + d = 3 d = 6 l ulteioe semplificazione algebica conduce alle elazioni seguenti: = 1 b = d b = d = b = = 3 d = b = a = 1 c = c = d = Si conclude che la matice quadata A, di odine, associata alla applicazione lineae ƒ : R R poposta dalla taccia, assume la foma seguente: A = 3 Veifichiamo, pe essee esaustivi, che la matice A così deteminata pesenta gli autovaloi 1 = 1 e =. Gli autovaloi i della matice A, alto non sono che le soluzioni della equazione che si ottiene uguagliando a zeo il polinomio caatteistico p(). Si ottiene: det( A I) = det 3 = ( 3 ) ( ) + 4 Svolgendo le opeazioni ichieste, si ottiene: det( A I) = = + = ( 1) ( + ) Ne consegue che: det( A I) ( 1) ( + ) 1 = 1 = OSSERVAZIONE Dato che la matice A pesenta due autovaloi distinti alloa isulta essee diagonalizzabile. Una matice diagonale M simile alla matice A è la matice che ha lungo la diagonale pincipale gli autovaloi di A. La matice diagonalizzante P è la matice le cui colonne sono costituite dagli autovettoi associati agli autovaloi della matice A. Le matici M e P hanno, petanto, la foma seguente: M = 1 P = Si veifichi che le matici A, M e P soddisfano la elazione seguente: M = P A P

Esercizio 1. Date le rette

Esercizio 1. Date le rette Date le ette Eseciio y : : y a) Scivee le equaioni paametiche delle ette e. b) Dopo ave veificato che le ette ed sono sghembe, tovae l equaione di un piano σ contenente e paallelo a. c) Deteminae le equaioni

Dettagli

Equazioni e disequazioni irrazionali

Equazioni e disequazioni irrazionali Equazioni e disequazioni iazionali 8 81 Equazioni iazionali con un solo adicale Definizione 81 Un equazione si dice iazionale quando l incognita compae sotto il segno di adice Analizziamo le seguenti equazioni:

Dettagli

Equazioni e disequazioni con moduli

Equazioni e disequazioni con moduli Equazioni e disequazioni con moduli 7 7 Valoe assoluto Ripendiamo la definizione già vista in Algeba di valoe assoluto Il valoe assoluto o modulo di un numeo a, indicato con a, è lo stesso numeo a se esso

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Regola di Ruffini - Wikipedia

Regola di Ruffini - Wikipedia Pagina 1 di 7 Regola di Ruffini Da Wikipedia, l'enciclopedia libea. In matematica, la egola di Ruffini pemette la divisione veloce di un qualunque polinomio pe un binomio della foma x a. È stata descitta

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

equivalente rete riportata nella figura 1a valida nel dominio dei fasori. In questa figura vengono Z IN OP dell operazionale OP 2 non può OP V R

equivalente rete riportata nella figura 1a valida nel dominio dei fasori. In questa figura vengono Z IN OP dell operazionale OP 2 non può OP V R O : l cicuito opea in egime sinusoidale e gli amplificatoi opeazionali sono da consideasi ideali. i desidea deteminae: a il legame analitico costitutivo O ƒ( N fa il fasoe della tensione v O (t e il fasoe

Dettagli

v t V o cos t Re r v t

v t V o cos t Re r v t Metodo Simbolico, o metodo dei Fasoi Questo metodo applicato a eti lineai pemanenti consente di deteminae la soluzione in egime sinusoidale solamente pe quanto attiene il egime stazionaio. idea di appesentae

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo:

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo: m@th_cone di Enzo Zanghì pag Distanza di due punti Pe deteminae la distanza ta i punti ( ; ) ( ; ) applichiamo il teoema di Pitagoa e otteniamo: = ( ) + ( ) Punto medio di un segmento M O M + Osseviamo

