Calcolo delle Probabilità: esercitazione 10

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo delle Probabilità: esercitazione 10"

Transcript

1 Calcolo dll Probablà: srcazon 0 Argono: Dsrbuzon noral (pag. 47 sgun dl lbro d so). Valor aso, varanza (pag. sgun). Dsrbuzon bvara dscr (pag. 44 sgun) covaranza (pag 45 sgun). NB: asscurars d conoscr l dfnzon, l proprà rchaa l rlav dosrazon quando ncssaro Esrczo Sa Z la una v.a. con dsrbuzon noral sandard. S drn:. la funzon gnrarc d on d Z. la funzon gnrarc d on d Z + µ > 0 µ R Soluzon Z. () E( ) + z + + ( z z) ( z z ± ) z dz dz π π dz π Z + π + ( z z + ) ( z ) dz dz π (ssndo l ngral prcdn qullo d una dnsà noral d da ). () µ Z () µ ( ) ( ) µ+

2 Calcolo dll Probablà: srcazon 0 Esrczo S supponga ch l lvllo d colsrolo n una cra popolazon abba dsrbuzon Noral con da µ dvazon sandard (n g pr 00 l). Sapndo ch µ , ) s calcol la probablà ch l lvllo d colsrolo sa nfror a 360; ) s calcol la probablà ch l lvllo d colsrolo sa supror a 50; 3) s drn l lvllo d colsrolo suprao dal 90% dlla popolazon. S nolr s dspon d una sconda sura Y dl lvllo d colsrolo, ndpndn da cararzzaa da una dsrbuzon Noral con da 50 varanza 3500, 4) s drn la dsrbuzon dlla da arca d Y. Soluzon lvllo d colsrolo n una popolazon N(µ, ) con µ qund 60 ) P(<360) P(Z<5/3) dov Z N(0,); ) P(>50) 05675; 3) x 83. è soluzon dll quazon x 60 x 60 P(>x) P z > 0.9 da cu ) S suppon d dsporr d una sconda sura Y dl lvllo d colsrolo, ndpndn da cararzzaa da una dsrbuzon Noral con da µ Y 50 varanza Y W(+Y)/ ha dsrbuzon Noral con da 55 varanza 775. Infa: Y Y W W() E( ) E E E µ Qus ula è la fg d una noral d da ( + Y ) µ + + µ Y Y µ Y + 55 varanza ( µ +µ Y ) + ( + ) 4 Y

3 Calcolo dll Probablà: srcazon 0 Esrczo 3 S consdr la funzon d probablà d una v.c. bdnsonal dscra (,Y) dfna dalla ablla sgun. Y Y Y 3 0. k k 4 4k 0.5 k. S drn l valor d k ch rnd la prcdn una funzon d probablà bvaraa s drnno l funzon d probablà dll v.c. argnal.. S rapprsnno grafcan l funzon d rparzon dll v.c. argnal. 3. S calcolno P(Y 4) P( 4 Y ). 4. S sablsca s Y sono ndpndn, ovando la rsposa. 5. S calcol Cov(,Y). Soluzon. Affnché la ablla dfnsca una funzon d probablà occorr ch ) p(x,y)>0 da cu k>0 ) p (xy) da cu 0.+k+k+4k+0.5+k y x Sosundo s on 8k0.4 qund k0.05. Y Y Y L funzon d probablà dll v.a. argnal Y sono da, rspvan, da: Poso P( x) p(x) s ha p( ) ¼ p(4) ¾; Poso P(Yy) q(y) s ha q( ) 0.3, q() 0.6 q(3) 0.. 3

4 Calcolo dll Probablà: srcazon 0. Indcando con F(x)P( x) x, 4 s ha F() Analogan pr Y P(Y 4) P(Y, 4) / P( 4) 0.5 / 0.75 / P( 4 Y ) P(Y, 4) / P(Y ) 0.5 / 0.6 5/ Y non sono ndpndn. Infa nl caso d ndpndnza q(y x) q(y) pr ogn x y. Ma nl caso n sa P(Y 4) / P(Y) q() Essndo: E() p( ) + 4 p(4) ¼ + 4 ¾.5 E(Y).0.3 E(Y) , s on Cov(,Y) E(Y) E()E(Y)

