Corso di ELETTRONICA INDUSTRIALE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di ELETTRONICA INDUSTRIALE"

Transcript

1 Crs d LTTRONCA NDUSTRAL CONVRTTOR CA/CC A TRSTOR Cnrr alrnaa / cnnua Pr la cnrsn dalla crrn alrnaa mnfas rfas alla crrn cnnua s usan spss schm a pn d Graz S usan dd d pnza pr ralzzar cnrr nn cnrlla rsr pr cnrr cnrlla. Schm brd sn aualmn pc cmun 1 2 Pn d Graz mnfas nn cnrlla Pn d Graz rfas nn cnrlla L a a R a a 3 4 Nlla par suprr dl. pn, cnduc l dd cnnss alla fas la cu nsn sanana è massma, nlla par nfrr, l dd cnnss alla fas la cu nsn sanana è mnma. V sn smpr sl du dd n cnduzn cnmprana, un nlla par suprr d un nlla par nfrr dl pn a a 5 6

2 1 2 3 l passagg dlla cnduzn. da un dd all alr (cmmuazn) an nauralmn all ncrc ra l frm d nda dll nsn d du fas succss 1 a Pn d Graz rfas nn cnrlla Nl crcu n cnnua, l usca psa sgu la nsn dlla fas cn alr sanan massm 7 8 Pn d Graz rfas nn cnrlla p Pn d Graz rfas nn cnrlla p Nl crcu n cnnua, l usca psa sgu la nsn dlla fas cn alr sanan massm Smlmn, l usca ngaa sgu la nsn dlla fas cn alr sanan mnm 9 10 Pn d Graz rfas nn cnrlla nsn cnnua s n dalla dffrnza fra l nsn dll usca psa d qulla ngaa 3 p = p n nsn cnnua prsna. una ndulazn, a frqunza s l qulla d r, srappsa al su alr md = p n 11 12

3 Pn d Graz rfas nn cnrlla Pn d Graz rfas nn cnrlla n un pn d Graz rfas, gn fas cnduc pr 120 grad sa n sns ps ch nga. nc pr un pn mnfas l fas cnducn n cascun sns pr 180 grad Cn la alr dll nduanza d carc l scllazn dlla crrn d usca è rda nll fas s hann crrn cn frma d nda prssma a qulla ranglar, n fas cn l rsp nsn a 1 a a 3 p Pn d Graz rfas cnrlla Pn d Graz rfas cnrlla a Ssund, sa n pn mnfas ch n qull rfas, u dd cn rsr s ngn pn almn cnrlla a Pn d Graz rfas cnrlla max = Pn d Graz rfas cnrlla max = rsr cnsnn d rardar l san d cmmuazn, cè d passagg dlla cnduzn da una fas alla succssa

4 Pn d Graz rfas cnrlla cmmuazn s n dand un max = cmand d accnsn ad gn rsr, sa nl smpn 1 ps ch n qull nga, rarda d un angl rsp 3 all san d cmmuazn naural Pn d Graz rfas cnrlla max = Pn d Graz rfas cnrlla Pn d Graz rfas cnrlla L accnsn dl rsr cmanda prca la plarzzazn nrsa qund l spgnmn (naural) dl rsr ch ra n cnduzn nll sss smpn Nl pn rfas l cmmuazn succss, ch s alrnan ra l smpn ps qull nga, sn sfasa d 60 grad l rard d cmmuazn prca frn rpd nlla frma d nda dlla nsn prda sul carc n c.c. 2 3 = p n 1 p l alr md dlla. nsn d usca dmnusc all aumnar dll angl. Tal alr md dna nga pr alr d maggr d 90 grad (funznamn da nrr) = p n Rglazn dlla nsn p =0 = p n V 23 24

5 Rglazn dlla nsn p =30 Rglazn dlla nsn p =60 = p n V = p n V Rglazn dlla nsn =90 Rglazn dlla nsn =120 = p n p = p n p V V Rglazn dlla nsn =150 = p n p V Tnsn mda d usca S dmsra faclmn ch la nsn mda d usca è prprznal a cs(): V V 6 = V π 2 LLff 135. V cs( ) LLff cs( ) 29 30

6 V max V max Tnsn mda d usca V ddrzzar V max = 6 π 2 nrr V LLff Crrn n pn rfas cnrlla n un pn cnrlla, cn rard d accnsn la cnduzn dll ar fas dura ancra 120 grad n ssm rfas, ma qusa rsula sfasaa dll sss angl rsp alla nsn d fas crrspndn Cn al alr dlla cmpnn ndua dl carc n crrn cnnua, nll fas s ha un andamn prssm a qull ranglar Sfasamn dll crrn p =0 Sfasamn dll crrn p = Funznamn da nrr n = p Funznamn da nrr 1 2 Pr > 90 la nsn d usca s nr mnr la crrn rman psa. S nr csì l rs dlla pnza n c.c. s rchd, nl crcu n cnnua, 2 la prsnza d un gnrar ch rgh al pnza 3 rs l la c.a