Dettagli

Per ispezione diretta della rete, mostrata in figura 1, Z Z Z Z Z Z C R L R L C C R L R L C L C R

Per ispezione diretta della rete, mostrata in figura 1, Z Z Z Z Z Z C R L R L C C R L R L C L C R SOND PO N TN 7 UGO 008 SZO..: l cicuito di figua opea in egime sinusoidale. Si desidea deteminae: a) la tensione v (t) nel dominio del tempo; b) le potenze attiva, eattiva ed appaente eogate dal geneatoe

Dettagli

1 Definizioni e proprietà

1 Definizioni e proprietà Definizioni e popietà Retta e ciconfeenza ngoli al cento ed angoli alla ciconfeenza Equazione della ciconfeenza nel piano catesiano 5 Posizioni elative ed asse adicale di due ciconffeenze Definizioni e

Dettagli

ANALISI MATEMATICA III A.A Traccia delle lezioni del 20 e 22 aprile 2016

ANALISI MATEMATICA III A.A Traccia delle lezioni del 20 e 22 aprile 2016 ANALISI MATEMATICA III A.A. 05-06 Taccia delle lezioni del 0 e apile 06 May 9, 06 L equazione di Bessel (n inteo positivo) Come detto in una pecedente lezione, si chiama equazione di Bessel l equazione

Dettagli

Si considerino le rette:

Si considerino le rette: Si consideino le ette: Eseciio (tipo tema d esame) : s : + () ) Si dica pe quali valoi del paameto eale le ette e s isultano sghembe, paallele o incidenti. ) Nel caso paallele si emino i paameti diettoi

Dettagli

13b. Reattore omogeneo con riflettore. Due gruppi di neutroni

13b. Reattore omogeneo con riflettore. Due gruppi di neutroni b. Reattoe omogeneo con iflettoe ue guppi di neutoni Assumiamo oa una appossimazione in teoia della diffusione consistente in due guppi enegetici: uno elativo ai neutoni temici (guppo temico) ed uno elativo

Dettagli

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti icuiti R RIASSUNTO: () seie: impedenza () valoe isposta in fequenza () paallelo icuiti isonanti icuiti anti-isonanti icuito in seie I cicuiti pesentano caatteistiche inteessanti. Ad esempio, ponendo un

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

Capitolo 20:La Circonferenza nel piano Cartesiano

Capitolo 20:La Circonferenza nel piano Cartesiano Capitolo 20:La Ciconfeenza nel piano Catesiano 20.1) Una ciconfeenza è una conica la cui equazione geneale è del tipo x 2 + y 2 + ax + by + c = 0 oppue (x α) 2 + (y β) 2 = 2 ed individua il luogo geometico

Dettagli

Disequazioni Intervalli sulla retta reale

Disequazioni Intervalli sulla retta reale Disequazioni 18 181 Intevalli sulla etta eale Definizione 181 Dati due numei eali a e b, con a < b, si chiamano intevalli i seguenti sottoinsiemi di R: a ) (a, b) = x R a < x < b} intevallo limitato apeto

Dettagli

f con Esercitazione n. 03 (svolgimento) , si ha: . Essendo le funzioni f : 0,2 R con f x 2x risulta quindi posto,

f con Esercitazione n. 03 (svolgimento) , si ha: . Essendo le funzioni f : 0,2 R con f x 2x risulta quindi posto, Esecitazione n. (svolimento). Essendo la unzione R con II. si ha a) Pe deinizione una unzione è inettiva se ovveo se posto quanto con isulta quindi posto che isulta in petanto positivi e quindi la unzione

Dettagli

RANGO DI UNA MATRICE RAN. 1 Operazioni elementari di riga

RANGO DI UNA MATRICE RAN. 1 Operazioni elementari di riga RN RNGO DI UN MTRICE Opeazioni elementai di iga Data una matice IR (mn) si dice opeazione elementae di iga ciascuna delle seguenti opeazioni: scambio della iesima iga con la jesima; moltiplicazione della

Dettagli

Analisi e Geometria 1 Primo appello, 18 febbraio Punteggi degli esercizi: Es.1: 9 punti; Es.2: 6 punti; Es.3: 6 punti; Es.4: 9 punti.

