G. Parmeggiani, 11/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 11 (prima parte) = ( x) 2i x

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "G. Parmeggiani, 11/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 11 (prima parte) = ( x) 2i x"

Transcript

1 G. Parmggan, //29 Algbra Lnar, a.a. 28/29, Scuola d Scnz - Cors d laura: Studnt: Statstca pr l conoma l mprsa Statstca pr l tcnolog l scnz numro d MATRICOLA PARI Svolgmnto dgl Esrcz pr casa (prma part) Sa A = ( ). S calcolno: gl autovalor d A, l loro moltplctà algbrc l loro moltplctà gomtrc. Il polnomo carattrstco d A è: p A (x) ( ) x = Dt(A xi 2 ) = Dt = ( x) x 2 ( ) = x = = x 2 4. Gl autovalor d A sono gl zr dl polnomo carattarstco p A (x) d A, ossa l soluzon dll quazon p A (x) =. Dal momnto c l soluzon dll quazon sono 2 2, gl autovalor d A sono: x 2 4 = λ = 2 λ 2 = 2. Sano m d m 2 l moltplctà algbrc d d 2 l moltplctà gomtrc d λ λ 2 rspttvamnt. Da p A (x) = x 2 4 = (x + 2)(x 2) = (x λ ) m (x λ 2 ) m2 ottnamo: m = m 2 =.

2 Infn, da d m = pr =, 2, ottnamo: 2 2 Sa A = 8. 6 S calcolno: gl autovalor d A, l loro moltplctà algbrc l loro moltplctà gomtrc. Il polnomo carattrstco d A è: d = d 2 =. p A (x) 2 x = Dt(A xi ) = Dt 8 x = 6 x ( ) 2 x = ( ) 2+2 ( 8 x)dt = 6 x = ( 8 x)[( 2 x)( 6 x) 4 2 ] = = ( 8 x)(2 + 6x + 2x + x 2 + 4) = = ( 8 x)(x 2 + 8x + 6) = = ( 8 x)(x + 4) 2. Gl autovalor d A sono gl zr dl polnomo carattrstco p A (x) d A, ossa l soluzon dll quazon p A (x) =. Dal momnto c l soluzon dll quazon sono 8 4, gl autovalor d A sono: ( 8 x)(x + 4) 2 = λ = 8 λ 2 = 4. Sano m d m 2 l moltplctà algbrc d d 2 l moltplctà gomtrc d λ λ 2 rspttvamnt. Da p A (x) = ( 8 x)( 4 x) 2 = (λ x) m (λ 2 x) m2 ottnamo: 2

3 m = m 2 = 2. Infn, da d m = pr =, 2, ottnamo: d = d 2 2. d 2 = dm(e A (λ 2 )) = dm(e A ( 4)) = dm(n(a + 4I )) = = [numro dll colonn d (A + 4I )] [rk(a + 4I )] = = [rk(a + 4I )]. Da una E.G. su A + 4I ottnamo: 2 A + 4I = 4 2 E 2( 4 ) E( )E( 2 ), 4 pr cu ( rk(a + 4I ) = rk ) = 2 qund d 2 = 2 =. S trovno bas dgl autospaz dll matrc consdrat ngl srcz 2. L matrc consdrat ngl srcz 2 sono: A = ( ) 2 B = 8, 6 d abbamo calcolato:

4 matrc autovalor moltplctà gomtrc A λ = 2 λ 2 = 2 d = d 2 = B λ = 8 λ 2 = 4 d = d 2 = In partcolar, cascuno dgl autospaz E A (λ ) d E B (λ ) pr =, 2 a dmnson, pr cu una sua bas a un unco lmnto. E A (λ ) = E A ( 2) = N(A + 2I 2 ) = N Da una E.G. su A + 2I 2 : E A ( 2) = N 2 ) = N 2 ( ( 2 ) ) 2 ( ) 2 E 2( )E ( 2 ) 2 ) = ( ), sgu { ( ) } C, { ( ) } qund è una bas d E A (λ ) = E A ( 2). 2 ) E A (λ 2 ) = E A (2) = N(A 2I 2 ) = N 2 ( ) 2 E 2( )E ( 2 ) ( ) Da una E.G. su A 2I 2 :, sgu 2 E A (2) = N 2 ) = N 2 ) = { ( ) } C, { ( ) } qund è una bas d E A (λ 2 ) = E A (2). E B (λ ) = E B ( 8) = N(B + 8I ) = N( 6 ) 2 Da una E.G. su B + 8I : 6 2 E( )E( 6 ) 8 4 E2( 8 )E2,

