Il processo inverso della derivazione si chiama integrazione.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il processo inverso della derivazione si chiama integrazione."

Transcript

1 Ingrl Indinio l Anidriv Il prosso invrso dll drivzion si him ingrzion. No l vrizion isnn di un grndzz p.s. l vloià è nssrio spr om si ompor l grndzz isn pr isn p.s. l posizion. No llor un unzion il problm onsis nl rovr un lr unzion F l h F = Ad s. s =^, porbb ssr F=^/ D. D l unzion, si him ni-driv o primiiv di in un inrvllo I un unzion F l h pr ogni di I vl: F = No. Un unzion primiiv dv ssr un unzion drivbil sull inrvllo I. No. Si mosrrà in sguio h un unzion oninu in un inrvllo [;b] mm smpr un primiiv mgri non sprimibil lmnrmn. No. Un onsgunz di orollri dl orm di Lgrng rm h l unzion primiiv di un unzion non è uni. L primiiv sono ini inini dirisono un dll lr pr un osn ddivi. Cr. il sondo orollrio l orm di Lgrng.

2 Ingrl Indinio l Anidriv Es. Si =^. Allor: F È un primiiv. M lo sono nh: F F F F k k In quno: F' F' k F' F' F' D. Si him ingrl indinio dll unzion l insim dll primiiv in un inrvllo I. Nor: Si indi on: d Simbolo di ingrl oppur Funzion ingrnd Vribil di ingrzion Dirnzil dll vribil di ingrzion Ed è osiuio d u l unzion dll orm F+ on =osn d F primiiv di No Vl pr dinizion: ' d No Vribil di ingrzion mu: d y dy

3 Ingrl Indinio l Anidriv No. Mnr nll oprzion di drivzion di ssoi d un unzion un lr unzion l su driv, nll ingrl indinio si ssoi d un unzion un lss insim di unzioni. Il lolo ingrl risul più diiil rispo l lolo dll driv No: Esisnz dll ingrl indinio. Pr lun unzioni nh bbsnz smplii non sis l orm nlii smpli pr l ingrl indinio: d s.: Inolr, non u l unzioni mmono un primiiv su un rmino inrvllo I un ondizion suiin è h sino oninu. Un unzion primiiv dv ssr un unzion drivbil quindi dv possdr lun proprià di rgolrià. Allo sopo vl il sgun orm:

4 Ingrl Indinio l Anidriv Torm. Si drivbil in un inrvllo I, llor può vr disoninuià solo di II spi: No. Non ogni unzion dini in un inrvllo é un unzion driv. Ad smpio unzioni on disoninuià liminbili o di I spi in rmino inrvllo, non sono driv di nssun unzion. As s. I [,] pr 0 pr - No. All unzion = non si può pplir il orm prdn rlivmn ll inrvllo I=[-,] in quno l unzion non è drivbil in =0 quindi non lo è in uo l inrvllo I. 0

5 5 L Tbll dll ni-driv immdi - d d d d os d sn os sn d n n os d d rn d rsn d Ch d Sh Sh d Ch

6 L Tbll dll ni-driv immdi Sh d Ch Ch d Sh d SSh d SCh d rsn 6

7 7 Proprià Ingrl Indinio Dll proprià dll driv disnd: d g d d g d k d k p. di ddiviià * p. di omognià ** Es. Ingrzion polinomi d 5 5 d d g H g H ' * F F ' g G g G ' ' ' ' ' G F G F g H G F H k H k H ' ** F F ' ' ' ' kf H kf kf H

8 8 Anidriv qusi immdi Considrimo: d ' d d d d d d d d os os sin os sin n

9 Considrimo: Anidriv qusi immdi k ' d k k on k - No: sin sin os d os sin os d sin d sin os d os sin os osn 5 5 d d

10 0 Anidriv qusi immdi ' d ' d d sin sin os d d d d

11 Anidriv qusi immdi os ' d sn ' os sn d n ' os d d sn d sn os d d n os os

12 Anidriv qusi immdi 5 ' rsn d rn ' d rsn d d d d rn 9 9

13 Anidriv qusi immdi 6 SSh d ' SCh d - ' SSh d sin sin sin sin os SCh d d

14 Rissuno: mbimno di vribili Quno sinor o può ssr osì rissuno: NOTO : g d G Possimo lolr: g ' d G Poihé: DG G' ' g ' Possimo nh usr un mbimno di vribili nll ingrl indinio: y dy ' d g ' d g y dy G y y G

