Lezione 3. F. Previdi - Automatica - Lez. 3 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 3. F. Previdi - Automatica - Lez. 3 1"

Transcript

1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1

2 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca - Lz. 3

3 1. Movmno ll usca un ssma LTI SISO u () ( ) S n α m ( ) u( ) β ; 1,; L ; n 1, Assgnao un anamno ll ngrsso u() ( )[la forzan ] assgna l conzon nzal, è possbl ngrar l quazon ffrnzal onr l anamno ( ), movmno ll usca F. Prv - Auomaca - Lz. 3 3

4 Esmpo u ( ) poraa volumrca n ngrsso (m 3 /s) h( ) ( ) kh( ) lvllo poraa volumrca n usca (m 3 /s) k & A k A ( ) + ( ) u ( ) A 1 m m k 1 s & ( ) + ( ) u ( ) F. Prv - Auomaca - Lz. 3 4

5 con lvllo nzal Sa assgnao l ngrsso u ( ), h( ) 5 Pr rovar l movmno ll usca, parno a 5 m rogano una poraacosan m 3 /s, bsogna rsolvr l quazon ffrnzal lnar l prmo orn con la conzon nzal Innanzuo s rcor ch: & ( ) + ( ) ( ) kh( ) 5 [ ( )] () ( ) Qun, s molplchno nramb mmbr ll quazon pr & () + () ( ()) F. Prv - Auomaca - Lz. 3 5

6 Ingrano nramb mmbr s on () ( ) () ( ) ( ) + ( ) 5 Sfruano la conzon nzal: () ( ) [ ] ( ) ( ), 3 + Il movmno ll usca movmno ll usca è F. Prv - Auomaca - Lz. 3 6

7 . Movmno lbro movmno forzao u () ( ) S n α m ( ) u( ) β ; 1,; L ; n 1, S consr l movmno ll usca ch s on n corrsponnza u() con conzon nzal assgna ; 1,; L ; n 1, [è la soluzon ll quazon omogna assocaa]. Tal amovmno os c c Movmno lbro ll usca Alrnavamn, s consr l movmno ll usca ch s on n corrsponnza conzon nzal null 1, n1, con u() assgnao. Tal movmno s c Movmno forzao ll usca F. Prv - Auomaca - Lz. 3

8 Movmno lbro Il movmno lbro ll usca s on ngrano l quazon ffrnzal n ( ) α con c.. ; 1,; L ; n 1, La sua soluzon passa aravrso la rcrca ll soluzon ll quazon quazon cararsca assocaa, auovalor: n n1 ( s ) s + αn 1 s + L+ α ϕ n1 ( ) ov ϕ s è l polnomo cararsco. Noa Bn Con un pccolo abuso, s parlrà auovalor l ssma polnomo cararsco l ssma F. Prv - Auomaca - Lz. 3 8

9 S gl auovalor s sono ral sn l soluzon parzal s ll quazon ffrnzal sono l po la soluzon gnral è aa alla loro combnazon lnar n () 1 c s S gl auovalor sono complss conuga sn (a copp), coès s σ ±jω, l soluzon parzal ll quazonquazon ffrnzal sono l po σ sn ( ω), σ cos( ω ) la soluzon gnral è aa alla loro combnazon lnar n () σ ( ) + ( ) σ sn ω cos ω 1 c I valor coffcn lla combnazon lnar s calcolano mponno l rspo vncol mpos all conzon nzal. L soluzon parzal s cono mo l ssma namco LTI. F. Prv - Auomaca - Lz. 3 9

10 L cos s complcano un po s l rac ll quazon cararsca non sono sn. In parcolar, s un auovalor ha molplcà algbrca ugual alla sua molplcà gomrca connuano a valr rsula prma. In caso conraro s hanno mo l po s, s,l sn ω, σ ) ( ) σ σ σ cos ( ω ), sn ( ω ), cos ( ω ), L La ponza pn alla fcnza molplcà. F. Prv - Auomaca - Lz. 3 1

11 3. Equlbro un ssma LTI SISO S fnsc usca qulbro un ssma namco lnar mpo-nvaran l valor cosan ll usca ( ) (s ss) ch s on n corrsponnza un assgnao u u, valor cosan ll ngrsso ( ) Opravamn s raa annullar l rva ll ngrsso ll usca nll quazon ffrnzal. F. Prv - Auomaca - Lz. 3 11