5 sgu c E B ( 8) = N( 6 ) ( = N ) { = C }, 2 { qund } è una bas d E B (λ ) = E B ( 8). E B (λ 2 ) = E B ( 4) = N(B + 4I ) = N( 2 4 ) 2 Da una E.G. su B + 4I : sgu c E( )E( 2 ) 4 E2( 4 ), E B ( 4) = N ( 2 4 ) ( = N ) { = C }, 2 { qund } è una bas d E B (λ 2 ) = E B ( 4). 4 Sa A(α) = α, dov α C. 5 (a) Pr ogn α C s calcolno gl autovalor d A(α) l loro moltplctà algbrc gomtrc. (b) Sano A = A(2) B = A( 8) l matrc c s ottngono ponndo α = 2 d α = 8 rspttvamnt. S trovno bas dgl autospaz d A d B. (a) Gl autovalor d A(α) sono gl zr dl suo polnomo carattrstco. polnomo carattrstco d A(α) è: Il 5

6 p A(α) (x) = Dt(A(α) xi ) = x = Dt α x = 5 x ( ) x = ( ) 2+2 (α x)dt = 5 x = (α x)[( x)( 5 x) 2] = = (α x)(5 + 5x + x + x 2 2) = = (α x)(x 2 + 6x 6). L quazon α x = a un unca souzon: α. L quazon x 2 + 6x 6 = a du soluzon dstnt: 8 2. Qund ottnamo: matrc autovalor moltplctà algbrc moltplctà gomtrc A(α) λ = 8 m = d = α { 8, 2} λ 2 = 2 m 2 = d 2 = λ = α m = d = A = A(2) λ = 8 m = d = λ 2 = 2 m 2 = 2 d 2 2 B = A( 8) λ = 8 m = 2 d 2 λ 2 = 2 m 2 = d 2 = Pr fnr d rspondr alla domanda (a) rsta da calcolar: d 2 = dm(e A(2) (λ 2 )) = dm(e A (2)) d = dm(e A( 8) (λ )) = dm(e B ( 8)). 6

7 dov A = A(2) B = A( 8). ( E A (2) = N(A 2I ) = N ) Da una E.G. su A 2I : E( )E2( )E( ), sgu c d 2 = dm(e A (2)) = dm(n(a 2I ) = = [(numro d colonn d A 2I ) rk(a 2I )] = = 2. Da una E.G. su B + 8I : E B ( 8) = N(B + 8I ) = N( ) E( )E2( )E2 E2( )E2( ), sgu c d = dm(e B ( 8)) = dm(n(b + 8I ) = = [(numro d colonn d B + 8I ) rk(b + 8I )] = 2 =. (b) Al Punto (a) abbamo vsto c la matrc A = A(2) a autovalor λ = 8 λ 2 = 2 con moltplctà gomtrc d = d 2 = 2. E A ( 8) = N(A + 8I ) = N( )

8 Da una E.G. su A + 8I : E( )E2( )E( ) E2( ), sgu c E A ( 8) = N( ) = N( ) { = C }, { } è una bas d E A ( 8). Al punto (a) abbamo vsto c ( E A (2) = N ) ( = N ), pr cu { k E A (2) = }, k C k { ; } è una bas d E A (2). Al punto (a) abbamo anc vsto c la matrc B = A( 8) a autovalor λ = 8 λ 2 = 2 con moltplctà gomtrc d = d 2 =. E B (2) = N(B 2I ) = N( ) Da una E.G. su B 2I : E( )E2( )E( ) E2( ), sgu c 8