15 Ingrzion Funzioni Rzionli Considrimo or ingrli dl ipo: N d D Con N D polinomi nll vribil. S n è il grdo di N d il grdo di D n d, l lgorimo di division di polinomi prm di srivr rvrso il quozin Q d il rso R dll division om sgu: N D Q R D Allor Q h grdo q=n-d d il rso R h grdo r<d. In u gnrlià supporrmo h n<d, pondoi ridurr quso so. Ci ouprmo in priolr di si n d smpr on n<d pr smpliià. 5

16 6 Ingrzion Funzioni Rzionli : dnominor di primo grdo Considrimo ingrli dl ipo: d b k d b k d b k d b k b k b k Es. d d

17 Ingrzion Funzioni Rzionli Δ>0 Considrimo or ingrli dl ipo: m q d on b b S d sono l soluzioni rli disin dll q. di grdo ssoi l dnominor vl: b 0 Il prodimno vl nh pr m=0 L unzion ingrnd vin osì risri: m q b m q Si prod poi llo sviluppo in rzioni przili dl sondo or: m q A B 7

18 Ingrzion Funzioni Rzionli Δ>0 A A B B A B A B Grzi l prinipio di idnià di polinomi, il sgun sism linr prm di rovr i vlori di A B: In onlusion: A B m A B q m q b d A d B d A B 8

19 9 Ingrzion Funzioni Rzionli Δ>0 d d 5 d 5 B A B A B A / / 0 B A B A B A d d d 5

20 0 Ingrzion Funzioni Rzionli Δ>0 d d 5 5 d 5 5 B A B A B A / 5 B A B A B A d d d / 5 /

21 Ingrzion Funzioni Rzionli Δ=0 Considrimo or ingrli dl ipo: q d on b 0 b In quso so, s 0 é l rdi doppi dl dnominor bbimo: b 0 q q d d b 0 q 0 Es. d / d d /

22 Ingrzion Funzioni Rzionli Δ=0 Considrimo or ingrli dl ipo: 0 on b d b q m * 0 d q m d b q m Si prod llo sviluppo in rzion przili dll unzion ingrnd: B A B B A B A q m Il sgun sism linr prm di rminr A B: q B A m B 0 d B A * 0 0 B A 0 0

23 Es. Ingrzion Funzioni Rzionli Δ= d 9 5 / d 5 / A / B / A B / / B A / B / B A B / 5 A / 9 / d / / d 9 / /

24 Ingrzion Funzioni Rzionli Δ=0 Un modo lrnivo onsis nl r omprir l numror, on opporun rsormzioni lgbrih, l driv dl dnominor: Es d d d d d d d 9 / / / 9 9

25 5 Ingrzion Funzioni Rzionli Δ<0 Considrimo or ingrli dl ipo: 0 on b d b Si dv onr il omplmno dl qudro di primi du rmini +b l dnominor poi ingrr in rongn. d d d d d y d dy dy y rn y rn d dy y

26 6 Ingrzion Funzioni Rzionli Δ<0 Considrimo or ingrli dl ipo: 0 on b d b q m Si lvor in modo d r omprir numror l driv dl dnominor; qullo h rimn si ingr in rongn om nl so prdn: d d d d d d * d

27 7 Ingrzion Funzioni Rzionli Δ<0 rn d d d d d dy y dy y rn y rn 6 *

28 8 Ingrzion Funzioni Rzionli Δ<0 bis Considrimo or ingrli dl ipo: 0 on b d b q m Si lvor in modo d r omprir numror l driv dl dnominor; qullo h rimn si ingr in rongn om nl so prdn: d d 6 d 6 d d d - 6 * - d

29 9 Ingrzion Funzioni Rzionli Δ<0 bis 6 rn d d d d 6 d dy 6 6 y dy y 6 rn y 6 rn 8 - *