7 Funznamn da nrr pnza nll fas dna anch ssa ngaa prché la cmpnn fndamnal dlla crrn d fas rsula sfasaa pù d 90 rsp alla crrspndn nsn Funznamn da nrr Pr asscurar l andamn ranglar dlla crrn d fas è ndspnsabl la prsnza d una grand cmpnn ndua nl carc n c.c Funznamn da nrr Ondulazn d crrn n praca, pr dar un bun margn pr l cmmuazn d rsr è ncssar lmar l massm rard 150 Cn alr lma dlla cmpnn ndua dll mpdnza dl carc n c.c. (crrn cnnua), la crrn nll fas n c.a. (crrn alrnaa) s allnana dall andamn ranglar s ha una snsbl ndulazn nl carc n c.c Ondulazn d crrn Pn d Graz mnfas cnrlla = p n 1 a 1 a 41 42

8 Pn d Graz mnfas cnrlla l funznamn dl pn mnfas cnrlla è analg a qull dl pn rfas. Slan, l cmmuazn sn a 180 grad cnmpran n du smpn ps nga Pn d Graz mnfas cnrlla L accnsn d rsr cmanda prca la plarzzazn nrsa qund l spgnmn (naural) dgl alr du rsr ch ran n cnduzn Pn d Graz mnfas cnrlla /2 /2 p = p n V Nl pn mnfas cnrlla la nsn mda d usca è anch ssa prprznal a cs(): V V 2 2 = V π ff 09. V cs( ) ff cs( ) Crrn n pn mnfas cnrlla n p = p n V Crrn n pn mnfas cnrlla n = p n un pn mnfas cnrlla, la crrn d fas è rardaa d un angl analgamn a quan s rfca n pn rfas 47 48

9 Cnrr CA/CA a rac Cnrr CA/CA a rac rglazn dlla nsn alrnaa applcaa ad un carc s può far pnnd n sr al crcu d almnazn un TRAC L R Cnrr CA/CA a rac Cnrr CA/CA a rac Cm è n, l rac è un cmpnn ch s cmpra cm una cppa d SCR cnnss n paralll n rs pps, cn un unc lrd d cmand Cm u gl SCR, l rac n accs dal cmand s spgn quand cssa la crrn ch l ararsa Cnrr CA/CA a rac rglazn è nua rardand l accnsn d un angl rsp all nz dl smprd. S n una smnda aglaa la cu cmpnn fndamnal è nfrr a qulla dll nda pna =φ Cnrr CA/CA a rac φ=10 ο =10 ο 53 54

10 Cnrr CA/CA a rac Cnrr CA/CA a rac φ=10 ο =50 ο φ=10 ο =100 ο Cnrr CA/CA a rac Cnrr CA/CA a rac φ=10 ο =150 ο φ=10 ο =180 ο Cnrr CA/CA a rac rglazn dfrma la nsn la crrn sul carc nrducnd un sfasamn d una grand quanà d armnch. Qus ulm pssn ssr parzalmn flra dal carc s ss è ndu (pu) Cnrr CA/CA a rac φ=10 ο Cmpnn d prma armnca 1 d crrn su carc rssndu, n funzn dll angl

Convertitori alternata / continua

Convertitori alternata / continua Crs di ELETTRONCA NDUSTRALE CONVERTTOR CA/CC A TRSTOR 12 1 Cnveriri alernaa / cninua Per la cnversine dalla crrene alernaa mnfase rifase alla crrene cninua si usan spess schemi a pne di Graez Si usan didi

Dettagli

DERIVATORE INVERTENTE E DERIVATORE INVERTENTE REALE

DERIVATORE INVERTENTE E DERIVATORE INVERTENTE REALE DEIAOE INEENE E DEIAOE INEENE EALE E un crcu ch frnsc n usca un sgnal prprznal alla draa dl sgnal d ngrss. Pr nr la funzn d usca s sfrua l qupnzalà dgl ngrss ch gl ngrss nn assrbn crrn. Pr l qupnzalà dgl

Dettagli

a) Resistenza bleeder Rb (per garantire il funzionamento continuo)

a) Resistenza bleeder Rb (per garantire il funzionamento continuo) Prgtt d cnvrttr push-pull pcfch: 36-7 V (applc. Tlcm) V, 0 A (uscta slata) Prcsn: statca %, dnamca 5% rchd d garantr l funznamnt cntnu clt prgttual: frqunza d cmmutazn fs50 khz wtch: Msft Frqunza d uscta

Dettagli

Sistemi trifase. Parte 2. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-12-2013) Potenza assorbita da un carico trifase (1)

Sistemi trifase. Parte 2. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-12-2013) Potenza assorbita da un carico trifase (1) Ssm rfas ar www.d.ng.unbo./prs/masr/ddaca.hm rson dl 6--0 onza assorba da un carco rfas Un gnrco carco rfas può ssr consdrao un doppo bpolo du por Sclo un rmnal d rfrmno, s può sprmr la ponza sanana assorba

Dettagli

INTEGRATORE INVERTENTE E INTEGRATORE INVERTENTE REALE

INTEGRATORE INVERTENTE E INTEGRATORE INVERTENTE REALE INEGAOE INEENE E INEGAOE INEENE EALE E un crcu ch rnsc n usca un sgnal prprznal all ngral dl sgnal d ngrss. Pr nr la unzn d usca s srua l qupnzalà dgl ngrss ch gl ngrss nn assrbn crrn. Pr l qupnzalà dgl