5 Calcolo dll Probablà: srcazon 0 Esrczo 4 S supponga ch l lvllo d una sosanza nqunan abba dsrbuzon Noral con da µ dvazon sandard (n crogra pr ro cubo). Sapndo ch µ ,. s calcol la probablà ch l lvllo dll nqunan sa nfror a 340;. s drn l lvllo dll nqunan suprao con probablà S nolr s dspon d una sconda sura Y dl lvllo dll nqunan, ndpndn da con la dsa dsrbuzon Noral, 3. s drn la dsrbuzon conguna d Y, ovando la rsposa; 4. s drn la dsrbuzon dlla dffrnza ra Y, ovando la rsposa. 5. Il lvllo U d un alro nqunan ha dsrbuzon N(µ, ). Sapndo ch la probablà ch l lvllo dll nqunan sa nfror a 8.3 è par a 0. la probablà ch al lvllo sa supror a 359 è par a 0.05, s drnno la da µ la dvazon sandard dlla dsrbuzon d U. Soluzon N(µ, ) con µ P(<340) < < 0.908; 60 P P Z P( Z <.33) x 60. x 6.6 è soluzon dll quazon P(>x) Pz > x 60 Infa s ha. 64 qund x La funzon d dnsà conguna è daa dal prodoo dll dnsà argnal pr l assunzon d ndpndnza ra Y. Dao ch d Y s ha φ ( x, y, µ µ Y 60, Y 60, ρ 0) π Y W Y ha dsrbuzon Noral con da 0 varanza 700. Infa: W () E W Y Y µ+ ( ) µ+ ( ) ( ) E( ) E( ) E( ) () ( ) Y 5

6 Calcolo dll Probablà: srcazon 0 Qus ula è la fg d una noral d da 0 varanza Sapndo ch la probablà ch l lvllo U sa nfror a 8.3 è par a 0. la probablà ch al lvllo sa supror a 359 è par a 0.05, U ha dsrbuzon Noral con da 59.8 dvazon sandard Al rsulao s gung rsolvndo pr µ l ssa P(U>359) P(Z < (359 µ)/) 0.05 P(U < 8.3) P(Z < (8.3 µ)/) 0. 6

7 Calcolo dll Probablà: srcazon 0 Esrczo 5 S drn la dsrbuzon dlla varabl casual ndpndn, nl caso n cu:.,, sono v.a. d Brnoull con pararo θ. S, dov,, sono v.a..,, sono v.a. con dsrbuzon Bnoal con parar θ n,,. 3.,, sono v.a. con dsrbuzon d Posson d pararo rspvan λ,, λ. 4.,, sono v.a. con dsrbuzon aa d parar θ,, 5. S vrfch ch s,, sono v.a. ndpndn con dsrbuzon noral sandard allora ha dsrbuzon ch-quadrao con grad d lbrà 6. S drn la dsrbuzon dlla varabl S nl caso n cu N(µ, ),, fra loro ndpndn Soluzon S S ( ) E E( ). () E pr l ndpndnza d,, θ( ) ( θ + θ ) n S noa co la fg dlla soa d n Brnoull ndpndn d ugualn dsrbu sa ugual alla fg dlla Bnoal. Quso dosra, pr alra va, la rlazon ssn fra la Bnoal la Brnoull. S S ( ) E E( ). () E pr l ndpndnza d,, n ( θ( )) ( θ( )) N con N n 7