30 Ingrzion pr Pri Priolr ni di ingrzion. D du unzion,g oninu on driv oninu : g' 'g g' g ' 'g g' 'g g' g 'g g' 'g g g' ' g d g Appli ll ingrl dl prodoo di du unzioni di ui dv ssr no, in prnz, un primiiv di un dll du nll s. l. g' d Spsso i si riris ll d om or dirnzil d ll g om or inio No In luni si è vnggioso onsidrr nh = Es. L ingrl dl logrimo d d d 0

31 Ingrzion pr Pri Es. os d g ' os sn d sn sn sn d sn os os d sn os sn g ' sn In gnrl si us [ P polinomio ] : P h d g P ' h os b sn b g h ' P rn h l d h sn b,os b, l sn b,os b, L sl di g è indirn

32 Ingrzion pr Pri d d sn os Es. g ' d Es. d sn sn g ' d sn sn os d sn sn os sn d sn os sn d sn os d

33 Ingrzion pr Pri d sn d sn os os os Es. ' sn sn g d sn os os d sn sn d sn sn os os os sn d sn sn d sn os Alrniv: d sn d os d os sn sn

34 Ingrzion pr Pri 5 d os d sn sn sn os Es. os ' os g d sn sn os d sn d sn os os os os os os sn d sn d os os Es. d sn d os sn sn os os d os... os d Es. sn

35 Es. Ch d Ingrzion pr Pri 6 Sh Sh d Sh Ch Sh Ch Ch g Ch ' Ch Sh d Ch d Sh Ch d Sh Ch Sh Ch Ch d Es. Sh d Ch Ch d Ch Sh Ch Sh d Ch Sh Sh d Ch Sh Ch Sh g Sh ' Sh Sh Ch Sh d d

36 Ingrzion pr Sosiuzion E l ni più diiil gnrl. Pr pplirl bisogn ini sosiuir nll ingrl indinio ll vribil un lr unzion on l obiivo non di risolvr immdimn il lolo m di smpliirlo. d g g' È nssrio ll in dl lolo dll ingrl sondo mmbro nll vribil riornr ll vluzion dll ingrl primo mmbro nll vribil mdin l invrsion dll rlzion =g. Priò, più prismn, l rlzion prdn divn: g d g' d g g' g 6

37 Ingrzion pr Sosiuzion: pplizioni simili l mbimno di vribil Tipologi F d F : unzion rzionl Sosiuzion d d Es. d d d rn rn rn 7

38 Ingrzion pr Sosiuzion: pplizioni simili l mbimno di vribil Tipologi F, b d F unzion rzionl Sosiuzion: b b d d Es. 5 5 d d d

39 Ingrzion pr Sosiuzion: pplizioni simili l mbimno di vribil Tipologi F sn b,os b d F unzion rzionl Sosiuzion : os sn d d d Es. os sn d os os os os sn d 9

40 Es. Ingrzion pr Sosiuzion: pplizioni simili l mbimno di vribil d d d d d rn rn 0

41 Ingrzion pr Sosiuzion: Esmpi priolri 0 d os d sn d Sh d Ch d Ch d Sh

42 Es. Ingrzion pr Sosiuzion: Esmpi priolri d os d sn os sn sn os ros sn sn sn snros ros * ros S uo l sosiuzion sn d os rsn * snros : y ros os y sn y os y

43 Es. Ingrzion pr Sosiuzion: Esmpi priolri Sh Ch Sh Ch SSh d Ch Ch Ch * SSh Sh d Ch SSh : * ChSSh : y SSh Sh y Ch y Sh y

44 Ingrzion pr Sosiuzion: Esmpi priolri Es. Sh Ch d Sh Sh Sh SCh Ch Sh SCh * Sh d Ch : SCh : ShSCh * SCh y y Ch y Sh y Ch

45 Ingrzion pr Sosiuzion: Esmpi priolri d SSh d SCh d rsn 5

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Ingral Indinio l Anidrivaa Il prosso invrso dlla drivazion si hiama ingrazion. Noa la variazion isanana di una grandzza p.s. la vloià è nssario sapr om si ompora al grandzza isan pr isan p.s. la posizion.