9 E B (2) = N( ) = N( ) { = C }, { } è una bas d E B (2). Al punto (a) abbamo vsto c ( E B ( 8) = N ) ( = N ), pr cu { E B ( 8) = } C { } è una bas d E B ( 8). 9

G. Parmeggiani 3/6/2019. Algebra e matematica discreta, a.a. 2018/2019, Scuola di Scienze - Corso di laurea:

G. Parmeggiani 3/6/2019. Algebra e matematica discreta, a.a. 2018/2019, Scuola di Scienze - Corso di laurea: G. Parmeggan 3/6/9 Algebra e matematca dscreta, a.a. 8/9, Scuola d Scenze - Corso d laurea: parte d Algebra Informatca ESERCIZIO TIPO Sa A(α) α, dove α è un numero reale non negatvo. (a) Per qual α real

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Interferenza e diffrazione con gli esponenziali complessi. Nota

Interferenza e diffrazione con gli esponenziali complessi. Nota Intrfrnza dffrazon con gl sponnzal complss ota on s fanno commnt sul sgnfcato d rsultat ottnut, n su qullo dll pots d volta n volta assunt: lo scopo solo qullo d mostrar com funzon n pratca l formalsmo

Dettagli

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto LE SOLUZIONI. Una soluzon (d un crto soluto n un crto solvnt dl pso d kg è concntrata al 0%. Calcolar la quanttà d solvnt (n kg ch s dv aggungr alla soluzon pr ottnr una nuova soluzon, concntrata al 0%.

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014 L soluzon dlla prova scrtta d Matmatca dl Aprl. Sa data la unzon 3 a. Trova l domno d b. Scrv, splctamnt pr stso non sono sucnt dsgnn, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l

Dettagli

Le soluzioni della prova scritta di Matematica del 7 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 7 Febbraio 2014 L soluzon dlla prova scrtta d Matmatca dl 7 Fbbrao. Sa data la unzon ln ln a. Trova l domno d. b. Scrv, splctamnt pr stso, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l vntual ntrszon

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Il problema della Trave Inflessa

Il problema della Trave Inflessa Il problma dlla Tra Inflssa q F EI m Problma dlla tra EI q L F m ϕ - c ϕ spostamnto trasrsal rotaon curatura flssonal y M EI c momnto flttnt T d q T M q -T taglo carco trasrsal M M T TdT MdM quaon d campo

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L) L soluzon dlla prova scrtta d Matmatca pr l corso d laura n Chmca Tcnolo Farmacutch raruppamnto A-L. Data la unzon a. trova l domno d b. scrv, splctamnt pr stso, qual sono l ntrvall n cu rsulta postva

Dettagli

Apprendimento per Perceptron: esempio. Apprendimento di Reti di Perceptron. Discesa di Gradiente. gradiente

Apprendimento per Perceptron: esempio. Apprendimento di Reti di Perceptron. Discesa di Gradiente. gradiente / 3 ; J DA E F DA DA I DA $ N 45 2 dov "#$ &'#$, 9? K 9 O L M M K 9L 7 9 AC AC Sstm d Elaborazon dll Informazon 9 Sstm d Elaborazon dll Informazon Apprndmnto pr Prcptron smpo Apprndmnto d Rt d Prcptron

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Esame di Elettronica Corso di Laurea in Ingegneria delle Telecomunicazioni 13 febbraio 2008 Parte A

Esame di Elettronica Corso di Laurea in Ingegneria delle Telecomunicazioni 13 febbraio 2008 Parte A Esam d Elttronca Corso d Laura n Inggnra dll Tlcomuncazon 13 bbrao 2008 Part A 1. S consdr un amplcator d tnson con A v0 =1000, R n = 2 MΩ, R out = 100 Ω. S razon l amplcator n modo da ottnr una rsstnza

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Calcolo delle Probabilità: esercitazione 10