8 Calcolo dll Probablà: srcazon 0 8 S noa co qus ula sa la fg d una v.a. Bnoal d parar θ N. Cò dosra la proprà rproduva dlla v.a. Bnoal rspo al pararo rapprsnan l nuro dll prov. 3. ) ( S ( ) S () E pr l ndpndnza d,, ( ) ( ) ( )Λ λ λ dov λ Λ S noa ch qus ula è la fg d una Posson d pararo Λ dosrando così la proprà rproduva dlla varabl casual rspo a quso pararo. 4. ) ( S ( ) S () E pr l ndpndnza d,, A θ θ θ θ θ θ dov A Qus ula è la fg d una aa(θ,a) qund S aa(θ,a) La dsrbuzon gaa è qund rproduva rspo al pararo. 5. χ aa(/,/),, (ch quadro con un grado d lbrà, s vda l srcazon ) aa(/,/) (pr la rproduvà dlla gaa) χ (pr df. d ch-quadro con grad d lbrà) 6. ) S ( ( ) ( ) ( ) + µ + µ S ) ( E E E ( ) µ+ Qus ula è la fg d una noral d parar µ µ ch qund rsula rproduva (pr,,,) rspo ad nrab parar a anch una fagla d dsrbuzon chusa rspo all cobnazon lnar

1. Variabili casuali continue e trasformazioni di variabili casuali...3. 2. La variabile casuale normale... 14

1. Variabili casuali continue e trasformazioni di variabili casuali...3. 2. La variabile casuale normale... 14 ESERCIZI DI CALCOLO DELLE PROBABILITÀ PARTE II Rccardo Borgon Elna Colcno Pro Quao Sara Sala INDICE. Varabl casual connu rasformazon d varabl casual....3. La varabl casual normal... 4 3. Funzon gnrarc

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

Edutecnica.it Circuiti a scatto -Esercizi 1

Edutecnica.it Circuiti a scatto -Esercizi 1 duna. Cru a sao -srz srzo no. Soluzon a pag.5 Nl ruo d gura, l nrruor n huso all san ; dopo un mpo 4,8µs, n rapro onmporanamn n huso. roar l andamno dlla nson a ap dl ondnsaor. 4 kω CpF roar l alor dlla

Dettagli

Campi Elettromagnetici e Circuiti I Circuiti del secondo ordine

Campi Elettromagnetici e Circuiti I Circuiti del secondo ordine Facolà Inggnra Unrsà gl su Paa orso Laura Trnnal n Inggnra Elronca Informaca amp Elromagnc rcu I rcu l scono orn amp Elromagnc rcu I a.a. 3/4 Prof. Luca Prrgrn rcu l scono orn, pag. ommaro Dfnzon rcuo

Dettagli

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta)

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta) MRATI FINANZIARI IN ONOMIA APRTA Modllo - n conoma apra Invsmn fnanzar. Scla ra: a. mona nazonal: ransazon b. mona sra: non ha nssun vanaggo dnrla c. ol nazonal: fruano nrss d. ol sr: fruano nrss sono

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase Ssm rfas www.d.ng.unbo./prs/masr/ddaca.hm vrson dl 0-0-0 Ssm rfas l rasporo la dsrbuzon d nrga lrca avvngono n prvalnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn

Dettagli

La tecnica lagrangiana applicata al problema del Commesso Viaggiatore (TSP) Paolo Detti Università di Siena

La tecnica lagrangiana applicata al problema del Commesso Viaggiatore (TSP) Paolo Detti Università di Siena La cnca lagrangana applcaa al problma dl Commo Vaggaor TSP Paolo D Unvrà d Sna Un lowr bound lagrangano pr l problma dl TSP Dao un grafo GV,A con p ugl arch, una formulazon pr l TSP mmrco è la gun: mn

Dettagli

Laurea triennale in BIOLOGIA A. A

Laurea triennale in BIOLOGIA A. A Laura rinnal in BIOLOGIA A. A. 3-4 4 CHIMICA Vn 8 novmbr 3 Lzioni di Chimica Fisica Cinica chimica: razioni paralll razioni conscuiv Effo dlla mpraura sulla cosan di vlocià Prof. Anonio Toffoli Chimica

Dettagli

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta)