Dettagli

Edutecnica.it Circuiti a scatto -Esercizi 1

Edutecnica.it Circuiti a scatto -Esercizi 1 duna. Cru a sao -srz srzo no. Soluzon a pag.5 Nl ruo d gura, l nrruor n huso all san ; dopo un mpo 4,8µs, n rapro onmporanamn n huso. roar l andamno dlla nson a ap dl ondnsaor. 4 kω CpF roar l alor dlla

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Crs d EERONCA NRAE Cnverre nnalzare d ensne (bs) Cnverre Bs Cnverre nnalzare d ensne (bs) Cnverre nnalzare d ensne (bs) C C Ne: ) l dd cllega dreamene ngress e usca e mpne che sa > ) a crrene assrba dall

Dettagli

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase Ssm rfas www.d.ng.unbo./prs/masr/ddaca.hm vrson dl 0-0-0 Ssm rfas l rasporo la dsrbuzon d nrga lrca avvngono n prvalnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn

Dettagli

I RIFIUTI DI NOVARA. Altieri ASSA S.p.a. 28/02/2013

I RIFIUTI DI NOVARA. Altieri ASSA S.p.a. 28/02/2013 2013 I RIFIUTI DI NOVARA Alr ASSA S.p.. 28/02/2013 2 Rfu L Cmmss Eurp c l Drv 2008/98/CE dc l v d rur r l 2020 ll s d rfu ssd u rul crl ll prvz quv qulv d rfu. L Il h rcp l v c l DLs 205 dl 3 dcmr 2010

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

DIODO DI PRECISIONE E RADDRIZZATORI DI PRECISIONE

DIODO DI PRECISIONE E RADDRIZZATORI DI PRECISIONE IOO I PECISIONE E AIZZATOI I PECISIONE I raddrzzar ( refcar) sn crcu mpega per la rasfrmazne d segnal bdreznal n segnal undreznal. Usand, però, dd per raddrzzare segnal, s avrà l svanagg d nn per raddrzzare

Dettagli

RETROAZIONE A V. = segnale d ingresso del blocco dell amplificatore retroazionato. = segnale d uscita A = amplificatore β = rete di retroazione

RETROAZIONE A V. = segnale d ingresso del blocco dell amplificatore retroazionato. = segnale d uscita A = amplificatore β = rete di retroazione ETOZOE Un amplcat è sggtt a azn quand una pat dl sgnal d uscta vn ptat n ngss smmat algbcamnt al sgnal d ngss. n un amplcat taznat è psnt una t β (bta) d tazn ch pta n ngss una pat dl sgnal d uscta. l

Dettagli

Corso di Elettronica per Telecomunicazioni. Prof. Francesco Svelto Laboratorio di Microelettronica Università di Pavia

Corso di Elettronica per Telecomunicazioni. Prof. Francesco Svelto Laboratorio di Microelettronica Università di Pavia Crs d Elrnca pr Tlcmuncazn Prf. Francsc Sl Labrar d Mcrlrnca Unrsà d Paa Lbr d rfrmn: U. Rhd, J. Whar: Cmmuncans Rcrs Mc Graw-Hll, dzn D. Dl Crs: Elrnca pr Tlcmuncazn Mc Graw-Hll S nrn d rfrmn: hp://www.unp./mcrlab/crs

Dettagli

GLI I M PIANTI SONO LA SOLUZIONE!

GLI I M PIANTI SONO LA SOLUZIONE! QUALI SONO I VANTAGGI DI UN IMPIANTO DENTALE? TESTIMONIANZE Mglra dl cfrt dlla qutà d vta Dnqu Mastcazn ffic, 4 8 n UNO O PIU DENTI MANCANTI? prvav dlrs dd a dvat a fr r l lt l ld «Il st acvl cn l ca udn.

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Campi Elettromagnetici e Circuiti I Circuiti del secondo ordine

Campi Elettromagnetici e Circuiti I Circuiti del secondo ordine Facolà Inggnra Unrsà gl su Paa orso Laura Trnnal n Inggnra Elronca Informaca amp Elromagnc rcu I rcu l scono orn amp Elromagnc rcu I a.a. 3/4 Prof. Luca Prrgrn rcu l scono orn, pag. ommaro Dfnzon rcuo

Dettagli

RAPPRESENTAZIONE DI SEGNALI NEL DOMINIO DELLA FREQUENZA: CASO DEI SEGNALI APERIODICI

RAPPRESENTAZIONE DI SEGNALI NEL DOMINIO DELLA FREQUENZA: CASO DEI SEGNALI APERIODICI RAPPRESENTAZIONE DI SEGNALI NEL DOMINIO DELLA FREQUENZA: CASO DEI SEGNALI APERIODICI Da un sgnal aprdc s(), la sua rapprsnazn nl dmn dlla frqunza è frna dalla sgun dfnzn d rasfrmaa d Furr: S( ) F[s()]

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Celebrity Nails. Celebrity Nails. Facili da usare...veloci da applicare...risultati naturali... Solo due e...fa tutto!!!