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico a.s SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico a.s SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO imulzion Prov Esm di Murià di Mmi pr Lio iniio.s. IMULAZIONE PROVA EAME DI MATURITA PER LICEO CIENTIFICO Prov di Mmi PROBLEMA i d l unzion g d. Drminr i oiini,, d,, nll origin un mssimo in ;, in modo g

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

Esercizi di Segnali Aleatori per Telecomunicazioni

Esercizi di Segnali Aleatori per Telecomunicazioni Corso di Lur in Inggnri Inormic corso di Tlcomunicioni (ro. G. Giun) (diing cur dll ing. F. Bndo) srcii di Sgnli Alori r Tlcomunicioni Diniioni di momni sisici (di rimo scondo ordin) di vriili lori: -

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Incrmntl α Δ Δy y m tnα y. Il rpporto incrmntl dll unzion nl punto rltivo d un incrmnto è il coicint nolr dll scnt l rico dll unzion ni punti di sciss d Not: Nll smpio rico è riportto > m, in nrl,

Dettagli

Equazioni differenziali di ordine superiore al primo

Equazioni differenziali di ordine superiore al primo Equzioni diffrnzili di ordin suprior l primo Eq. diff. linri offiinti ostnti n + n +...... + n + n = b i offiinti k sono ostnti, b = trmin noto, dfiniti in I R. L q. diff. è omogn s b = n + n +...... +

Dettagli

Analisi Matematica I Soluzioni del tutorato 3

Analisi Matematica I Soluzioni del tutorato 3 Corso di lur in Fisic - Anno Accdmico 07/08 Anlisi Mmic I Soluzioni dl uoro 3 A cur di Dvid Mcr Esrcizio ( i) Dominio di dfinizion: L funzion h un problm in, mnr d è dfini pr ogni lro. Quindi, il dominio

Dettagli

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

E SEVERAMENTE PROIBITO L USO DI CALCOLATRICI PROGRAMMABILI, TABLET, SMARTPHONE E NETBOOK

E SEVERAMENTE PROIBITO L USO DI CALCOLATRICI PROGRAMMABILI, TABLET, SMARTPHONE E NETBOOK 5/6-MT-5---U Lio Siniio Glilo Glili COMPITO IN CLSSE di MTEMTIC TERZO Compio dl SECONDO qudrimsr mggio 6 S. Brnrdino d Sin srdo Clss QUINT Sz. Pro. Muro D ETTORRE -8 E SEERMENTE PROIBITO L USO DI CLCOLTRICI

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche Facolà di Economia Equazioni diffrnziali Linari d Applicazioni Economich prof. EQUAZIONI DIFFERENZIALI LINEARI APPLICAZIONI ECONOMICHE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LINEARI Quso ipo di quazioni

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

MATEMATICA I Esercitazione del

MATEMATICA I Esercitazione del FACOLTA DI INGEGNERIA Corso di lur in Inggnri Mccnic.. 9- MATEMATICA I Esrcizion dl..9 Cognom... Nom... Mricol n.... Svolgr gli srcizi sguni moivndo l rispos. Uilizzo di sofwr grfico-simbolico: Si No )

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi 4. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Integrale Indefinito e l Antiderivata Il proesso inverso della derivazione si hiama integrazione. Nota la variazione istantanea di una grandezza p.es. la veloità) è neessario sapere ome si omporta tale

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

App.Cap.II: Dettagli e sviluppi per il capitolo 2. App.Cap.II-1: Risposta di un sistema del primo ordine con ingresso a impulso.

App.Cap.II: Dettagli e sviluppi per il capitolo 2. App.Cap.II-1: Risposta di un sistema del primo ordine con ingresso a impulso. SCPC n C.II.C.II: Dgl svlu r l olo.c.ii-: sos un ssm l rmo orn on ngrsso mulso. () () δ () Pr l soluon onvn suvr l ss m n u r rsolvr u vrs E.D.O. Pr

Dettagli

TRASFORMATA DI LAPLACE

TRASFORMATA DI LAPLACE TRASFORMATA DI LAPLACE. Inrodzion. In qo cpiolo dirmo n opror ingrl noo com l rorm di Lplc. Prim di dcrivr l opror ingrl prmimo lcn dinizioni. Un nzion F i dic conin ri in [,] è dini conin in [,], d cczion,