12 Esmpo ( ) + ( ) u( ) & 3 Calcolar l usca qulbro n corrsponnza ll ngrsso cosan u, Bsogna rsolvr l quazon algbrca 3 3 Usca qulbro (pr u u ) ( ) Ossrvazon L usca qulbro è vrsa pr vrs valor cosan ll ngrsso, pr quso s soolna n corrsponnza. F. Prv - Auomaca - Lz. 3 1

13 Ossrvazon Non è smpr o ch ssa o sa unca l usca qulbro. Pr s. l ssma namco LTI () + & ( ) u( ) & Non amm alcuna usca qulbro n corrsponnza valor cosan ll ngrsso non null u Torma Un ssma LTI SISO può avr (n corrsponnza un ao u ): una sola usca qulbro nfn usc qulbro nssuna usca qulbro F. Prv - Auomaca - Lz. 3 13

14 4. Guaagno saco un ssma LTI SISO Dao un ssma LTI SISO ch amm un unca usca qulbro n corrsponnza un ngrsso cosan assgnao u, s c guaagno saco l ssma l rapporo ra l usca qulbro l corrsponn ngrsso cosan: μ u F. Prv - Auomaca - Lz. 3 14

Campi Elettromagnetici e Circuiti I Circuiti del secondo ordine

Campi Elettromagnetici e Circuiti I Circuiti del secondo ordine Facolà Inggnra Unrsà gl su Paa orso Laura Trnnal n Inggnra Elronca Informaca amp Elromagnc rcu I rcu l scono orn amp Elromagnc rcu I a.a. 3/4 Prof. Luca Prrgrn rcu l scono orn, pag. ommaro Dfnzon rcuo

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Seminario: Dinamica quantistica inerziale di una particella in una dimensione

Seminario: Dinamica quantistica inerziale di una particella in una dimensione Snaro: Dnaa quansa nrzal d una parlla n una dnson Foralso quanso Funzon d onda: pr d ' ' dnsà d probablà sulla oordnaa al po  Valor d asa al po dll opraor : d A d A A ˆ ˆ * Saro quadrao do dlla proprà:

Dettagli

Laboratorio di Navigazione Laurea Specialistica in Ingegneria Informatica, Ingegneria per l Ambiente e il Territorio Politecnico di Milano Campus

Laboratorio di Navigazione Laurea Specialistica in Ingegneria Informatica, Ingegneria per l Ambiente e il Territorio Politecnico di Milano Campus Laoraoro Navgazon Laura Spcalsca n Inggnra Inormaca, Inggnra pr l mn l Trroro Polcnco Mlano Campus Como NVIGZION INRZIL Ssm rrmno n ssma rrmno è un nsm rgol msur ch c prmono rsponr a qus: ov s rova un

Dettagli

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase Ssm rfas www.d.ng.unbo./prs/masr/ddaca.hm vrson dl 0-0-0 Ssm rfas l rasporo la dsrbuzon d nrga lrca avvngono n prvalnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Circuiti del secondo ordine

Circuiti del secondo ordine Crcu el secono orne Un crcuo el secono orne è caraerzzao a un equazone fferenzale el secono orne I crcu el secono orne conengono una o pù ressenze e ue elemen namc L e/o C Teora e Crcu Prof. Luca Perregrn

Dettagli

Corsi di Laurea in Fisica, Fisica ed Astrofisica

Corsi di Laurea in Fisica, Fisica ed Astrofisica Corsi di Laura in Fisica, Fisica d Asrofisica Analisi A.A. 007-008 - Foglio 1 1.1. Esrcizio. Sudiar la coninuià in R dlla funzion sn(x y) x + y s y > 0, y ln(1 + x ) s y 0. La funzion è chiaramn coninua

Dettagli

CIRCUITO RLC IN SERIE

CIRCUITO RLC IN SERIE ~ ~ IUITO L IN SEIE onsdrazon gnral Il crcuo L n sr (vd fgura) è formao da una sola magla n cu sono prsn una rssnza, un nduanza L, un condnsaor d capacà un gnraor d nson alrnaa cararzzao da una forza lromorc

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche Facolà di Economia Equazioni diffrnziali Linari d Applicazioni Economich prof. EQUAZIONI DIFFERENZIALI LINEARI APPLICAZIONI ECONOMICHE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LINEARI Quso ipo di quazioni