Calcolo delle Probabilità: esercitazione 10 Calcolo dll Probablà: srcazon 0 Argono: Dsrbuzon noral (pag. 47 sgun dl lbro d so). Valor aso, varanza (pag. sgun). Dsrbuzon bvara dscr (pag. 44 sgun) covaranza (pag 45 sgun). NB: asscurars d conoscr l

Dettagli

Soluzioni. 1. Data la funzione. a) trova il dominio di f

Soluzioni. 1. Data la funzione. a) trova il dominio di f Soluzon Data la funzon a) trova l domno d f f ( ) + b) ndca qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c) dtrmna l vntual ntrszon con gl ass d) studa l comportamnto dlla funzon

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (3)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (3) Corso d Mtod Matmatc pr l Inggnra A.A. 206/207 Esrc svolt sull funon d varabl complssa 3 Marco Bramant Poltcnco d Mlano Novmbr 8, 206 Classfcaon dll sngolartà d una funon, calcolo d svlupp d Laurnt, calcolo

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Eserctazon a grupp svolte. Esercz tpo

Dettagli

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%.

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%. SOLUZIONI. Il costo d un farmaco da banco pr un dtrmnato prncpo attvo è così suddvso: l 7,% pr la confzon, l 7,% pr la produzon d l rstant % pr l IVA. Dlla quota rlatva alla produzon, l 3% è dovuto all

Dettagli

L soluzon Data la funzon ln( ) f ( ) 3 a trova l domno d f b scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c dtrmna l vntual ntrszon con gl ass d studa l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Esame di Matematica e Abilità Informatiche - Settembre Le soluzioni

Esame di Matematica e Abilità Informatiche - Settembre Le soluzioni Esam d Matmatca Abltà Informatch - Sttmbr 03 L soluzon. Data la funzon f( ) a. trova l domno d f b. scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c. dtrmna

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 15: 12 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/15? Calendaro prossme lezon 13 marzo 14

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 4: Martedì 24/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? Attualzzazone I fattor d attualzzazone conugat

Dettagli

Problema 1D della barra inclinata

Problema 1D della barra inclinata roblma D dlla barra nclnata snθ cosθ cosθ - snθ f EA cosθ θ snθ θ - snθ θ cosθ EA f quaon d campo y y EA L condon al contorno EM: Asta nclnata Spostamnt nl rfrmnto local laon rfrmnto local-global snθ cosθ

Dettagli

A.A Elettronica - Soluzioni della prova scritta del 01/07/03

A.A Elettronica - Soluzioni della prova scritta del 01/07/03 A.A. -3 lttronca - Soluzon dlla prova scrtta dl /7/3 ) Assumamo nzalmnt ch l gnrator rogh una corrnt nulla applchamo l torma d Thvnn a mont dl dodo allora sosttundo l gnrator d corrnt con un crcuto aprto

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

Esercitazione 1 del corso di Statistica 2

Esercitazione 1 del corso di Statistica 2 Eserctazone del corso d Statstca rof. Domenco Vstocco Dott.ssa aola Costantn 8 Aprle 008 Eserczo n. S consder un campone d 00 student d cu s conoscono le seguent probabltà dstnt secondo l sesso (Mmascho,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 14: 18 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 14: 18 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 14: 18 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Schema algebrco de fluss d cassa con v = (1

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Programma. Esercz tpo svolt 3. Eserctazon

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI E SPS, A.A. 2005/06, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI E SPS, A.A. 2005/06, GEMMA PARMEGGIANI ALGEBRA LINEARE I (A PER SCIENZE STATISTICHE, SGI E SPS, A.A. 5/6, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova Programma del corso. Nota

Dettagli

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da ESISTE UA OTEOLE DIFFEEA TA LE SOLUIOI DEI POLIEI E QUELLE DELLE OLECOLE PICCOLE DOUTA ALLA DIFFEEA DI DIESIOI TA LE OLECOLE POLIEICHE E QUELLE DEL SOLETE. Pr qusto motvo trattrmo l soluzon polmrch attravrso

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI Equlbro e stabltà d sstem dnamc Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI TC Crter d stabltà per sstem dnamc LTI TC Stabltà nterna d sstem dnamc

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI E SPS, A.A. 2006/07, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI E SPS, A.A. 2006/07, GEMMA PARMEGGIANI ALGEBRA LINEARE I (A PER SCIENZE STATISTICHE, SGI E SPS, A.A. 6/7, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova Programma del corso. Nota

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduon al METODO DEGLI ELEMENTI FINITI Ossrvaon su mtod varaonal approssmat classc L unon approssmant dvono: Soddsar rqust d contnutà Essr lnarmnt ndpndnt complt Soddsar l condon al contorno ssnal Dcoltà:

Dettagli

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006 LABORATORIO DI CALCOLO NUMERICO : Gruppo A Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 6 febbrao 2006 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 16: 9 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? 2/25? Caso partcolare, ma molto mportante α

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA SRCIZI DI ALGBRA LINAR COMPLMNTI DI GOMTRIA Foglio 3 sercizio 1. Determinare la decomposizione LU della matrice reale simmetrica A = 1 2 1 2 5 3 1 3 4 sercizio 2. Determinare la decomposizione LU della

Dettagli

Carla Seatzu, 18 Marzo 2008

Carla Seatzu, 18 Marzo 2008 8. Ret d Code Carla Seatzu, 8 Marzo 008 Nella maggor parte de process produttv rsulta troppo restrttvo consderare una sola rsorsa. Esempo: lea tandem arrv µ µ v partenze V sono dverse stazon cu una parte

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale LTTOTCNCA nggnra ndutral MTOD D ANALS TASFOMATO DAL MUTU NDUTTANZ Stfano Pator Dpartmnto d nggnra Archtttura Coro d lttrotcnca (04N) a.a. 0-4 Torma d Thnn Condramo un bpolo L collgato al rto dl crcuto

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 12: 6 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 12: 6 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 12: 6 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Eserczo 3 000 vanno rmborsat n tre ann

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 18: 18 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Eserczo Il sgnor ancrazo Topazo decde

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 7: 6 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/29? Defnzone Se è un prestto se m {1, 2,..., n}

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercz d Probabltà e Statstca Samuel Rota Bulò 25 maggo 2007 Funzon d v.a., meda, varanza, moda, medana, quantl e quartl. Vettor aleator, denst condzonata, covaranza, correlazone. Eserczo 1 Sa Y ax + b

Dettagli

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 0 gennaio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P . Il Teorema Ergodco er le catene d Markov * Defnzone Una catena d Markov dscreta con sazo degl stat E; s dce regolare se, detta P = (P ) la matrce delle robablt a d transzone assocata, esstono un ntero

Dettagli

Università di Verona Prof. S. De Marchi Verona, 30 gennaio 2007

Università di Verona Prof. S. De Marchi Verona, 30 gennaio 2007 LABORATORIO DI CALCOLO NUMERICO Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 30 gennao 2007 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere ordnat come

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

INDICI DI POSIZIONE O DI TENDENZA CENTRALE

INDICI DI POSIZIONE O DI TENDENZA CENTRALE IDICI DI POSIZIOE O DI TEDEZA CETRALE Gl ndc d poszon, o d tndnza cntral, sono numr ch sprmono la snts numrca d una dstrbuzon statstca (d ora n avant ndcata dal smbolo ) d una varabl X. I valor ossrvat

Dettagli

Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica. Dip. di Ingegneria Civile e Industriale (DICI), 1 piano

Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica. Dip. di Ingegneria Civile e Industriale (DICI), 1 piano Corso d Progttazon Assstta da Computr Part I Corso d Progttazon Assstta da Computr (PAdC) CLM Ing. Mccanca CdL Magstral n Inggnra Mccanca Part I Introduzon alla tora dl mtodo agl Elmnt Fnt pr l anals struttural