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta) MRTI FINNZIRI IN ONOMI PRT (Modllo - n conoma apra) Invmn fnanzar. Scla ra: a. mona nazonal: ranazon b. (mona ra): non ha nun vanaggo dnrla c. ol nazonal: fruano nr d. ol r: fruano nr ono ogg a rcho d

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

SPIRALI LOGARITMICHE TRIDIMENSIONALI

SPIRALI LOGARITMICHE TRIDIMENSIONALI SPIRALI LOGARITMICHE TRIDIMENSIONALI Carmn Carano Suno: In uso lavoro s dfnscono du d curv nllo sazo (sral logarmc rdmnsonal), onu dall nrszon d du co d surfc d cu s fornscono l uazon n coordn cdrc. S

Dettagli

Sistemi trifase. Parte 2. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-12-2013) Potenza assorbita da un carico trifase (1)

Sistemi trifase. Parte 2. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-12-2013) Potenza assorbita da un carico trifase (1) Ssm rfas ar www.d.ng.unbo./prs/masr/ddaca.hm rson dl 6--0 onza assorba da un carco rfas Un gnrco carco rfas può ssr consdrao un doppo bpolo du por Sclo un rmnal d rfrmno, s può sprmr la ponza sanana assorba

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base Lzion 5 (BAG cap. 4) L aspaiv: nozioni di bas Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il asso di inrss in rmini di mona è do asso di inrss nominal Il asso di inrss in rmini di bni è

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

SOMMARIO PWM - VCO. prof. Cleto Azzani IPSIA Moretto Brescia

SOMMARIO PWM - VCO. prof. Cleto Azzani IPSIA Moretto Brescia SOMMARIO GENERALIÀ SUI IRUII MODULAORI... MODULAORE PWM...3 DEMODULAORE PWM...4 O OSILLAORE ONROLLAO IN ENSIONE...4 O ON AMPLIFIAORE OA...6 BIBLIOGRAFIA :...7 PWM - O prof. IPSIA Moro Brsca aprl 994 Gnralà

Dettagli

LA DOMANDA DI TRASPORTO CARATTERIZZAZIONE E MODELLI (Capitolo 2)

LA DOMANDA DI TRASPORTO CARATTERIZZAZIONE E MODELLI (Capitolo 2) Fcolà d Inggnr - Unvrsà d Bologn nno ccdmco: 00/ TECNIC ED ECONOMI DEI TSPOTI Docn: Mrno Lup L DOMND DI TSPOTO CTTEIZZZIONE E MODELLI (Cpolo Modll d domnd - Modllo d domnd dscrvo (o non compormnl: non

Dettagli

SOMMARIO PWM - VCO. prof. Cleto Azzani IPSIA Moretto Brescia

SOMMARIO PWM - VCO. prof. Cleto Azzani IPSIA Moretto Brescia SOMMAIO GENEALIÀ SUI IUII MODULAOI... 2 MODULAOE PWM... 3 DEMODULAOE PWM... 4 O OSILLAOE ONOLLAO IN ENSIONE... 4 O ON AMPLIFIAOE OA... 5 BIBLIOGAFIA :... 7 PWM - O prof. lo Azzan IPSIA Moro Brsca aprl

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Sistemi trifase. Parte 1. (versione del ) Sistemi trifase

Sistemi trifase. Parte 1.  (versione del ) Sistemi trifase Ssm rfas Par www.d.ng.unbo./prs/masr/ddaca.hm rson dl -0-0 Ssm rfas l rasporo la dsrbuzon d nrga lrca angono n pralnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn d

Dettagli

! # %# & # & # #( # & % & % ( & )!+!,!++

! # %# & # & # #( # & % & % ( & )!+!,!++ ! # %# & # & # #( # &! # % & % ( & )!+!,!++ ! # % & & ( ) +,.! / ( # / # % & ( % &,. %, % / / 0 & 1.. #! # ) ) + + + +) #!! # )! # # #.. & & 8. 9 1... 8 & &..5.... < %. Α < & & &. & % 1 & 1.. 8. 9 1.