Dettagli

G. Parmeggiani, 11/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 11 (prima parte) = ( x) 2i x

G. Parmeggiani, 11/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 11 (prima parte) = ( x) 2i x G. Parmggan, //29 Algbra Lnar, a.a. 28/29, Scuola d Scnz - Cors d laura: Studnt: Statstca pr l conoma l mprsa Statstca pr l tcnolog l scnz numro d MATRICOLA PARI Svolgmnto dgl Esrcz pr casa (prma part)

Dettagli

Interferenza e diffrazione con gli esponenziali complessi. Nota

Interferenza e diffrazione con gli esponenziali complessi. Nota Intrfrnza dffrazon con gl sponnzal complss ota on s fanno commnt sul sgnfcato d rsultat ottnut, n su qullo dll pots d volta n volta assunt: lo scopo solo qullo d mostrar com funzon n pratca l formalsmo

Dettagli

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate)

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate) Modell elemenar n forma d ssem dnamc Fondamen d Aomaca G. Ferrar Trecae rc elerc Ressore v : : ngresso sca Ssema dnamco R E n ssema LTI SISO d ordne 0 ssema saco e propro D 0 D R rc elerc Indore v :ngresso

Dettagli

Calcolo delle Probabilità: esercitazione 10

Calcolo delle Probabilità: esercitazione 10 Calcolo dll Probablà: srcazon 0 Argono: Dsrbuzon noral (pag. 47 sgun dl lbro d so). Valor aso, varanza (pag. sgun). Dsrbuzon bvara dscr (pag. 44 sgun) covaranza (pag 45 sgun). NB: asscurars d conoscr l

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

Sistemi trifase. Parte 2. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-12-2013) Potenza assorbita da un carico trifase (1)

Sistemi trifase. Parte 2. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-12-2013) Potenza assorbita da un carico trifase (1) Ssm rfas ar www.d.ng.unbo./prs/masr/ddaca.hm rson dl 6--0 onza assorba da un carco rfas Un gnrco carco rfas può ssr consdrao un doppo bpolo du por Sclo un rmnal d rfrmno, s può sprmr la ponza sanana assorba

Dettagli

L soluzon Data la funzon ln( ) f ( ) 3 a trova l domno d f b scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c dtrmna l vntual ntrszon con gl ass d studa l

Dettagli

App.Cap.II: Dettagli e sviluppi per il capitolo 2. App.Cap.II-1: Risposta di un sistema del primo ordine con ingresso a impulso.

App.Cap.II: Dettagli e sviluppi per il capitolo 2. App.Cap.II-1: Risposta di un sistema del primo ordine con ingresso a impulso. SCPC n C.II.C.II: Dgl svlu r l olo.c.ii-: sos un ssm l rmo orn on ngrsso mulso. () () δ () Pr l soluon onvn suvr l ss m n u r rsolvr u vrs E.D.O. Pr

Dettagli

funzione: trasformare un segnale ottico in un segnale elettrico;

funzione: trasformare un segnale ottico in un segnale elettrico; Foorivelaori (a semiconduore) funzione: rasformare un segnale oico in un segnale elerico; ipi: fooconduori; foodiodi (pn, pin, a valanga...) caraerisiche: modo di funzionameno; larghezza di banda; sensibilià;

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto LE SOLUZIONI. Una soluzon (d un crto soluto n un crto solvnt dl pso d kg è concntrata al 0%. Calcolar la quanttà d solvnt (n kg ch s dv aggungr alla soluzon pr ottnr una nuova soluzon, concntrata al 0%.

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO.

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO. DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO Sia A un apro di : sis un vor ab, al ch,, f A Prso, A si dic ch f è diffrnziabil in,, 0, 0 0 0 f f a b 0 si pon df, a, b f Si dimosra ch a, b,, quindi

Dettagli

Edutecnica.it Circuiti a scatto -Esercizi 1

Edutecnica.it Circuiti a scatto -Esercizi 1 duna. Cru a sao -srz srzo no. Soluzon a pag.5 Nl ruo d gura, l nrruor n huso all san ; dopo un mpo 4,8µs, n rapro onmporanamn n huso. roar l andamno dlla nson a ap dl ondnsaor. 4 kω CpF roar l alor dlla