Analisi e Geometria 1 Primo appello, 18 febbraio Punteggi degli esercizi: Es.1: 9 punti; Es.2: 6 punti; Es.3: 6 punti; Es.4: 9 punti. Analisi e Geometia 1 Pimo appello, 18 febbaio 13 Punteggi degli esecizi: Es.1: 9 punti; Es.: 6 punti; Es.3: 6 punti; Es.4: 9 punti. 1. (a) Scivee la definizione di: g(x) = o(h(x)), pe x a. (b) Sia f una

Dettagli

Curve di Lamont. Le curve di Lamont sono riportate nelle figure di pagina seguente.

Curve di Lamont. Le curve di Lamont sono riportate nelle figure di pagina seguente. Cuve di Lamont Le cuve di Lamont foniscono la elazione ta distanza dall'estemità tempata della pova Jominy e il diameto della baa coispondente pe la quale si veifica (a una ceta distanza dalla supeficie,

Dettagli

1-verifica vettori e moti nel piano classe 1F data nome e cognome A

1-verifica vettori e moti nel piano classe 1F data nome e cognome A 1-veifica vettoi e moti nel piano classe 1F data nome e cognome A Definisci che cosa si intende pe velocità media vettoiale, aiutandoti con degli esempi. Infine calcola la velocità media vettoiale di un

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13

Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13 Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13 Matrici diagonali 2 / 13 Ricordiamo che una matrice quadrata si dice matrice diagonale se a ij =

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio Come possiamo deteminae la lunghezza di una ciconfeenza di aggio? Poviamo a consideae i poligoni egolai inscitti e cicoscitti alla ciconfeenza: è chiao che la lunghezza della ciconfeenza è maggioe del

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

LabCont2: Laboratorio di Controlli 2 a.a Lezione 8 23 Marzo. Stesore: Baseggio Mauro, Bristot Francesca, Pozzi Mauro

LabCont2: Laboratorio di Controlli 2 a.a Lezione 8 23 Marzo. Stesore: Baseggio Mauro, Bristot Francesca, Pozzi Mauro LabCont2: Laboatoio di Contolli 2 a.a. 2009-2010 Lezione 8 23 Mazo Docente: Luca Schenato Stesoe: Baseggio Mauo, Bistot Fancesca, Pozzi Mauo 8.1 Luogo delle adici pe sistemi SISO Pendiamo nuovamente in

Dettagli

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 2 2 Sistemi lineari 3 3 2 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 Gli esercizi contrassegnati con il simbolo * presentano un

Dettagli

APPROSSIMAZIONE DI BORN

APPROSSIMAZIONE DI BORN 4/ APPROSSIMAZIONE DI BORN 5/6 APPROSSIMAZIONE DI BORN L applicazione più impotante della teoia delle petubazioni degli stati del continuo è costituita dalla isoluzione appossimata dei poblemi di diffusione.

Dettagli

TEST PER RECUPERO OFA 25 marzo 2010

TEST PER RECUPERO OFA 25 marzo 2010 TEST PER RECUPERO OFA mazo 010 A 1. Quale ta i seguenti numei, moltiplicato pe, dà come podotto un numeo azionale? A) 0 B) 1+ C) + D) 1 6 E).. Un esagono egolae è inscitto in una ciconfeenza di aggio.