Dettagli

Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica

Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica CdL Magstral n Inggnra Mccanca Corso d Progttazon Assstta da Computr Part I Corso d Progttazon Assstta da Computr (PAdC) CLM Ing. Mccanca Part I Introduzon alla tora dl mtodo agl Elmnt Fnt pr l anals struttural

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

y. E' semplicemente la media calcolata mettendo

y. E' semplicemente la media calcolata mettendo COME FUNZIONA L'ANOVA A UN FATTORE: SI CONFRONTANO TANTE MEDIE SCOMPONENDO LA VARIABILITA' TOTALE Per testare l'potes nulla che la meda d una varable n k popolazon sa la stessa, s suddvde la varabltà totale

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

MATRICE DI TRASFERIMENTO

MATRICE DI TRASFERIMENTO MATRICE DI TRASFERIMETO In qusto captolo vn prsntato l mtodo d calcolo dtto mtodo dlla matrc d trasfrmnto. Esso rsulta molto utl pr dtrmnar n modo satto l comportamnto crtco d sstm ch possono ssr dscrtt

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Le onde elastiche monocromatiche

Le onde elastiche monocromatiche L ond lastch monocromatch Ptagora Samo 570-495 a.c. Jan Baptst Josph Forr Franca, 1768 1830 Ptagora so allv ddro n mplso straordnaro alla tora d nmr alla tora dl sono. Ptagora è attrbto l prmo stdo sstmatco

Dettagli

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1. LEZIONE 16 16.1. Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione 16.1.1. Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka

Dettagli

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II L'Anals n Component Prncpal Lug D Ambra Dpartmento d Matematca e Statstca Unverstà d Napol Federco II ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Anals Multdmensonale de Dat (AMD) è una famgla d tecnche

Dettagli

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro LABORATORIO II B create un nuovo foglo d lavoro La retta d regressone Eserco. U PRIMO ESEMPIO DI RETTA DI REGRESSIOE LIEARE. Leggere attentamente paragraf.,. e. tutto Costrure la retta d regressone lneare

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

CIRCUITO RLC IN SERIE

CIRCUITO RLC IN SERIE ~ ~ IUITO L IN SEIE onsdrazon gnral Il crcuo L n sr (vd fgura) è formao da una sola magla n cu sono prsn una rssnza, un nduanza L, un condnsaor d capacà un gnraor d nson alrnaa cararzzao da una forza lromorc

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Algebra lineare e geometria AA Esercitazione del 14/6/2018

Algebra lineare e geometria AA Esercitazione del 14/6/2018 Algebra lineare e geometria AA. 2017-2018 Esercitazione del 14/6/2018 1) Siano A, B due matrici n n tali che 0 < rk(a) < rk(b) = n. (a) AB è invertibile. (b) rk(ab) = nrk(b). (c) det(ab) = det(a). (d)

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Soluzione della prova scritta di di Algebra lineare del 10 giugno Esercizio 1

Soluzione della prova scritta di di Algebra lineare del 10 giugno Esercizio 1 Soluzione della prova scritta di di Algebra lineare del 0 giugno 05 Esercizio (a) La matrice A che rappresenta f rispetto alle basi assegnate è la seguente: A = 0 0 0 (b) Applicando il metodo di Gauss

Dettagli

Analisi Matematica 1 per IM - 23/01/2019. Tema 1

Analisi Matematica 1 per IM - 23/01/2019. Tema 1 Analisi Matmatica 1 pr IM - 23/01/2019 Cognom Nom:....................................... Matricola:.................. Docnt:.................. Tmpo a disposizion: du or. Il candidato, a mno ch non si

Dettagli

Indice delle esercitazioni (Ing. Rossato)

Indice delle esercitazioni (Ing. Rossato) ndc dll srctazon (ng. ossato) Esrctazon numro Potnza 8 Marzo 999 Connzon Carattrstch Esrctazon numro Gnrator ral 5 Marzo 999 l dodo Parttor d tnson d corrnt Esrctazon numro Shft d gnrator Torma d Mllman

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA 29 febbraio 2018 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 28/0/2008 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 20 soggett. Soggetto Età Resdenza

Dettagli