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

Autovalori complessi e coniugati

Autovalori complessi e coniugati Auovalori complssi coniugai Noazioni A A α ω ω α λ λ λ α + jω, λ α jω, maric ad lmni rali α + jω, maric diagonal ad lmni complssi α jω L du marici A A hanno gli sssi auovalori λ, λ. aa una gnrica maric

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

GURU. Facebook. Gli strumenti avanzati di Facebook ADS WEBLIME

GURU. Facebook. Gli strumenti avanzati di Facebook ADS WEBLIME Facebook GURU Gl srumen avanza d Facebook ADS Un corso ecnco-praco d approfondmeno sugl srumen pù avanza d Facebook ADS. Il Corso s rvolge esclusvamene a ch gà gessce nserzon con Facebook. Ogg mole persone

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L) L soluzon dlla prova scrtta d Matmatca pr l corso d laura n Chmca Tcnolo Farmacutch raruppamnto A-L. Data la unzon a. trova l domno d b. scrv, splctamnt pr stso, qual sono l ntrvall n cu rsulta postva

Dettagli

1. Variabili casuali continue e trasformazioni di variabili casuali...3. 2. La variabile casuale normale... 14

1. Variabili casuali continue e trasformazioni di variabili casuali...3. 2. La variabile casuale normale... 14 ESERCIZI DI CALCOLO DELLE PROBABILITÀ PARTE II Rccardo Borgon Elna Colcno Pro Quao Sara Sala INDICE. Varabl casual connu rasformazon d varabl casual....3. La varabl casual normal... 4 3. Funzon gnrarc

Dettagli

Soluzioni. 1. Data la funzione. a) trova il dominio di f

Soluzioni. 1. Data la funzione. a) trova il dominio di f Soluzon Data la funzon a) trova l domno d f f ( ) + b) ndca qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c) dtrmna l vntual ntrszon con gl ass d) studa l comportamnto dlla funzon

Dettagli

1. METODO DELLE EQUAZIONI DI STATO

1. METODO DELLE EQUAZIONI DI STATO IUII ON MMOIA Vngono d crcu con mmora (o crcu dnamc) qull n cu è prsn almno un componn doao d mmora (com nduor condnsaor, ma non solo); n quso caso l ssma rsoln dl crcuo ssso conn l cararsch (dffrnzal)

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

Circuiti del II ordine. Contengono due elementi dinamici Il loro comportamento è rappresentato da un equazione differenziale del II ordine.

Circuiti del II ordine. Contengono due elementi dinamici Il loro comportamento è rappresentato da un equazione differenziale del II ordine. rcu l II orn onngono u lmn nmc Il loro compormno è rpprsno un quzon ffrnzl l II orn. rcuo sr uonomo KT Drno rornno Occorr conoscr c..: I,? I V I V λ λ, λ ± Equzon crrsc λ, α α ± α [ s ] Frqunz lbr o nurl

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progo i cinghi rapzoiali L cinghi rapzoiali sono uilizza rqunmn pr la rasmission i ponza Vanaggi Basso coso Smplicià i insallazion Capacià i assorbir vibrazioni orsionali picchi i coppia Svanaggi Mancanza

Dettagli

Ripasso onde piane: riflessione e trasmissione all interfaccia piana tra due mezzi

Ripasso onde piane: riflessione e trasmissione all interfaccia piana tra due mezzi scaon n. 4 Rpasso ond pan: flsson asmsson all nfacca pana a du m Impao ambnal d camp lomagnc Popagaon onda pana Puno d pana p l oca gomca è, n qualch modo, lo sudo dlla popagaon dll ond pan. λ β nfa...

Dettagli

Il prisma Interferenza costruttiva solo quando l angolo di incidenza è tale che ', cioè. Spettroscopia e Interferenza. Risoluzione del Prisma

Il prisma Interferenza costruttiva solo quando l angolo di incidenza è tale che ', cioè. Spettroscopia e Interferenza. Risoluzione del Prisma Spscpa nfnza P sua un sp s ulzza quas sp l fnn ll nfnza. Nl sgu sò c a scna l nu fasc luns ch s fann nf l nfazn spal vna pù n vn a è cunqu sp cnnua nlla fgua nfnza pa lla luc. bba vs ch nl cas l psa c

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso ELETTOICA IDUSTIALE Trasformator a alta frqnza Trasformator a alta frqnza Motvazon pr l so trasformator a AF cham sl trasformator al lazon tra l tnson lazon tra l corrnt Trasformator a pú avvolgmnt

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

ASSIOMI DELLA GEOMETRIA RAZIONALE

ASSIOMI DELLA GEOMETRIA RAZIONALE ASSIOMI DELLA GEOMETRIA RAZIONALE ASSIOMI DI APPARTENENZA A1 Per ogni coppia di punti A e B di un piano π esiste ed è unica la retta che li contiene. A2 Data nel piano π una retta r esistono almeno due

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Ingral Indinio l Anidrivaa Il prosso invrso dlla drivazion si hiama ingrazion. Noa la variazion isanana di una grandzza p.s. la vloià è nssario sapr om si ompora al grandzza isan pr isan p.s. la posizion.

Dettagli

Apprendimento per Perceptron: esempio. Apprendimento di Reti di Perceptron. Discesa di Gradiente. gradiente

Apprendimento per Perceptron: esempio. Apprendimento di Reti di Perceptron. Discesa di Gradiente. gradiente / 3 ; J DA E F DA DA I DA $ N 45 2 dov "#$ &'#$, 9? K 9 O L M M K 9L 7 9 AC AC Sstm d Elaborazon dll Informazon 9 Sstm d Elaborazon dll Informazon Apprndmnto pr Prcptron smpo Apprndmnto d Rt d Prcptron

Dettagli

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014 L soluzon dlla prova scrtta d Matmatca dl Aprl. Sa data la unzon 3 a. Trova l domno d b. Scrv, splctamnt pr stso non sono sucnt dsgnn, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

A.A Elettronica - Soluzioni della prova scritta del 01/07/03

A.A Elettronica - Soluzioni della prova scritta del 01/07/03 A.A. -3 lttronca - Soluzon dlla prova scrtta dl /7/3 ) Assumamo nzalmnt ch l gnrator rogh una corrnt nulla applchamo l torma d Thvnn a mont dl dodo allora sosttundo l gnrator d corrnt con un crcuto aprto

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione Educnica.i Calcolo di ii Calcola i sguni ii risolvndo l vnuali form di indrminazion Esrcizio no. Esrcizio no. Soluzion a pag.8 Soluzion a pag.8 [ ] Esrcizio no. Esrcizio no. Esrcizio no. lg Esrcizio no.6

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Page 1. Corso di ELETTRONICA INDUSTRIALE. Trasformatori ad alta frequenza. frequenza. frequenza. ad alta frequenza. ad alta.

Page 1. Corso di ELETTRONICA INDUSTRIALE. Trasformatori ad alta frequenza. frequenza. frequenza. ad alta frequenza. ad alta. Corso EETTROCA DUTRAE Trasformator a alta frqnza Trasformator a alta frqnza Motvazon pr l so trasformator a AF Rcham sl trasformator al Rlazon tra l tnson Rlazon tra l corrnt Trasformator a pú avvolgmnt

Dettagli

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1]

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1] Compio di Mamaica sul problma di Cauch sull quazioni diffrnziali ordinari dl º ordin [] Esrcizio Spigar la formulazion, il significao com si procd alla risoluzion dl problma di Cauch pr EDO dl º ordin

Dettagli

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta)

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta) MRATI FINANZIARI IN ONOMIA APRTA Modllo - n conoma apra Invsmn fnanzar. Scla ra: a. mona nazonal: ransazon b. mona sra: non ha nssun vanaggo dnrla c. ol nazonal: fruano nrss d. ol sr: fruano nrss sono

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

La competizione interspecifica. Damselfish. Competizione per interferenza. Competizione per sfruttamento di risorse comuni - -

La competizione interspecifica. Damselfish. Competizione per interferenza. Competizione per sfruttamento di risorse comuni - - La competizione interspecifica Damselfish Competizione per interferenza A B Competizione per sfruttamento di risorse comuni A R + + B Competizione per interferenza Gli esperimenti di Park (954) + Tribolium

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

Moto uniforme sul toro bidimensionale

Moto uniforme sul toro bidimensionale 4/3/06 Luigi Chierchia Moto uniforme sul toro bidimensionale 1. Il toro bidimensionale Denotiamo con R l insieme dei numeri reali e con Z l insieme dei numeri interi (con segno) {..., 2, 1, 0, 1, 2,...};

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

Schemi a blocchi. Sistema in serie

Schemi a blocchi. Sistema in serie Scem a blocc Nel caso ssem semplc, ques possoo essere scemazza meae blocc, ce rappreseao vers compoe, collega ra loro sere o parallelo a secoa ella logca uzoameo. Vl Valvolal solvee Sesore Pompa Pompa

Dettagli

Le onde elastiche monocromatiche

Le onde elastiche monocromatiche L ond lastch monocromatch Ptagora Samo 570-495 a.c. Jan Baptst Josph Forr Franca, 1768 1830 Ptagora so allv ddro n mplso straordnaro alla tora d nmr alla tora dl sono. Ptagora è attrbto l prmo stdo sstmatco

Dettagli

Celebrity Nails. Celebrity Nails. Facili da usare...veloci da applicare...risultati naturali... Solo due e...fa tutto!!!

Celebrity Nails. Celebrity Nails. Facili da usare...veloci da applicare...risultati naturali... Solo due e...fa tutto!!! Gammacsmiciia srl Gammacsmiciia srl Labrari i Pruzin na Labrari i Pruzin na Prsna Nvia Prsna Nvia Clbriy Nails Clbriy Nails Mnpri Gl furni Mnpri Gl furni Disribui a: Facili a usarvlci a applicarrisulai

Dettagli

Processi periodici. Capitolo 2. 2.1 Modello. 2.1.1 Simboli. 2.1.2 Grafico dei processi. {τ 1,...,τ n } processi periodici

Processi periodici. Capitolo 2. 2.1 Modello. 2.1.1 Simboli. 2.1.2 Grafico dei processi. {τ 1,...,τ n } processi periodici 3 Capolo 2 Process perodc 2. Modello 2.. Smbol {,...,τ n } process perodc τ,k sanza k-esma del processo φ fase d un processo (prmo empo d avazone) T perodo del processo r,k = φ +(k ) T k-esma avazone D

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

La corrente i(t) che percorre l avvolgimento del trasformatore durante il transitorio è definita dalla seguente equazione: di dt

La corrente i(t) che percorre l avvolgimento del trasformatore durante il transitorio è definita dalla seguente equazione: di dt Cosruzo Elroach Corr d coro crcuo u rasforaor Sovracorr rasforaor Esaao qus au, odo slfcao, l org l cosguz dll sovracorr ch ossoo sollcar l avvolgo d u rasforaor dura u coro crcuo a ors dl scodaro. 1 -

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

Convertitore DC-DC Flyback

Convertitore DC-DC Flyback Conerore C-C Flyback era al buck-boos e al poso ell nuore c è un rasforaore n ala frequenza: Fgura : schea prncpo el flyback conerer Prncpo funzonaeno: TO: la correne ene a enrare al pallno superore el

Dettagli

Teoria dei Sistemi - A.A. 2003/2004

Teoria dei Sistemi - A.A. 2003/2004 ANAISI ODAE DEI SISTEI INEARI A TEPO CONTINUO Dr. Crisian Scchi ARSconrol ab Univrsià di odna Rggio Emilia Il movimno di un sisma TI & ( A( + Bu( y( C( + Du( Formula di agrang ( A A( τ + Bu( τ dτ A I +

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

FINANZA AZIENDALE AVANZATO

FINANZA AZIENDALE AVANZATO FINANZA AZIENDALE AVANZATO La diversificazione di portafoglio e il CAPM Lezione 3 e 4 1 Scopo della lezione Illustrare il modello logico-teorico più utilizzato nella pratica per stimare il rendimento equo

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Ingrl Indinio l Anidriv Il prosso invrso dll drivzion si him ingrzion. No l vrizion isnn di un grndzz p.s. l vloià è nssrio spr om si ompor l grndzz isn pr isn p.s. l posizion. No llor un unzion il problm

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

Calcolo della funzione d uscita per un generico segnale d'ingresso

Calcolo della funzione d uscita per un generico segnale d'ingresso Drar nrn Il crcu drar nrn è un dsps ch dà n usca un sgnal prprznal alla draa dl sgnal d ngrss; ssa la rma d nda d'usca è la draa dlla rma d nda d ngrss. Un crcu drar è qull rpra n gura. alcl dlla unzn

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

1 Convessità olomorfa

1 Convessità olomorfa 1 Convessità olomorfa Esercizio 1 Sia f O(C n ) e sia X = {f = 0}; dimostrare che, per ogni K compatto di X, l inviluppo K O(Cn ) è contenuto in X. Esercizio 2 Fissato un reale δ (0, 2π), consideriamo

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

STRINGHE di un ALFABETO. Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto. Alfabeto della lingua inglese I={a,b,c,..