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 0 gennaio 0. Due quati di coona cicolae, di aggio inteno ed esteno, ciascuno omogeneo e di massa m, sono disposti come in figua. a) Deteminae la matice d inezia. b) Deteminae

Dettagli

La parabola come luogo geometrico

La parabola come luogo geometrico La paabola come luogo geometico Definizioni e pime popietà Definizioni. Si chiama paabola il luogo ei punti equiistanti a un punto, etto fuoco, e a una etta etta iettice.. Il punto ella paabola che ha

Dettagli

Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/2012 Tema A

Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/2012 Tema A Matematica per Chimica, Chimica Industriale e Scienze dei Materiali Primo appello 7/02/202 Tema A NOME:..................................................... COGNOME:.....................................................

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 7 SETTEMBRE 202 Esercizio. Sia V = R[X] 2 lo spazio vettoriale dei polinomi ax 2 + bx + c nella variabile X di grado al più 2 a coefficienti

Dettagli

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi Le 5 espessioni del Q nel campo dei vapoi satui A C K B Consideiamo la tasfomazione AB che si svolge tutta all inteno della campana dei vapoi satui di una sostanza qualsiasi. Supponiamo quindi di andae

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PROVA D ESAME SESSIONE ORDINARIA 8 Liceo scientifico comunicazione opzione spotiva Lo studente isolva uno dei due poblemi e isponda a 5 quesiti del questionaio Duata massima della pova: oe È consentito

Dettagli

SPAZIO CARTESIANO E 3 (R) Sia [O,B] un riferimento euclideo nello spazio euclideo E 3 (R). B è una base ortonormale. condizioni di ortogonalità

SPAZIO CARTESIANO E 3 (R) Sia [O,B] un riferimento euclideo nello spazio euclideo E 3 (R). B è una base ortonormale. condizioni di ortogonalità SPZIO CRTESINO E (R) Sia [O,B] un ifeimento euclideo nello spaio euclideo E (R). B è una base otonomale. P P e e e P P condiioni di otogonalità ) etta-etta di paameti diettoi [(l,m,n )],[(l,m,n )] (l,m,n

Dettagli

Approssimazioni alle differenze finite

Approssimazioni alle differenze finite Capitolo 2 Appossimazioni alle diffeenze finite 2. Diffeenze finite del pimo e del secondo odine Si considei lo sviluppo in seie di Taylo della funzione u(x sufficientemente egolae nell intono h del punto

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 9 GEOMETRIA E ALGEBRA LINEARE 2012/13 Esercizio 9.1 (8.40). Sia T : R 2 R 3 l applicazione definita da T(x,y) = (2x,x y,2y), e siano B = {(1,0), (1,1)

Dettagli

Soluzione fondamentale dell Equazione di Helmholtz

Soluzione fondamentale dell Equazione di Helmholtz Soluzione fondamentale dell Equazione di Helmholtz Seminaio pe l esame di Analisi 4 Loenzo Stipani Univesità di Pisa 6 Settembe 23 Definizione Sia Ω R N, se la funzione u(x) C 2 (Ω) soddisfa l equazione

Dettagli

Equazione di Schrödinger in potenziale centrale

Equazione di Schrödinger in potenziale centrale Equazione di Schödinge in potenziale centale Studiamo l equazione di Schödinge pe un potenziale centale V ) V ) Si veifica facilmente che H p m + V ) h m cioé la hamiltoniana é a simmetia sfeica. Infatti

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Definizione 1 (per endomorfismi). Sia V uno spazio vettoriale su di un campo K e f : V V un suo endomorfismo. Si dice autovettore per f ogni vettore x 0 tale che f(x) = λx, per

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Laboratorio di matematica Le serie di taylor con derive

Laboratorio di matematica Le serie di taylor con derive Laboatoio di matematica Le seie di taylo con deive esercitazione guidata Data la funzione f( ) + 7 + -, + deteminiamo il gado n del polinomio T n di Maclauin, in modo che l eoe di appossimazione che si

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA Sessione odinaia 00 Seconda pova scitta Y7 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA QUESTIONARIO. Si dimosti che il lato del decagono egolae

Dettagli

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica.