Celebrity Nails. Celebrity Nails. Facili da usare...veloci da applicare...risultati naturali... Solo due e...fa tutto!!! Gammacsmiciia srl Gammacsmiciia srl Labrari i Pruzin na Labrari i Pruzin na Prsna Nvia Prsna Nvia Clbriy Nails Clbriy Nails Mnpri Gl furni Mnpri Gl furni Disribui a: Facili a usarvlci a applicarrisulai

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

DIODO E RADDRIZZATORI DI PRECISIONE

DIODO E RADDRIZZATORI DI PRECISIONE OO E AZZATO PECSONE raddrzzar ( refcar) sn crcu mpega per la rasfrmazne d segnal bdreznal n segnal undreznal. Usand, però, dd per raddrzzare segnal, s avrà l svanagg d nn per raddrzzare segnal la cu ampezza

Dettagli

PROPRIETA DI CORRELAZIONE

PROPRIETA DI CORRELAZIONE PROPRIEA DI CORRELAZIONE Da un sgnal s() ral cmplss, si dfinisc nrgia al E dl sgnal la sgun grandzza ral (s sis): / / () / / E lim s() s () lim s() 0 L nrgia al ha significa fisic quand s() è ral: ssa,

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

apertura autunno 2012

apertura autunno 2012 CSTRUZI STI IMPITI SPRTIVI pwrd by prur uunn 22 CMP BBMTI DLL IU 22 r r LU MR DI T MR DI I CLDI V -22 7 V DI SB RDI 7-22 DM T 7-22 I C 22 L 22 d fn r r chu ndc d 3 m -2 nu 3 pr m c nd r c LU r MR M TT

Dettagli

Esercizi di simulazione di memorie cache

Esercizi di simulazione di memorie cache Esrz smuzn mmr 1) Mmr ss r S nsr un ssm mmr (mmr + ) rrzz mnsn sgun: - mmr r 4 K by, nrzz sng by - 1 K by, nrzz sng by - gn b nn 256 by Cnsrn squnz rs mmr rpr qu s, s mpr b usr mprmn un nrzzmn r n rsp

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

Polarizzazione del BJT

Polarizzazione del BJT Plazzazn dl BJT Il ccut d plazzazn, ccut D, p mp l punt d la dl BJT quand l gnal n ng è null P un BJT utlzzat cm amplfcat, p l punt d la è al cnt dlla gn atta Il ccut D d gaant l pù pl : - la taltà dl

Dettagli

4. La progettazione concettuale

4. La progettazione concettuale 4. La prgttazin cncttual 4.4 Esmpi 1. intrduzin alla prgttazin di basi di dati 2. mdll Entità-Rlazin 3. tdlgia pr la prgttazin cncttual 4. smpi ciascun, vgliam ricrdar, cg, di, s è,, nl cas l sia, il nur

Dettagli

Esercizi di simulazione di memorie cache

Esercizi di simulazione di memorie cache Esrz smuzn mmr 1) Mmr ss r S nsr un ssm mmr (mmr + ) rrzz mnsn sgun: - mmr r 4 K by, nrzz sng by - 1 K by, nrzz sng by - gn b nn 256 by Cnsrn squnz rs mmr rpr qu s, s mpr b usr mprmn un nrzzmn r n rsp

Dettagli

l f o e l M e s s i c o, m e n t r e a n o r d c o n f i La Florida è uno Stato federato

l f o e l M e s s i c o, m e n t r e a n o r d c o n f i La Florida è uno Stato federato FLORIDA TERRITORIO, CLIMA d E AMBIENTI l f l M s s i c, m n t r a n r d c n f i La Flrida è un Stat fdrat mridinal dgli Stati Uniti d'amrica..si stnd su buna part dlla pnisla d è bagnata ad vst dal Glf

Dettagli

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI DANIELE GIANNINI Frsco com un fior sboccia nl primo giorno primavra Il gol Danil D Rossi al Brasil ha s gnato simbolicamnt la fin dll invrno Il risvglio dlla natura qullo dlla Nazional stava prdndo immritatamnt

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

Bando Trasferimenti da altra sede e passaggi di corso di studio - A.A. 2015-16

Bando Trasferimenti da altra sede e passaggi di corso di studio - A.A. 2015-16 C Cr Sr rrr su 1 B rsr lr s pssgg rs su -.. 2015-16 Sr S l u l prvu sru (r. 5 l B) r. 1 l B sbls h pss prpr l su b slusv: ) gl su prv lr s h h l srz u rs su ll sss lss qull u s sr, qul ur h, ll s u prvg,

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

SCUOLA DELL'INFANZIA DI VILLA STRADA. a.s. 2013/2014 SEZIONE DEI BAMBINI DI 5 ANNI

SCUOLA DELL'INFANZIA DI VILLA STRADA. a.s. 2013/2014 SEZIONE DEI BAMBINI DI 5 ANNI SCUOLA DELL'INFANZIA DI VILLA STRADA a.s. 2013/2014 "LA FESTA DEI NONNI" SEZIONE DEI BAMBINI DI 5 ANNI " Inzam l'ann sclastc fstggand nstr NONNI pr rcrdar quant sn przs pr n bambn. Pnsam ch l md pù bll