Dettagli

Le basi del calcolo statistico

Le basi del calcolo statistico L s dl clcolo sttstco qulro sttstco d prtcll su n stt possl: dscrzon dl sstm: ndvdur l stt possl mcrostt mdnt rltv numr quntc clcolr l nr dll -smo stto clcolr l dnrzon dll -smo stto clcolr l proltà d un

Dettagli

8. Circuiti non lineari

8. Circuiti non lineari 8. Crc non lnar odo dal. odo ral. nal d crc con dod mdan l modllo dal. Modllo dl dodo con cada d non. Modo rafco. nal d n crco lmaor d non mdan modo rafco. odo dodo dal = = < Cararca rafca Un dodo dal

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Appun d Esrz d Fsa Tna Mahn Trmh Cap.. Sambaor d alor Nola Forgon Paolo D Maro Vrson 0.03 0.05.0. La prsn dspnsa è rdaa ad slusvo uso ddao dgl allv d Dplom Unvrsar dl sor ndusral dll Unvrsà dgl Sud d Psa.

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Sistemi trifase. (versione del ) Sistemi trifase

Sistemi trifase.  (versione del ) Sistemi trifase Ssm rfas www.d.ng.unbo./prs/masr/ddaca.hm vrson dl --00 Ssm rfas l rasporo la dsrbuzon d nrga lrca avvngono n prvalnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn d

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Crs d LTTRONCA NDUSTRAL CONVRTTOR CA/CC A TRSTOR Cnrr alrnaa / cnnua Pr la cnrsn dalla crrn alrnaa mnfas rfas alla crrn cnnua s usan spss schm a pn d Graz S usan dd d pnza pr ralzzar cnrr nn cnrlla rsr

Dettagli

N = C. Lezione 1. Elettrostatica: forze elettriche e campo elettrico. Campo Elettrico. Azione del campo elettrico: Forze su cariche elettriche

N = C. Lezione 1. Elettrostatica: forze elettriche e campo elettrico. Campo Elettrico. Azione del campo elettrico: Forze su cariche elettriche lttostatca: foz lttch campo lttco Campo lttco è un campo d foz vttoal nllo spazo, coè una gandzza fsca con modulo dzon, funzon dlla poszon nllo spazo x, y, z to d Faaday-Maxwll zon dl campo lttco: Foz

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Ing. Enrico Grisan. Modelli di popolazione in farmacocinetica

Ing. Enrico Grisan. Modelli di popolazione in farmacocinetica Ing. Enrco Grsan Modell d popolazone n farmacocnetca Sommaro Modell a sngolo soggetto Modell d popolazone Naïve poolng Stme basate sul sngolo soggetto Modell a effett mst Lnearzzazone del modello 2 Ing.

Dettagli

ALGORITMO FFT (Fast Fourier Transform)

ALGORITMO FFT (Fast Fourier Transform) AGORITO FFT (Fast Fourr Transor) Rha sulla DFT Sa un sgnal rodo d rodo rarsntato dal vttor -dnsonal d oonnt [], [],.., [-] S dns Trasorata d Fourr Dsrta (DFT) dl sgnal la susson F: F[ ] Forula d nvrson:

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Esercitazione n 4. Meccanismi combinati Resistenze termiche e Trasmittanze termiche

Esercitazione n 4. Meccanismi combinati Resistenze termiche e Trasmittanze termiche Ercazon n 4 Mccanm combna nz rmch Tramanz rmch ) Valuar l ramanz rmch dll gun polog d fnr: a) fnra a vro ngolo ( por vro L [mm]; [W/(m)]); b) fnra con dopp vr ( por vro L [mm], ε ε 0.9, nrcapdn ara L n

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010 racc olt d rcz ulla raon dl alor Prof. trtta a.a. 009/00 Erczo n. S condr una part d atton alta 4 larga 6 pa 0 la cu ucbltà trca è λ λ 0 8 [/( )]. In un crto gorno alor urat dll tpratur dlla uprfc ntrna

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Errori a regime per controlli in retroazione unitaria