Dettagli

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1]

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1] Compio di Mamaica sul problma di Cauch sull quazioni diffrnziali ordinari dl º ordin [] Esrcizio Spigar la formulazion, il significao com si procd alla risoluzion dl problma di Cauch pr EDO dl º ordin

Dettagli

Determinare il dominio di una funzione

Determinare il dominio di una funzione Drminar il dominio di una funzion CHE COSA SONO LE FUNZON. Una funzion = f( è una rlazion ch lga du grandzz (variabili: la variabil vin chiamaa variabil indipndn, mnr la variabil dipndn. Pr smpio la rlazion

Dettagli

Argomento 5. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 7 Lezione 8.

Argomento 5. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 7 Lezione 8. Argomno 5 Lion 7 Lion 8 Frncsc Apollonio Diprimno Inggnri lronic -mil: quion dll ond dominio dl mpo B r L-S-O-I-nonD r D r ε r B r µ r D r r J r J r cosni Pr smplicià di noion frmo rifrimno d ssn di crich

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Mamaica cla Danil Rilli anno accadmico 8/9 Lzion : Ingrali Esrcizi svoli. Provar, usando il cambio di variabil ch:. Dimosrar ch. Ingrando pr pari dimosrar ch + = + = 6 sin(π) = π Svolgimno.

Dettagli

18. La nozione di integrale

18. La nozione di integrale 8. L nozion di inrl L driv uò com imo viso considrrsi un rinmno dll nozion di dirnz dà cono dll rorià rliv ll vrizion di un unzion si nsi d smio ll vrizioni dli indici di ors. L nozion di inrl è invc srmn

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area=

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area= ( ) Cso : r fr du fuzioi oiu sgo divrso. Il prodio o i. Espio: Clolr l r oprs fr l fuzioi y r ( ) y ll irvllo [ ;]. r ( ) ( ) 9 0 6 Idi Igrl idfiio... Clolo dll igrl.... Prodoo fr os fuzio.... So/Diffrz

Dettagli

1 a. 1 b. Rappresenta i seguenti numeri su una retta orientata, scegliendo autonomamente una opportuna unità di misura. b 1

1 a. 1 b. Rappresenta i seguenti numeri su una retta orientata, scegliendo autonomamente una opportuna unità di misura. b 1 Rpprsnt i sgunti numri su un rtt orintt, sglino utonommnt un opportun unità i misur. 0 0 f g 7 0 h 0 Si noti h il m..m i nomintori è 0, quini un slt opportun è siurmnt qull i utilizzr 0 qurtti om unità

Dettagli

Compact Listino prezzi F4 Giugno Tubi di PVC per condotte fognarie civili ed industriali costruiti secondo UNI EN 1401

Compact Listino prezzi F4 Giugno Tubi di PVC per condotte fognarie civili ed industriali costruiti secondo UNI EN 1401 Gurnizioni lsomrih ( lbbro sondo UI 68 Color: nro Tipo norml Tipo FlxBlok norml Lisino przzi F Giugno 2 FlxBlok,2,32,,59,62 2,7 2,7 3,57 3,35 5,7,68 5,6 8,9 7,2,,28 8,2 2,2 3,7 2,92 26,8,79 3,3 www.ubipv.i

Dettagli

Serie di Fourier Discrete Fourier Transform (versione 1.0, 18/01/2006)

Serie di Fourier Discrete Fourier Transform (versione 1.0, 18/01/2006) Sri di Fourir Disr Fourir rsfor (vrsio., 6) Ig. Giuspp Fdl Dip. Elroi, Ifori Sisisi Uivrsià dgli Sudi dll Clbri Eil: fdl@si.dis.uil.i Sviluppo i sri di Fourir U sgl () è -priodio s vl l rlzio: ( ) ( )

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

Formule generali di carica e scarica dei condensatori in un circuito RC

Formule generali di carica e scarica dei condensatori in un circuito RC Formul gnrali di aria saria di ondnsaori in un iruio A ura di ugnio Amirano onnuo dll ariolo:. Inroduzion........ 2 2. aria saria di un ondnsaor..... 2 3. Formula gnral pr nsioni fiss..... 4 4. Formula