Dettagli

Norma UNI EN ISO 13788

Norma UNI EN ISO 13788 UNI EN ISO 13788 (2003: PRESTAZIONE IGROTERMICA DEI COMPONENTI E DEGLI ELEMENTI PER EDILIZIA TEMPERATURA SUPERFICIALE INTERNA PER EVITARE L'UMIDITA' SUPERFICIALE CRITICA E CONDENSAZIONE INTERSTIZIALE METODO

Dettagli

A.A Ingegneria Gestionale 2 appello del 11 Luglio 2016 Soluzioni - Esame completo

A.A Ingegneria Gestionale 2 appello del 11 Luglio 2016 Soluzioni - Esame completo FISI.. 5-6 Igg Gsl ppll dl Lugl 6 Sluz - s pl. U h d s p l d u D su d du l plll DL gu d u sz d gg 5 l sgu sg: l h, l ll vlà ss vk/h, l pù d pssl dlz d dul 9/s p ps l uv u vlà s d h s l d L v dll g l sl

Dettagli

Legge di Ohm generalizzata per il condensatore

Legge di Ohm generalizzata per il condensatore gg di Ohm gnralizzaa pr il cndnsar Abbiam vis ch la crrn ch scrr un cndnsar a cui si applica una diffrnza di pnzial susidal è i i dq d i d d d d i Dal pun di visa frmal la frmula appna rvaa è simil alla

Dettagli

Esercitazione n 4. Meccanismi combinati Resistenze termiche e Trasmittanze termiche

Esercitazione n 4. Meccanismi combinati Resistenze termiche e Trasmittanze termiche Ercazon n 4 Mccanm combna nz rmch Tramanz rmch ) Valuar l ramanz rmch dll gun polog d fnr: a) fnra a vro ngolo ( por vro L [mm]; [W/(m)]); b) fnra con dopp vr ( por vro L [mm], ε ε 0.9, nrcapdn ara L n

Dettagli

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base Lzion 5 (BAG cap. 4) L aspaiv: nozioni di bas Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il asso di inrss in rmini di mona è do asso di inrss nominal Il asso di inrss in rmini di bni è

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

( ) mentre: Se si fa l ipotesi SVEA cioè di inviluppo del campo lentamente variabile lungo z:

( ) mentre: Se si fa l ipotesi SVEA cioè di inviluppo del campo lentamente variabile lungo z: I B PROPGTION THOD (BP) ssga il cap i pr sudiar l vlui è cssari calclar il valr i quidi:. Si suppga ch il cap sia craic uidirial si prpaghi lla diri psiiva dll ass. Si par dall quai scalar dll d di Hlhl

Dettagli

L Istruzione secondaria superiore in provincia di Varese

L Istruzione secondaria superiore in provincia di Varese OPIVa_ F.T._L.B. Lttur Cmmnti a.s. 2010-2011 SETTORE FORMAZIONE PROFESSIONALE E ISTRUZIONE OSSERVATORIO PERMANENTE ISTRUZIONE LETTURE E COMMENTI L Istruzin scndaria suprir in prvincia di Vars Ann sclastic

Dettagli

Localizzare gli oggetti

Localizzare gli oggetti NDC SUU 3^ UN FUNZN CUNCV : Chiedere e dire l'età, il mese e la stagione del compleanno Chiedere che colore è un elemento Chiedere qual è il giocattolo /colore preferito Saper dire cosa una persona ha

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Doni speciali. Dona all ospedale i tuoi momenti felici. Per informazioni: Ufficio Comunicazione e Relazioni con il Pubblico: tel. 030 399.

Doni speciali. Dona all ospedale i tuoi momenti felici. Per informazioni: Ufficio Comunicazione e Relazioni con il Pubblico: tel. 030 399. Dna Dna al tu Ospdal i tui mmnti flici al tu Ospdal i tui mmnti flici BOMBONIERE SPEDALI CIVILI BOMBONIERE SPEDALI CIVILI 1 BOMBONIERE SPEDALI CIVILI 2 Dna all spdal i tui mmnti flici AIUTATECI A COMPLETARE

Dettagli

Sistemi trifase. Parte 1. (versione del ) Sistemi trifase

Sistemi trifase. Parte 1.  (versione del ) Sistemi trifase Ssm rfas Par www.d.ng.unbo./prs/masr/ddaca.hm rson dl -0-0 Ssm rfas l rasporo la dsrbuzon d nrga lrca angono n pralnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn d

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progo i cinghi rapzoiali L cinghi rapzoiali sono uilizza rqunmn pr la rasmission i ponza Vanaggi Basso coso Smplicià i insallazion Capacià i assorbir vibrazioni orsionali picchi i coppia Svanaggi Mancanza

Dettagli

OSSERVATORIO SULL EFFICIENZA ENERGETICA: LE FAMIGLIE E LO SMALL BUSINESS ITALIANI

OSSERVATORIO SULL EFFICIENZA ENERGETICA: LE FAMIGLIE E LO SMALL BUSINESS ITALIANI OSSERVATORIO SULL EFFICIENZA ENERGETICA: LE FAMIGLIE E LO SMALL BUSINESS ITALIANI Luca Dal Fabbr Prsdn Dmcnca SpA Quara Cnfrnza naznal pr l rnnvabl rmch Mlan, Lundì 13 Magg 2013 CHI SIAMO LA RETE DOMOTECNICA

Dettagli

OPERAZIONE MANI PULITE

OPERAZIONE MANI PULITE Tl: OPERAZIONE MANI PULITE Aur: Lur Css Prcrs ddc ssc: 1. L u pug d rr AVVERTENZA: L dmd ch sgu s spr l prcrs prcrs dc h cm b qull d rfcr l pdrz d lcu cmpz (l cpcà cè d pplcr cscz ccul prcdurl ch cs drs

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Descrizione prestazionale degli elementi di arredo del progetto MOVIlinea.

Descrizione prestazionale degli elementi di arredo del progetto MOVIlinea. . 11 Dscrizin prstzinl dgli lmi di rrd dl prgtt Vlin. Pnnll infrmzini dll pnsilin cstituit dll qui tvl dll schinl sull qul vin incllt un lmirin di llumini 2 mm di spssr, vrnicit binc. Du pnnlli in plicrb

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

RETE ABRUZZO MOLISE RETE NAZIONALE DEI LICEI ECONOMICO SOCIALI

RETE ABRUZZO MOLISE RETE NAZIONALE DEI LICEI ECONOMICO SOCIALI N. CLASSI QUINTE: RETE ABRUZZO MOLISE RETE NAZIONALE DEI LICEI ECONOMICO SOCIALI ESAME DI STATO 2016 RILEVAZIONE SULLA SECONDA PROVA DEL LICEO ECONOMICO-SOCIALE SCUOLA AVEZZANO L AQUILA CHIETI PESCARA

Dettagli

SEGNALETICA LUMINOSA DA CANTIERE

SEGNALETICA LUMINOSA DA CANTIERE SN UNS NR V PR PR: -. 51 S PR PN P.. 5050 5040 PRS N PRZZ PR. 5041 1 N P V PR PR: - - - - - 1 - UR - - 1 N P PR N -SR PR -SR SRZN PR SUPR N 7 N U, N N PRN N NRRUR SRN + SP PR SSUZN R PR SUPR N 7 N U, N

Dettagli

RICHIESTA s DI RINUNCIA ALLA CONVENZIONE SANITARIA DIPENDENTI ENEA

RICHIESTA s DI RINUNCIA ALLA CONVENZIONE SANITARIA DIPENDENTI ENEA Cassa d Asssnza Scuzza Salu MODULO DI RINUNCIA Il psn mdul dv ss cmpla n u l su pa su n l 20/11/2004 RICHIESTA s DI RINUNCIA ALLA CONVENZIONE SANITARIA DIPENDENTI ENEA E FAMILIARI FISCALMENTE A CARICO

Dettagli

Il Progress Test nei Corsi di Laurea delle Professioni Sanitarie

Il Progress Test nei Corsi di Laurea delle Professioni Sanitarie Il Pgss Tst n Cs d Lu dll Pfssn Snt Pl Pllstn (Psdnt C.d.L. n Fstp) Luc Btzz (Cdnt C.d.L. n Fstp) Unvstà d Blgn 1 Pgss Tst Infm Fstpst PROFESSIONI CHE HANNO PARTECIPATO Osttch (ch hnn sgut un pcdu plll)

Dettagli

LA GARA D AMBITO PER LA CONCESSIONE DEL SERVIZIO PUBBLICO DI DISTRIBUZIONE DEL GAS NATURALE

LA GARA D AMBITO PER LA CONCESSIONE DEL SERVIZIO PUBBLICO DI DISTRIBUZIONE DEL GAS NATURALE LA GARA D AMBITO PER LA CONCESSIONE DEL SERVIZIO PUBBLICO DI DISTRIBUZIONE DEL GAS NATURALE LE LINEE GUIDA PROGRAMMATICHE D AMBITO Uff Uff ATEM Cmu Cmu d d Vllfr Vllfr d d Vr Vr RIFERIMENTI NORMATIVI D.M.

Dettagli

Scheda Prodotto Prestito Personale. Agenti e Mediatori. Luglio 2009. Marketing Department (Ver. 1 PP 07/2009) 1

Scheda Prodotto Prestito Personale. Agenti e Mediatori. Luglio 2009. Marketing Department (Ver. 1 PP 07/2009) 1 Schd Prdtt Prstit Prsn Agnti Mtri Lugli 2009 Mrkting Dprtmnt (Vr. 1 PP 07/2009) 1 INDICE Prdtt Prfil Richidnt Prfil d Età Richidnt Ctgri Finnzibili Richidnt Ctgri nn Finnzibili Evntu Cbbligzin Dcumntzin

Dettagli

Test ammissione CdL in Economia aziendale ed Economia e commercio GRADUATORIA GENERALE

Test ammissione CdL in Economia aziendale ed Economia e commercio GRADUATORIA GENERALE GRADUATORIA INIZIALI COG E 741 BM 24/10/1997 1 83,125 29,00 37,50 737 RG 14/11/1997 2 81,250 24,00 41,00 471 AN 14/01/1998 3 80,625 25,00 39,50 893 GF 27/09/1997 4 80,000 23,50 40,50 579 DL 22/03/1997

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

RESTITUZIONE PROVE INVALSI 2013

RESTITUZIONE PROVE INVALSI 2013 RESTITUZINE PRVE INVALSI 2013 PREMESSA L prv naznali INVALSI sn prv ch miran a misurar l "cmptnz" raggiunt dtrmat discipl ( n Matmatica) dagli alunni dll classi II V dlla Scula Primaria dll classi I III

Dettagli

Stati di equilibrio stabile

Stati di equilibrio stabile Stati di quilibri stabil 1) nctti di bas 2) Prim principi dlla trmdinamica 3) Scnd principi dlla trmdinamica 4) STATI DI EQUIIBRIO STABIE 5) Diagramma nrgia-ntrpia 6) avr, nn-lavr calr 7) Macchin trmich

Dettagli

ELETTRONICA DUE. Sensori di prossimità induttivi FOTEK

ELETTRONICA DUE. Sensori di prossimità induttivi FOTEK Sri PS / PM Snsri prssimità induttivi * Il tip DC ha la prtzin al crt circuit all invrsin plarità, il tip AC è cn circuit prtzin cntr i picchi tnsin. * Struttura slida cmpatta - IP 67 - adatti anch pr

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

A.A. 2016/17 Graduatoria corso di laurea in Scienze e tecniche di psicologia cognitiva

A.A. 2016/17 Graduatoria corso di laurea in Scienze e tecniche di psicologia cognitiva 1 29/04/1997 V.G. 53,70 Idoneo ammesso/a * 2 27/12/1997 B.A. 53,69 Idoneo ammesso/a * 3 18/07/1997 P.S. 51,70 Idoneo ammesso/a * 4 12/05/1989 C.F. 51,69 Idoneo ammesso/a * 5 27/01/1997 P.S. 51,36 Idoneo

Dettagli

VIENE IL SIGNORE Antifone "O"

VIENE IL SIGNORE Antifone O nn: MM lbm: Stillt li dll'l Pd: vvn IENE IL SIGNORE ntifn "O" Msic : Mrc Fs rrnmn : Mrc Fs (Rm, 16/12/195) Ts : Litrc-Mrc Fs Srn f i n il gn r, il r dl l gl, l l i, l l l f i n il gn r, il r dl l gl, l

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Politecnico di Milano Laboratorio Elettrotecnica e Elettronica Applicata

Politecnico di Milano Laboratorio Elettrotecnica e Elettronica Applicata Pln d Mlan Labrar lrna lrna Applaa srazn n 3 Br rham r a fndamn dll srazn sprmnal. S nsdr la r lnar d fgura nlla qual l gnrar ndpndn saznar d nsn può nr llga snnss dalla sruura na m r mdan l as S nzalmn

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

Laurea triennale in BIOLOGIA A. A

Laurea triennale in BIOLOGIA A. A Laura rinnal in BIOLOGIA A. A. 3-4 4 CHIMICA Vn 8 novmbr 3 Lzioni di Chimica Fisica Cinica chimica: razioni paralll razioni conscuiv Effo dlla mpraura sulla cosan di vlocià Prof. Anonio Toffoli Chimica

Dettagli

Polarizzazione del BJT

Polarizzazione del BJT Plazzazn dl BJT Il ccut d plazzazn, ccut D, p mp l punt d la dl BJT quand l gnal n ng è null P un BJT utlzzat cm amplfcat, p l punt d la è al cnt dlla gn atta Il ccut D dbb gaant l pù pbl : - la tabltà

Dettagli

Lettera 32. Lettera 32. Sistema Ufficio. Sistema Ufficio

Lettera 32. Lettera 32. Sistema Ufficio. Sistema Ufficio Lttra 32 Sistma Ufficio INDUSTRIE VALENTINI SPA via Rigoltto 27-47900 Rimini Tl. +39 0541 368888 - Fax +39 0541 774233 www.valntini.com Lttra 32 Sistma Ufficio L 2 3 a r t t inif, l nzia nano s s bi gn

Dettagli

residente Cap Comune prov. n.

residente Cap Comune prov. n. d. rg. d. rg. DOANDA DI AISSIONE/ADESIONE DOANDA DI AISSIONE/ADESIONE I nat/a sttscritt/a il a DA/07-20 DA/03-205 DA/07-20 nat/a rsidnt il a n. rsidnt Cap Cmun n. Cap Cc fiscal Cmun matricla azin Cc Azinda

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

10. Risorse umane coinvolte nella prima fase del progetto Ceis comunità.

10. Risorse umane coinvolte nella prima fase del progetto Ceis comunità. 0. Risrs uman cinvl nlla prima fas dl prg Cis cmunià. funzini n. n. r Oprari di Prg Prgazin, pianificazin dl prg O p r a ri d l p r g prari di bas prari cnici cn qualifica prfssinal prari spcializzai Op.

Dettagli

Il fumo in Italia. Sintesi dei risultati

Il fumo in Italia. Sintesi dei risultati Itia Indag ffttuata pr cnt d l Istitut Suprir Sanità, cllabrazin cn l Istitut Ricrch Farmaclgich Mari Ngri la Lga Itiana pr la Ltta cntr i Tumri Stsi di risultati maggi 2005 S. 05503/4 Prmssa Pr caric

Dettagli

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano , Fondazion Ordin Mauriziano LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2014 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Dalla primavra 2014 la palazzina di caccia offr

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Page 1. Corso di ELETTRONICA INDUSTRIALE. Trasformatori ad alta frequenza. frequenza. frequenza. ad alta frequenza. ad alta.

Page 1. Corso di ELETTRONICA INDUSTRIALE. Trasformatori ad alta frequenza. frequenza. frequenza. ad alta frequenza. ad alta. Corso EETTROCA DUTRAE Trasformator a alta frqnza Trasformator a alta frqnza Motvazon pr l so trasformator a AF Rcham sl trasformator al Rlazon tra l tnson Rlazon tra l corrnt Trasformator a pú avvolgmnt

Dettagli

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE a. STRATEGIE PER IL RECUPERO DESTINATARI Il Rcupro sarà rivolto agli alunni ch prsntano ancora difficoltà nll adozion di

Dettagli

Istruzioni per l uso. www.qlocktwo.com

Istruzioni per l uso. www.qlocktwo.com Isruzn pr l us www.qlckw.cm IT Gdv l mp Isruzn pr l us Prma dl prm ulzz dl QLOCKTWO TOUCH lggr anamn l prsn sruzn pr l us prsar anzn all ndcazn d scurzza rpra n fnd all sruzn. Il prsn dcumn è rprbl anch

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è "Trmodinamica trasmission dl calor 3/d" 1 - Yunus A. Çngl RISOLUZIONI cap.19 19.1 (a) La rsistnza trmica total dllo scambiator di calor, rifrita all'unità di lunghzza, è (b) Il cofficint global di scambio

Dettagli

Sistemi trifase. (versione del ) Sistemi trifase

Sistemi trifase.  (versione del ) Sistemi trifase Ssm rfas www.d.ng.unbo./prs/masr/ddaca.hm vrson dl --00 Ssm rfas l rasporo la dsrbuzon d nrga lrca avvngono n prvalnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn d

Dettagli

Regole e modelli per l attivazione e la gestione del registro di emergenza

Regole e modelli per l attivazione e la gestione del registro di emergenza ALLEGATO 6 al Manual pr la Gstin dl Prtcll infrmatic, di Flussi dcumntali dgli Archivi Rgl mdlli pr l attivazin la gstin dl rgistr di mrgnza 7 Rgl mdlli pr l attivazin la gstin dl rgistr di mrgnza Nl cas

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso ELETTOICA IDUSTIALE Trasformator a alta frqnza Trasformator a alta frqnza Motvazon pr l so trasformator a AF cham sl trasformator al lazon tra l tnson lazon tra l corrnt Trasformator a pú avvolgmnt

Dettagli

SUPERFICIE CONVENZIONALE VENDIBILE

SUPERFICIE CONVENZIONALE VENDIBILE CATASTO (*) Utilizza suprfici catastal (si COMPRAVENDITA DI IMMOBILI RESIDENZIALI UNIFAMILIARI NORMA UNI 10750 (**) Utilizza suprfici convnzional vndibil (si MERCATO DI MODENA (***) (si R/2 A/7 Abitazioni

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

Legge di Ohm generalizzata per il condensatore

Legge di Ohm generalizzata per il condensatore gg di Ohm gnralizzaa pr il cndnsar Abbiam vis ch la crrn ch scrr in un cndnsar a cui si applica una diffrnza di pnzial sinusidal è i i dq d i d d d d j i j Dal pun di visa frmal la frmula appna rvaa è

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Ogni anno a Padenghe si ripete la magia!

Ogni anno a Padenghe si ripete la magia! Ogn anno a Padngh s rpt la maga! C ra una volta un pas ncantvol ch s spcchava nl lago. Ogn anno, pr poch gorn, nl pccolo pas avvnva una maga: l asfalto l slcato s coprvano d rba, l v lascavano posto a

Dettagli

OFFERTA OSPITI DICEMBRE, FINO AD ESAURIMENTO SCORTE!

OFFERTA OSPITI DICEMBRE, FINO AD ESAURIMENTO SCORTE! OFFERTA OPITI 14 31 DICEMBRE, FINO AD EAURIMENTO CORTE! s v f d DI FINE ANNO! PRODOTTI DI NATALE FINO AL 50% DI CONTO! v Fs FRAGRANZE DA OFFRIRE! I s rg d umn vv Vcnz d nvrn cnn 6 cnd vv nfrcrp, 12 umn

Dettagli

LIMITATORI. Limitazione della parte positiva o della parte negativa del segnale d'uscita

LIMITATORI. Limitazione della parte positiva o della parte negativa del segnale d'uscita LIMITATOI Sn crcut che lmtan la tensne d uscta al d spra al d stt d un valre, se sn lmtatr semplc, tra due valr se sn lmtatr dpp LIMITATOI SEMPLICI Lmtazne della parte pstva della parte negatva del segnale

Dettagli