STRINGHE di un ALFABETO. Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto. Alfabeto della lingua inglese I={a,b,c,.. STRINGHE di un ALFABETO Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto Alfabeto binario A={0,1} Alfabeto della lingua inglese I={a,b,c,..z} Stringhe o parole Gli elementi di V

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%.

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%. SOLUZIONI. Il costo d un farmaco da banco pr un dtrmnato prncpo attvo è così suddvso: l 7,% pr la confzon, l 7,% pr la produzon d l rstant % pr l IVA. Dlla quota rlatva alla produzon, l 3% è dovuto all

Dettagli

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da ESISTE UA OTEOLE DIFFEEA TA LE SOLUIOI DEI POLIEI E QUELLE DELLE OLECOLE PICCOLE DOUTA ALLA DIFFEEA DI DIESIOI TA LE OLECOLE POLIEICHE E QUELLE DEL SOLETE. Pr qusto motvo trattrmo l soluzon polmrch attravrso

Dettagli

3) DIFFUSIONE DELLA LUCE E SPETTROSCOPIA RAMAN

3) DIFFUSIONE DELLA LUCE E SPETTROSCOPIA RAMAN DIFFUSION DLLA LU STTROSOIA RAAN La uso lla lu a pa u aomo quval al sgu posso (l aomo è l lvllo : (A Assobmo u oo quza vo oa k passaggo allo sao ao aua (sao al o msso u oo quza vo oa k. Oppu: (B msso u

Dettagli

Modellistica di sistemi meccanici

Modellistica di sistemi meccanici Mollsta sst an» fonantal pr la ana lontunal > Il punto fonantal pr raar un ollo un ssta ano n oto lontunal è la l Nton: F t o F (N è la rsultat ll forz ant sulla assa (k, (/s è la lotà lla assa /t è l

Dettagli

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA 1 2 RIEPILOGO GENERALE RESIDUI ATTIVI CONSERVATI 3 4 Pgm. CPA0099R ***-----------------------------------------------------------***

Dettagli

Ogni amante è guerrier Libro ottavo de madrigali

Ogni amante è guerrier Libro ottavo de madrigali 4 Ottvi Rinuccini (1562 1621) Tnr I c ' Tnr II c g' 10 16 3 O- 3 B. c. 3 O- 3 3 3 t, t nch' 3 3 22 3 d, f n g. g s pr v, sl Ogni t r Libr ttv d mdg r; Qul fi f O nl t, pr v c tà, n cl t, t r ch'l dur g

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equaioni diffrniali ordinari Equaioni diffrniali ordinari Equaioni diffrniali dl ordin a variabili sparabili, Equaioni diffrniali linari dl ordin Equaioni diffrniali dl ordin non linari: Equaion di Brnoulli

Dettagli

Corso di. Gasdinamica II Tommaso Astarita

Corso di. Gasdinamica II Tommaso Astarita Corso d Gasdnamca II Tommaso Astarta astarta@unna.t www.docent.unna.t Gasdnamca II Tommaso Astarta 5.0.008 Metodo d Eulero S supponga d avere una equazone dfferenzale del prmo ordne: f ( x, ) x xo o Defnendo

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta CONOMIA POLITICA II - SRCITAZION 4 Parià i assi inrss IS-LM in conomia apra srcizio Suppon ch all sro il asso i inrss sia l 5.5% ch l aual asso i cambio nominal sia pari a.5. a) Nl caso in cui ci si aspi

Dettagli

Pianificazione di traiettorie nello spazio cartesiano

Pianificazione di traiettorie nello spazio cartesiano Corso di Roboica 1 Pianificazione di raieorie nello spazio caresiano Prof. Alessandro De Luca Roboica 1 1 Traieorie nello spazio caresiano le ecniche di pianificazione nello spazio dei giuni si possono

Dettagli