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. PROBLEMA 1 Si consideri la funzione:

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. PROBLEMA 1 Si consideri la funzione: Sssion suppliv PNI 8 9 Soluzion cur di Nicol D Ros ESAME DI STATO DI LICEO SCIENTIFICO Indirizzo Y: P.N.I. sciniico uonomi sciniico sciniico-cnologico Brocc Proo. CORSO SPERIMENTALE Sssion suppliv 9 Tm

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equaioni diffrniali ordinari Equaioni diffrniali ordinari Equaioni diffrniali dl ordin a variabili sparabili, Equaioni diffrniali linari dl ordin Equaioni diffrniali dl ordin non linari: Equaion di Brnoulli

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Istituzioni di Matematica I (Chimica) canale A-L 14 febbraio 2014 Soluzioni

Istituzioni di Matematica I (Chimica) canale A-L 14 febbraio 2014 Soluzioni Esrcizio. Isiuzioni di Mamaica I (Chimica) canal A-L 4 fbbraio 204 i) Si sudi la funzion Soluzioni f(x) = arcan ( log x x ) s n disgni il grafico, solo pr por rispondr all sguni domand: ii) pr quali α

Dettagli

Note di Matematica Generale

Note di Matematica Generale This is pg i Printr: Opqu this Not di Mtmtic Gnrl Robrto Mont Dcmbr 13, 2005 ii ABSTRACT Ths nots r still work in progrss nd r intndd to b for intrnl us. Pls, don t cit or quot. Contnts This is pg iii

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Es. Data la funzione:

Es. Data la funzione: Es. D l uzio: Esrcizi Complmri. A b. Drmir pr quli vlori di b l uzio mm u puo di mssimo d u puo di miimo pr quli vlori l uzio o mm li pui.. Drmir i vlori di b i modo ch l uzio prsi u mssimo rlivo co ordi

Dettagli

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione Educnica.i Calcolo di ii Calcola i sguni ii risolvndo l vnuali form di indrminazion Esrcizio no. Esrcizio no. Soluzion a pag.8 Soluzion a pag.8 [ ] Esrcizio no. Esrcizio no. Esrcizio no. lg Esrcizio no.6

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

Una relazione R in un insieme A si dice relazione d'ordine (o ordinamento) se e solo se è riflessiva, antisimmetrica e transitiva.

Una relazione R in un insieme A si dice relazione d'ordine (o ordinamento) se e solo se è riflessiva, antisimmetrica e transitiva. F0 RELZIONI D'ORDINE. Rlzioni 'orin Un rlzion R in un insim si i rlzion 'orin (o orinmnto) s solo s è rilssiv, ntisimmtri trnsitiv. Prsi u lmnti x, y, s R è un orinmnto in, si i h «x pr y» si sriv x y,

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero INCERTEZZA DELLE MISURE Trminologi Prcision: riproduciilià di un misur Accurzz: vicinnz dll misur con il vlor vro Error sprimnl incrzz dll misur Tipologi di rrori sprimnli Error sismico: ls sismicmn l

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 6/7 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo EQUAZIONI DIFFERENZIALI ORDINARIE Si hiama quazion diffrnzial ordinaria di ordin n in un intrvallo I qualunqu sprssion dl tipo n F,,,,, 0 pr ogni I F è dunqu una funzion di n variabili l sono l drivat

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA 1 2 RIEPILOGO GENERALE RESIDUI ATTIVI CONSERVATI 3 4 Pgm. CPA0099R ***-----------------------------------------------------------***

Dettagli

PRIMITIVA DI UNA FUNZIONE O INTEGRALE INDEFINITO 3. INTEGRALI INDEFINITI IMMEDIATI E FONDAMENTALI

PRIMITIVA DI UNA FUNZIONE O INTEGRALE INDEFINITO 3. INTEGRALI INDEFINITI IMMEDIATI E FONDAMENTALI PRIMITIV I UN FUNZIONE O INTEGRLE INEFINITO. EFINIZIONE I PRIMITIV I UN FUNZIONE. LINSIEME INFINITO ELLE PRIMITIVE. INTEGRLI INEFINITI IMMEITI E FONMENTLI. PROPRIET I LINERIT ELLINTEGRLE INEFINITO. LCUNI

Dettagli

Le derivate. = 5 si traccino due rette qualsiasi passanti entrambe per il corrispondente punto della funzione e per

Le derivate. = 5 si traccino due rette qualsiasi passanti entrambe per il corrispondente punto della funzione e per L drivt Il problm di introdurr il conctto di drivt consist nl trsmttr l id di ciò c si st rontndo, nl snso c s d un punto di vist orml è possibil introdurr l dinizion di qusto conctto in trmini rigorosi,

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO.

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO. DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO Sia A un apro di : sis un vor ab, al ch,, f A Prso, A si dic ch f è diffrnziabil in,, 0, 0 0 0 f f a b 0 si pon df, a, b f Si dimosra ch a, b,, quindi

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto Grmmtich Rgol pr spcificr frsi corrtt in itlino Un frs un soggtto sguito d un vrbo sguito d un complmnto oggtto Un soggtto un nom o un rticolo sguito d un nom Uso dll rgol: pr gnrr frsi corrtt Esmpio:

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 7/8 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Edutecnica.it Circuiti a scatto -Esercizi 1

Edutecnica.it Circuiti a scatto -Esercizi 1 duna. Cru a sao -srz srzo no. Soluzon a pag.5 Nl ruo d gura, l nrruor n huso all san ; dopo un mpo 4,8µs, n rapro onmporanamn n huso. roar l andamno dlla nson a ap dl ondnsaor. 4 kω CpF roar l alor dlla

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

Esercizi di matematica

Esercizi di matematica Esrizi i mtmti Gli srizi h trovi in qust pgin ti srvirnno pr vrifir h punto è l TUA prprzion in qust mtri: risponi solo ll omn S non risi risolvr qulh qusito, onsult i tuoi libri i tsto i tuoi qurni ll

Dettagli

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE EQUAZIONI DIFFERENZIALI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE EQUAZIONI DIFFERENZIALI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI Risoluzion di uazioni diffrnziali a ura dl prof. Massimo Latino EQUZIONI DIFFERENZILI DEL PRIMO ORDINE Dnominazion Com si prsntano Com si risolvono Euazion diffrnzial dl d primo ordin a variaili sparaili

Dettagli

Fondamenti di Automatica (ges. P-Z) Prof.ssa Silvia Strada

Fondamenti di Automatica (ges. P-Z) Prof.ssa Silvia Strada Fondmni di omic g. P-Z Prof. Silvi Srd I Prov in iinr -.. 9/ - Novmbr 9 Cognom Nom Mricol............ Vrificr ch il fcicolo i coiio d 7 pgin. Scrivr l ripo i ingoli rcii ngli pi ch gono ogni domnd. L chir

Dettagli

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario Risolvi i segueni esercizi rispondi quesii scel r quelli proposi nel quesionrio Clcol le segueni primiive. Quindi c ln e. Pongo d cui segue, llor: ( e ) d ( e ) c ( e ) c e e d. sin ( ) Pongo d cui segue,

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

sellaposizionaxassegnatali

sellaposizionaxassegnatali Cinmic dl puno mril win un dimnsion com si muovono l cos con snsioni rispo i loro sposmni lggi orri offèndno m non solo dilp dirio rscurbili in funzion dl mpo cso 1 DM bs grndzz coordin rpprsnr l posizion

Dettagli

Corso di Laurea in Fisica e Astrofisica Corso di Laboratorio di Elettromagnetismo Esonero del 13/06/2012

Corso di Laurea in Fisica e Astrofisica Corso di Laboratorio di Elettromagnetismo Esonero del 13/06/2012 rs di ur in Fisic Asrisic rs di rri di Elrmgnism Esnr dl 3/06/0 Si cnsidri il circui di igur, rm d un indur rl cn mh rsisnz inrn 0Ω, d un cpcià nf.. lclr l risps in rqunz T u / in, snz cnsidrr il cllgmn