Errori a regime per controlli in retroazione unitaria Appunt d ontoll Autoatc Eo a g n sst n toazon Eo a g p contoll n toazon untaa... Eo a g nlla sposta al gadno (o d poszon)... Eo a g nlla sposta alla apa (o d vloctà)...3 Eo a g nlla sposta alla paabola

Dettagli

SVOLGIMENTO. 2 λ = b S

SVOLGIMENTO. 2 λ = b S RELAZIONE Dimnsionar sol d anima dl longhron d il rivsimno dl bordo di aacco, in una szion disan 4 m dalla mzzria, pr un ala monolonghron di un vlivolo avn l sguni cararisich: - pso oal W 4700 N - suprfici

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII.

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII. Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips 1. Inflazion,

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Phillips (1958): Correlazione negativa stabile tra variazione percentuale dei salari monetari e il tasso di disoccupazione (Dati UK, )

Phillips (1958): Correlazione negativa stabile tra variazione percentuale dei salari monetari e il tasso di disoccupazione (Dati UK, ) INFLAZIONE E DISOCCUAZIONE: INTRODUZIONE hillips (958): Corrlazion ngaiva sabil ra variazion prcnal di salari monari il asso di disoccpazion (Dai UK, 86-957) Samlson Solow (960): confrmano il rislao di

Dettagli

V E > 0, V C < 0 W B >> L B J C J E. Catodo 1 - n Anodo - p Catodo 2 - n. n p (x) p n20. p n1 (x) p n10. n p0. p n2 (x) x W B.

V E > 0, V C < 0 W B >> L B J C J E. Catodo 1 - n Anodo - p Catodo 2 - n. n p (x) p n20. p n1 (x) p n10. n p0. p n2 (x) x W B. O AO POA A GUZO (J) onsdramo qu d sguto l caso d un transstor d to nn nl qual l concntrazon d drogant nll tr rgon soddsfno l sgunt dsuguaglanz (la gustfcazon vrrà data ù avant): >> >>. Assumamo com vrs

Dettagli

Esempi di domande per l esame di Economia Monetaria

Esempi di domande per l esame di Economia Monetaria Esmpi di domand pr l sam di Economia Monaria La domanda di mona 1. In ch modo gli conomisi di Cambridg modificano l quazion dgli scambi di Fishr con quali consgunz?. Com si possono sprimr i guadagni asi

Dettagli

[A-E] IST. DI MATEMATICA I. 3. Lezione. giovedì 6 ottobre Massimo e minimo.

[A-E] IST. DI MATEMATICA I. 3. Lezione. giovedì 6 ottobre Massimo e minimo. IST. DI MATEMATICA I [A-E] giovedì 6 ottobre 2016 3. Lezione 3.1. Massimo e minimo. Definizioni di minimo e/o massimo per un insieme E di numeri reali: il numero min si dice minimo dell insieme E se min

Dettagli

Statistica multivariata Donata Rodi 04/11/2016

Statistica multivariata Donata Rodi 04/11/2016 Statistica multivariata Donata Rodi 4//6 La rgrssion logistica Costruzion di un modllo ch intrprti la dipndnza di una variabil catgorial dicotomica da un insim di variabili splicativ Trasformazioni da

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

Scambio Termico. il calore per la vaporizzazione del fluido non viene ceduto da un altro fluido ma per irraggiamento (fiamme)

Scambio Termico. il calore per la vaporizzazione del fluido non viene ceduto da un altro fluido ma per irraggiamento (fiamme) Scambo rmco Il modo pù smplc pr scambar calor ra du corp, n parcolar, ra du flud è qullo d porl n dro conao; quso, prò, non è smpr auabl n quano pormmo non avr pù du fas dsn. In qus cas, l rasfrmno d calor

Dettagli

Circuiti del primo ordine. Contengono un solo elemento dinamico Il loro comportamento è rappresentato da un equazione differenziale del I ordine.