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica. Lezioni del 14.05 e 17.05 In queste lezioni si sono svolti i seguenti argomenti. Ripresa del teorema generale che fornisce condizioni che implicano la diagonalizzabilità, indebolimento delle ipotesi, e

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

Esercizi 1. Verificare che la somma dei cubi di due numeri naturali reali di assegnato prodotto p > 0 è

Esercizi 1. Verificare che la somma dei cubi di due numeri naturali reali di assegnato prodotto p > 0 è Esecizi. Veiicae che la somma dei cubi di due numei natuali eali di assegnato odotto > è y smin y s minima quando i due numei sono uguali. y s min 6 6 Studio il segno della deivata ima: 6 Poiché il denominatoe

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

GRAVITAZIONE: ENERGIA POTENZIALE EFFICACE

GRAVITAZIONE: ENERGIA POTENZIALE EFFICACE GRAVITAZIONE: ENERGIA POTENZIALE EFFICACE Sommaio. In queste pagine studiamo il poblema delle obite dei copi soggetti ad un campo gavitazionale centale, g = G m 3 (dove m è la massa del copo centale e

Dettagli

Reattori chimici. media uscente. media entrante. può essere espresso in funzione del numero n di moli e della

Reattori chimici. media uscente. media entrante. può essere espresso in funzione del numero n di moli e della Reattoi chimici Pe eattoe si intende il contenitoe nel quale viene fatta avvenie una eazione o una seie di eazioni chimiche. Di noma i eattoi possono essee suddivisi in due categoie: 1. eattoi discontinui

Dettagli

Soluzione della prova scritta di di Algebra lineare del 10 giugno Esercizio 1

Soluzione della prova scritta di di Algebra lineare del 10 giugno Esercizio 1 Soluzione della prova scritta di di Algebra lineare del 0 giugno 05 Esercizio (a) La matrice A che rappresenta f rispetto alle basi assegnate è la seguente: A = 0 0 0 (b) Applicando il metodo di Gauss

Dettagli

Esercitazione N.4. Rette e piani nello spazio. Parallelismo e ortogonalità. Proiezioni ortogonali. Mutue posizioni di rette e piani.

Esercitazione N.4. Rette e piani nello spazio. Parallelismo e ortogonalità. Proiezioni ortogonali. Mutue posizioni di rette e piani. Esecitazione N.4 4 apile 2007 Rette e piani nello spazio Rette e piani : appesentazione paametica e catesiana aallelismo e otogonalità oiezioni otogonali Mutue posizioni di ette e piani Rosalba Baatteo

Dettagli

18.6 Esercizi. 470 Capitolo 18. Disequazioni Determina la scrittura corretta per il seguente grafico. A x < 3 B x > 3 C x 3 D x 3

18.6 Esercizi. 470 Capitolo 18. Disequazioni Determina la scrittura corretta per il seguente grafico. A x < 3 B x > 3 C x 3 D x 3 70 Capitolo 8 Disequazioni 8 Esecizi 8 Esecizi dei singoli paagafi 8 - Intevalli sulla etta eale 8 Detemina la scittua coetta pe il seguente gafico A x < B x > C x D x 8 Detemina la scittua coetta pe il

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Applicazioni lineari e diagonalizzazione Autospazi Autovettori e indipendenza lineare Diagonalizzabilità e autovalori 2 2006 Politecnico di Torino 1 Esempio (1/6) Utilizzando un esempio già studiato, cerchiamo

Dettagli

Matematica Discreta I

Matematica Discreta I Matematica Discreta I 5 Febbraio 8 TEMA A Esercizio Sia data la matrice A M (R) A = (i) Calcolare gli autovalori di A (ii) Determinare una base di R composta di autovettori di A (iii) Diagonalizzare la

Dettagli

Lezione VI. La lezione inizia con la lettura della prefazione di Grassmann alla sua Ausdehnungslehre. che viene distribuita agli studenti.

Lezione VI. La lezione inizia con la lettura della prefazione di Grassmann alla sua Ausdehnungslehre. che viene distribuita agli studenti. Lezione VI 1. I vettoi: estensioni di dimensione uno Il calcolo geometico, in geneale, consiste in un sistema di opeazioni a eseguisi su enti geometici, analoghe a quelle che l'algeba fa sopa i numei.

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. R. Sanchez - T. Traetta - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, dell Innovazione del Prodotto, Meccatronica

Dettagli

ESERCITAZIONE N.4 ESERCIZIO 1. Relazione di equivalenza su ZxZ

ESERCITAZIONE N.4 ESERCIZIO 1. Relazione di equivalenza su ZxZ ESERCIZI. ESERCITAZINE N.4 30 ottobe 007 Relazione di equivalenza su ZZ In ZZ è data la coispondenza (,) (z,w) (-z)=(-w). Povae che è una elazione d equivalenza Relazioni d equivalenza Classi di equivalenza

Dettagli

Circuiti LC in serie

Circuiti LC in serie 8//00 Isidoo Feante A.A. 00/003 icuiti in seie I cicuiti pesentano caatteistiche inteessanti. Ad esempio, ponendo un condensatoe ed una induttanza in seie si ha: z ϕ tan ompotamento capacitivo Pe fequenze

Dettagli

Momenti d'inerzia di figure geometriche semplici

Momenti d'inerzia di figure geometriche semplici Appofondimento Momenti d'inezia di figue geometice semplici Pidatella, Feai Aggadi, Pidatella, Coso di meccanica, maccine ed enegia Zanicelli 1 Rettangolo Pe un ettangolo di ase e altezza (FGURA 1.a),

Dettagli

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1 a.a. 2005-2006 Esercizi. Autovalori e autovettori. Soluzioni. Sia A = e sia x =. Dire se x è autovettore di A. Se si dire per quale 8 autovalore. Sol. Si ha =. Il vettore non è della forma λ dunque 8 29

Dettagli

( ) = gdt = g dt = gt +

( ) = gdt = g dt = gt + Gave lanicato veso l alto (1/3) Vogliamo studiae il moto di un copo lanciato veso l alto con una ceta velocità iniziale v =, soggetto unicamente alla foza di attazione gavitazionale teeste (si tascua l

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 07-08 Prova scritta del 7-7-08 TESTO E SOLUZIONI Svolgere tutti gli esercizi.. Per R considerare il sistema lineare X

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

L area S compresa fra l arco e la corda AB si ottiene come differenza fra l area del settore circolare e l area del triangolo: x 2 1 2

L area S compresa fra l arco e la corda AB si ottiene come differenza fra l area del settore circolare e l area del triangolo: x 2 1 2 EAME DI TATO DI LICEO CIENTIFICO essione Odinaia 009 CORO DI ORDINAMENTO Poblema È assegnato il settoe cicolae AOB di aggio e ampiezza x ( e x sono misuati, ispettivamente, in meti e adianti) i povi che

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

GRAVITAZIONE Giro della morte. Il binario in figura 1.1 ha un raggio di 7.2 m.

GRAVITAZIONE Giro della morte. Il binario in figura 1.1 ha un raggio di 7.2 m. GRAVITAZIONE Sommaio. In questa seie di poblemi vengono toccati tutti i concetti fondamentali dell ultima pate del coso. 1. Poblemi 1.1. Moto cicolae. 1.1.1. Gio della mote. Il binaio in figua 1.1 ha un

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 25 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, se è possibile scrivere 3 come combinazione lineare di 507 e 2010,

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

Algebra Lineare Corso di Ingegneria Biomedica Compito del

Algebra Lineare Corso di Ingegneria Biomedica Compito del Algebra Lineare Corso di Ingegneria Biomedica Compito del -- - È obbligatorio consegnare tutti i fogli, anche il testo del compito e i fogli di brutta. - Le risposte senza giustificazione sono considerate

Dettagli

Integrazione indefinita di funzioni irrazionali

Integrazione indefinita di funzioni irrazionali Esecizi di iepilogo e complemento Integazione indefinita di funzioni iazionali 0.5 setgay0 0.5 setgay Denotiamo con R(,,..., n ) una funzione azionale delle vaiabili indicate. Passiamo in assegna alcuni

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 25 FEBBRAIO a a. A a = 1 a 0

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 25 FEBBRAIO a a. A a = 1 a 0 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 5 FEBBRAIO 013 Esercizio 1. Al variare del parametro a R, si consideri la matrice A a = 1 a 0 a 1 0. 1 1 a (1) Si discuta al variare

Dettagli

FONDAMENTI DI AUTOMATICA I LAUREA TRIENNALE IN INGEGNERIA INFORMATICA (DM 509/99) LAUREA TRIENNALE IN INGEGNERIA DELL AUTOMAZIONE (DM 509/99)

FONDAMENTI DI AUTOMATICA I LAUREA TRIENNALE IN INGEGNERIA INFORMATICA (DM 509/99) LAUREA TRIENNALE IN INGEGNERIA DELL AUTOMAZIONE (DM 509/99) LAUREA TRIENNALE IN INGEGNERIA INFORMATICA (DM 509/99) LAUREA TRIENNALE IN INGEGNERIA DELL AUTOMAZIONE (DM 509/99) PROVA SCRITTA DEL 05/07/2011 Con ifeimento alla Figua 1, si detemini la f.d.t. / mediante

Dettagli

0 0 c. d 1. det (D) = d 1 d n ;

0 0 c. d 1. det (D) = d 1 d n ; Registro Lezione di Algebra lineare del 23 novembre 216 1 Matrici diagonali 2 Autovettori e autovalori 3 Ricerca degli autovalori, polinomio caratteristico 4 Ricerca degli autovettori, autospazi 5 Matrici

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 MATTEO LONGO Esercizio 1. Al variare del parametro a R, si consideri l applicazione lineare L a : R R definita dalle

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

GEOMETRIA CORREZIONE DELLE PROVE D ESAME

GEOMETRIA CORREZIONE DELLE PROVE D ESAME GEOMETRIA CORREZIONE DELLE PROVE D ESAME 1. Prova del 27 settembre 2011 - A Esercizio 1.1. Si trovino i valori del parametro reale k per cui il sistema lineare (k + 1)x + (k 4)y + z = k (k + 2)x + (k 2)y

Dettagli

Esercizio n 16 pag. Q 157 Il triangolo ABC ha AB=4, AC=3 e BAC= /3. Detta AQ la bisettrice dell'angolo a. la misura di BC; BAC determina:

Esercizio n 16 pag. Q 157 Il triangolo ABC ha AB=4, AC=3 e BAC= /3. Detta AQ la bisettrice dell'angolo a. la misura di BC; BAC determina: Esecizio n 16 pag Q 15 Il tiangolo ABC ha AB=4, AC=3 e BAC= /3 Detta AQ la bisettice dell'angolo a la misua di BC; BAC detemina: b le misue delle due pati CQ e QB in cui il lato è diviso dalla bisettice;

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

Costo del Debito (rd)

Costo del Debito (rd) Esecitazione 29/5/27 Esecizio 1 Sono date due impese, alfa e beta opeanti nello stesso settoe e caatteizzate dall assenza di cescita. I dati economici elativi alle due impese sono ipotati nella seguente

Dettagli

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I.

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. SIMULAZINE DELLA PRVA D ESAME DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. Risolvi uno dei due poblemi e 5 dei quesiti del questionaio. PRBLEMA In un piano è data la ciconfeenza di cento e aggio A ; conduci

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 12 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, quali delle seguenti equazione diofantee ammettono soluzioni e risolvere

Dettagli