Dettagli

Ogni amante è guerrier Libro ottavo de madrigali

Ogni amante è guerrier Libro ottavo de madrigali 4 Ottvi Rinuccini (1562 1621) Tnr I c ' Tnr II c g' 10 16 3 O- 3 B. c. 3 O- 3 3 3 t, t nch' 3 3 22 3 d, f n g. g s pr v, sl Ogni t r Libr ttv d mdg r; Qul fi f O nl t, pr v c tà, n cl t, t r ch'l dur g

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

Aquadue Duplo Pag. 1

Aquadue Duplo Pag. 1 Collgr il progrmmtor l ruintto. Pg. 1 4 5 6 TIME DY 4 5 6 STRT STOP CNCEL TIME DY lik! 4 5 6 STRT STOP CNCEL TIME DY Pr (o.): 8410 prir il moulo i progrmmzion prmno sui u pulsnti ltrli insrir un ttri llin

Dettagli

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim.

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim. Clcolo I,.. 5 6 Esercizi 8 dicembre 5 Si f : [, b] R u fuzioe coiu. Clcolre le derive d f( d, d b f( d, Iolre (usdo il Teorem di de l Hôpil clcolre il ie d f( d. Ricorddo che per il Teorem fodmele del

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

Il linguaggio dell energia

Il linguaggio dell energia Il liguggio dll rgi Abbimo iso h l rgi pozil è dfii, om E p mgy f -mgy i Ou dl lolo dl loro fo dll sro pr ofigurr il sism, l loro fo i rsiuio h soo form di rgi ii. I ssz di rio, l rgi pozil, si rsform

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Segnali e sistemi nel dominio della frequenza

Segnali e sistemi nel dominio della frequenza oria di sgnali Sgnali sismi nl dominio dlla rqunza EORIA DEI SEGNALI LAUREA IN INGEGNERIA DELL INORMAZIONE Sommario Sgnali mpo coninuo priodici Sri di ourir Sgnali mpo coninuo apriodici rasormaa di ourir

Dettagli

Pre sen ta zio ne. pri me espe rien ze, af fron ta te con in cer tez za e tal vol ta con scar sa

Pre sen ta zio ne. pri me espe rien ze, af fron ta te con in cer tez za e tal vol ta con scar sa 2 P sn L m f qu n s p dl g qul, sp g v d c t cs dur t l dll sn d, g pr qu s lup p l s s fn qu s mz z, l p s u z z, pr r sr l t d f l m r n In l, l s m p, p sn, d l qu p s t s,. p m sp n z, f fn cr z l

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Combattimento di Tancredi et Clorinda

Combattimento di Tancredi et Clorinda Trqut Tss (1544 1595) Clrd ' f '' Tncr d f ' Tst c g' B. c. TAn- LA- vl l' r pr Cmbtmnt Tncr t Clrd Libr ttv d dgli Tncr Cu Mnvr (1567 1643) Cl rd un h m s LA- 7 16 24 vr l pr. v d'n trr sp 3 2. 3 2 S

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

Laboratorio di Algoritmi e Strutture Dati Ingegneria e Scienze Informatiche - Cesena A.A

Laboratorio di Algoritmi e Strutture Dati Ingegneria e Scienze Informatiche - Cesena A.A Inggnri Sinz Informtih - Csn A.A. 3- iln@s.unio.it, pitro.iln@unio.it : psuooi Clol il osto l mmino minimo un vrti sorgnt s tutti i rstnti vrtii nl grfo. Clol un lro i oprtur i mmini minimi (shortst pth

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 INTEGRALI GENERALIZZATI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 INTEGRALI GENERALIZZATI Univrsità Carlo Cattano Inggnria gstional Analisi matmatia a.a. 7/8 INTEGRALI GENERALIZZATI ESERCIZI CON SOLUZIONE ) Disutr la onvrgnza o mno di sgunti intgrali gnralizzati: a) d ; b) ln d ; ) d ; d) )

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE OSSERVAZIONI ED ESEMPI Si f : [,+ ) : R inegrbile in senso improprio. Se,, f() llor f è inegrbile secondo Lebesgue, e i due inegrli coincidono. Infi

Dettagli