Circuiti del primo ordine. Contengono un solo elemento dinamico Il loro comportamento è rappresentato da un equazione differenziale del I ordine. rcu dl prmo ordn onngono un olo lmno dnamco Il loro comporamno è rapprnao da un quazon dffrnzal dl I ordn. rcu n oluzon lbra gg d Krchhoff lazon cou - c d d coan d mpo c d d d d coan d mpo dx d x Forma

Dettagli

E stato dimostrato sperimentalmente che la rapidità con cui una famiglia di nuclei radioattivi decade dipende da una legge di natura statistica.

E stato dimostrato sperimentalmente che la rapidità con cui una famiglia di nuclei radioattivi decade dipende da una legge di natura statistica. 5. La lgg dl dcadino radioaivo Il nuro di nucli naurali arificiali oggi conosciui sono circa 700 di cui solo circa 70 sono qulli sabili. I nucli insabili ndono a rasforarsi sponanan in alr spci nuclari

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi 4. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

il bosone di Higgs nel Modello Standard

il bosone di Higgs nel Modello Standard Fsca d parc mnar Dparmno d Fsca G. Ga Unrsà d Padoa boson d Hs n Modo Sandard 6/7 Goann uso Fsca d parc mnar Dparmno d Fsca G. Ga Unrsà d Padoa modo sandard nrdn d modo aranano a smmra d Gau oca a draa

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

identificatore titolo descrizione formato Argo Biblioteca Fisco2014 Fisco Argo Inventario Argo Magazzino

identificatore titolo descrizione formato Argo Biblioteca Fisco2014 Fisco Argo Inventario Argo Magazzino 1 2 3 4 5 6 7 8 9 amministrazion rfrnt -mail PEC rfrnt idntificator titolo dscrizion formato rifrimnt o norm soggtto ALUNNI ALUNNI DBMS SQL Sybas installato prsso la scuola ISTRUZIONE Bibliotca Bibliotca

Dettagli

INDICI DI POSIZIONE O DI TENDENZA CENTRALE

INDICI DI POSIZIONE O DI TENDENZA CENTRALE IDICI DI POSIZIOE O DI TEDEZA CETRALE Gl ndc d poszon, o d tndnza cntral, sono numr ch sprmono la snts numrca d una dstrbuzon statstca (d ora n avant ndcata dal smbolo ) d una varabl X. I valor ossrvat

Dettagli

Norma UNI EN ISO 13788

Norma UNI EN ISO 13788 UNI EN ISO 13788 (2003: PRESTAZIONE IGROTERMICA DEI COMPONENTI E DEGLI ELEMENTI PER EDILIZIA TEMPERATURA SUPERFICIALE INTERNA PER EVITARE L'UMIDITA' SUPERFICIALE CRITICA E CONDENSAZIONE INTERSTIZIALE METODO

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Richiami di Probabilità e Statistica

Richiami di Probabilità e Statistica Università di Pavia Richiami di Probabilità e Statistica Eduardo Rossi Insiemi Un insieme è una collezione di oggetti. x A indica che l oggetto x è un elemento dell insieme A. A B indica che l insieme

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Integrazione e Integratori delle Informazioni

Integrazione e Integratori delle Informazioni SC.S.I. A.S.O. Ordin Mauriziano Workshop intrrgional sui sistmi informativi pr la gstion la valutazion dll rti oncologich Torino 24-25 maggio 2007 Intgratori dll Andra Bo - A.S.O. Ordin Mauriziano - S.C.

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

Indice. Previsioni. Previsioni. Introduzione

Indice. Previsioni. Previsioni. Introduzione Indce Prevson Inroduzone 9//7 7.3 conce base modell causal sere emporal error sere sazonare sere con rend sere con sagonalà Prevson La capacà d prevedere (forecasng l fuuro è fondamenale per un azenda.

Dettagli

PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI

PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI Perequazone eante oell lnear generalzzat Sano PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI qˆ oppure ˆ = a, a +, K, ω le ste nzal una tavola sopravvvenza ottenute n un approcco tpo non paraetrco

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli