STUDIO DEL LANCIO DI 3 DADI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STUDIO DEL LANCIO DI 3 DADI"

Transcript

1 Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio permette di assegare agli eveti casuali (o aleatori) u valore umerico al fie di poter cofrotare oggettivamete tali eveti e decidere quale tra essi ha maggiore probabilità di verificarsi. Se P(E)=1, ovvero la probabilità di u eveto è pari ad 1 l eveto è certo. Si possoo dare diverse defiizioi di probabilità. Defiizioe di probabilità secodo la cocezioe classica La probabilità P(E) di u eveto E è il rapporto fra il umero F dei casi favorevoli (al verificarsi di E) e il umero N dei casi possibili, giudicati egualmete possibili: F PE ( ) co PE ( ) 1 N se F=, cioè se o esistoo casi favorevoli al verificarsi dell eveto, questo è detto impossibile e la sua probabilità è ulla (P(E)=). Se F=N, cioè se tutti i casi soo favorevoli al verificarsi dell eveto, questo è detto certo e la sua probabilità è massima (P(E)=1). Uo dei puti deboli della cocezioe classica è la codizioe, pressoché impossibile da verificare, che tutti i casi i cui può maifestarsi il feomeo siao egualmete possibili. Tale defiizioe, ioltre, si può applicare quado l isieme dei casi è u isieme fiito. Defiizioe di probabilità secodo la cocezioe frequetista La cocezioe frequetista è basata sulla defiizioe di frequeza relativa di u eveto. Si defiisce frequeza relativa di u eveto i prove effettuate elle stesse codizioi, il rapporto fra il umero v delle prove elle quali l eveto si è verificato e il umero delle prove effettuate: v f co f 1 Quidi la probabilità di u eveto è il limite della frequeza dei successi, cioè del verificarsi dell'eveto, quado il umero delle prove tede all'ifiito. Se f = l eveto o si è mai verificato i quelle prove; se f = 1 (v = ) l eveto si è sempre verificato i quelle prove. La frequeza dipede dal umero delle prove fatte. Per uo stesso la frequeza può variare al variare del gruppo delle prove ifatti se si lacia 1 volte ua moeta e si preseta testa 54 volte, effettuado altri 1 laci si può presetare 48 volte. Secodo la legge empirica del caso, i ua serie di prove, ripetute u gra umero di volte, eseguite tutte elle stesse codizioi, la frequeza tede ad assumere valori prossimi alla probabilità dell eveto e l approssimazioe è tato maggiore quato più umerose soo le prove eseguite.

2 Geeralmete o si può dire quate prove siao ecessarie; il umero delle prove dipede dal feomeo i esame. Quidi se i casi possibili soo e l'isieme dei casi favorevoli soo A, per la teoria classica la probabilità che accada l'eveto A sarà metre per la teoria frequetista essa sarà p A p A A lim A La probabilità di otteere u 6 laciado u sigolo dado è: casi favorevoli = 1 (ossia la faccia che mostra il umero 6); casi possibili = 6 (ossia la faccia che mostra il umero 6 e le altre 5 facce). duque, la probabilità di otteere u 6 è 1/6,16 (*) e la somma delle probabilità delle sei facce, che possiamo cosiderare uguale, è Ovviamete, ua probabilità o è ua certezza. Ifatti, può beissimo accadere che su sei laci o si preseti mai la faccia co il umero 6; tuttavia, aumetado il umero di laci, si può costatare che effettivamete la frequeza co cui si preseta il umero 6 è molto vicia ad 1/6. La probabilità di otteere ivece due 6 laciado due dadi corrispode a: casi favorevoli = 1 (l'uica combiazioe i cui si presetao due facce che mostrao il umero 6); casi possibili = 36 (ossia tutte le combiazioi di due dadi che si possoo presetare, comprese quelle co il 6); quidi, la probabilità di otteere u doppio 6 è 1/36. I particolare la probabilità cercata si può ache calcolare moltiplicado tra loro le sigole probabilità di otteere u 6 quidi Più i geerale, questa regola vale ache per più dadi. Così, la probabilità di otteere tre 6 laciado tre dadi è Gli eveti per i quali vogliamo calcolare la probabilità del loro verificarsi, devoo essere idipedeti: quado laciamo due dadi, ifatti, o ha importaza che il lacio sia cotemporaeo. Voledo calcolare la probabilità che, laciado tre dadi, capitio due facce uguali, essa corrispode a 5/1,416 (*) e la probabilità che tutte e tre le facce siao uguali corrispode a 1/36,7 (*).

3 Laciamo cotemporaeamete tre dadi per 1 volte. I risultati otteuti soo riportati ella seguete tabella Lacio Dado1 Dado Dado3 Somma x (*) 3,47 3,63 3,

4 La percetuale di laci i cui si soo avuti due puteggi uguali (escludedo i casi i cui si presetao tre facce uguali) è il 34% (*), ivece quella dei laci i cui tutti e tre i puteggi erao uguali è l 8% (*); questi due valori differiscoo da quelli precedetemete calcolati a rappresetare che il lacio di u dado è idipedete da quello degli altri dadi e dal successivo lacio dello stesso. Percetuali relative al primo dado Percetuali relative al secodo dado Percetuali relative al terzo dado

5 Come si può otare le percetuali (che si preseti u valore per u dado) oscillao itoro al valore 16,7%, ovvero quello calcolato teoricamete tramite il calcolo delle probabilità (*). I due valori o coicidoo poiché il umero di laci effettuato è fiito. Percetuali relative ai tre dadi Ache cosiderado le percetuali relative ai tre dadi il valore medio oscilla itoro al valore 16,5. Per ua distribuzioe discreta di probabilità il valor medio o valore atteso, che rappreseta u umero verso il quale i valori otteuti tedoo all ifiito, è dato da E( x) xp( x ) quidi i 1 i i Ex ( ) 3,5 6 valore molto simile ai valori medi precedetemete calcolati (*). La variaza ivece è la differeza tra la media dei quadrati e il quadrato della media campioaria: che el caso dei 1 laci è,73. La deviazioe stadard è 1, 65 x La deviazioe stadard della media ivece è,95 x N x

6 Si cosideri la somma dei valori otteuti laciado i tre dadi. La tabella seguete riporta ella secoda coloa le tere di valori, la cui somma è costate, otteute laciado tre dadi. Come si può vedere dalla terza coloa per ogua di queste tere i valori si possoo presetare i diverse combiazioi ad esempio la tera (1,1,) si può presetare secodo tre combiazioi: (1,1,), (1,,1), (,1,1). Somme Tere Numero di combiazioi N tot Probabilità (%) 3 (1,1,1) 1 1,46 4 (1,1,) 3 3 1,39 5 (1,1,3) (1,,) 3 3 6,78 6 (1,1,4) (1,,3) (,,) ,63 7 (1,1,5) (1,,4) (1,3,3) (,,3) ,94 8 (1,1,6) (1,,5) (1,3,4) (,,4) (,3,3) ,7 9 (1,,6) (1,3,5) (1,4,4) (,3,4) (,5,) (3,3,3) ,57 1 (1,3,6) (1,4,5) (,3,5) (,4,4) (,6,) (3,3,4) ,5 11 (6,4,1) (6,3,) (5,4,) (5,3,3) (5,1,5) (4,4,3) ,5 1 (6,5,1) (6,4,) (6,3,3) (5,4,3) (5,,5) (4,4,4) ,57 13 (6,6,1) (6,5,) (6,4,3) (5,5,3) (5,4,4) ,7 14 (6,6,) (6,5,3) (6,4,4) (5,5,4) ,94 15 (6,6,3) (6,5,4) (5,5,5) ,63 16 (6,6,4) (6,5,5) 3 3 6,78 17 (6,6,5) 3 3 1,39 18 (6,6,6) 1 1,46 Somma 16 1 Come si può otare dalla tabella sovrastate le somme più probabili soo 1 e 11. Istogramma teorico associato alla distribuzioe: Somm a

7 L istogramma otteuto dai dati sperimetali è il seguete: Percetuali somme dei puteggi dei tre dadi Somma Somma % Questo grafico è diverso da quello teorizzato prima per il motivo che i laci effettuati soo fiiti.

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della 1 La stima putuale Argometi trattati: Stima putuale e stimatore Proprietà degli stimatori Stima putuale della media della popolazioe e sua distribuzioe Stima putuale di ua proporzioe e sua distribuzioe

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Statistica Matematica: Cocetti Fodametali Nell esperieza quotidiaa e ella pratica della professioe dell igegere occorre: predere decisioi e ciò ormalmete richiede la dispoibilità di specifiche iformazioi

Dettagli

Relazioni statistiche

Relazioni statistiche Relazioi statistiche Idipedeza: asseza di qualsiasi relazioe tra due caratteri I caso di preseza di u legame, questo può essere di: Coessioe: relazioe reciproca tra due caratteri qualitativi Dipedeza:

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli Esercitazioi di Statistica Dott. Dailo Alui Fegatelli dailo.aluifegatelli@uiroma.it Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Corso di Informatica

Corso di Informatica Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

ES 1.3. Data la distribuzione unitaria di una variabile quantitativa X. la media aritmetica di X è data dal rapporto tra il totale n

ES 1.3. Data la distribuzione unitaria di una variabile quantitativa X. la media aritmetica di X è data dal rapporto tra il totale n ES 1.3 1 Media e variaza Data la distribuzioe uitaria di ua variabile quatitativa X x 1... x i... x, la media aritmetica di X è data dal rapporto tra il totale x i e il umero delle uità rilevate: x = 1

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

PROBABILITÀ SCHEDA N. 8 LA LEGGE DEI GRANDI NUMERI E IL TEOREMA CENTRALE DEL LIMITE Ovvero: ci si può fidare dell esperienza per stimare probabilità?

PROBABILITÀ SCHEDA N. 8 LA LEGGE DEI GRANDI NUMERI E IL TEOREMA CENTRALE DEL LIMITE Ovvero: ci si può fidare dell esperienza per stimare probabilità? Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) PROBABILITÀ SCHEDA N.

Dettagli

Sperimentazioni di Fisica I mod. A Lezione 2

Sperimentazioni di Fisica I mod. A Lezione 2 La Rappresetazioe dei Numeri Sperimetazioi di Fisica I mod. A Lezioe 2 Alberto Garfagii Marco Mazzocco Cizia Sada Dipartimeto di Fisica e Astroomia G. Galilei, Uiversità degli Studi di Padova Lezioe II:

Dettagli

versione

versione versioe 3-06-2004 37 La seguete Lezioe 4 riguarda pricipalmete la legge dei gradi umeri ed il teorema cetrale del limite. Iclude ache la geeralizzazioe del cocetto di idipedeza completa per successioi

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

Convergenza di variabili aleatorie

Convergenza di variabili aleatorie Covergeza di variabili aleatorie 1 Covergeza quasi certa Ua successioe (X ) 1 di v.a. coverge quasi certamete alla v.a. X se: X X (P-q.c.), cioè P(X X) = 1, ove {X X} = {ω : X (ω) X(ω)} è l issieme di

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

PROBABILITÀ SCHEDA N. 6 LE VARIABILI ALEATORIE DI BERNOULLI E BINOMIALE

PROBABILITÀ SCHEDA N. 6 LE VARIABILI ALEATORIE DI BERNOULLI E BINOMIALE Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) PROBABILITÀ SCHEDA N.

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica Da u mazzo di carte (3 carte er quattro semi di cui due eri e due rossi, co 3 figure er ogi seme si estragga ua carta. Calcolare la robabilità che a si estragga u re ero b si estragga ua figura rossa,

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 004 - SESSIONE SUPPLETIVA QUESITO La fuzioe f(x) = 3x six x 3six della fuzioe, per x + : è, per x +, ua forma idetermiata del tipo. Il limite A) No esiste; B) è 3/; C) è /3 ; D) è

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

Probabilità e statistica

Probabilità e statistica Probabilità e statistica November 14, 2010 1 Caso e probabilitá Prof.ssa Paola Giaccoi Per probabilità di u particolare risultato A ell osservazioe o misura di ua gradezza, si itede la ostra stima della

Dettagli

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici.

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici. Calcolo combiatorio. Disposizioi - Permutazioi - Combiazioi Coefficieti biomiali - Biomio di Newto Disposizioi semplici. Disposizioi semplici di oggetti di classe soo tutti gli allieameti che è possibile

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE

Capitolo 27. Elementi di calcolo finanziario EEE Capitolo 27 Elemeti di calcolo fiaziario EEE 2012-2013 27.1 Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Ovvero: ci si può fidare dell esperienza per stimare probabilità?

Ovvero: ci si può fidare dell esperienza per stimare probabilità? PRROBABILITÀ SCHEDA N. 4 LA LEGGE EMPIRICA DEL CASO, LA LEGGE DEI GRANDI NUMERI E IL TEOREMA CENTRALE DEL LIMITE Ovvero: ci si può fidare dell esperieza per stimare probabilità? La legge empirica del caso

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli

PARAMETRI CARATTERISTICI DEI FUNZIONAMENTI A VUOTO (A REGIME) E DI CORTO CIRCUITO (A REGIME)

PARAMETRI CARATTERISTICI DEI FUNZIONAMENTI A VUOTO (A REGIME) E DI CORTO CIRCUITO (A REGIME) l trasformatore PARAMETR CARATTERSTC DE FUNONAMENT A UOTO (A REGME) E D CORTO CRCUTO (A REGME) FUNONAMENTO A UOTO (a tesioe primaria omiale e a frequeza omiale) Da misure eseguite sul trasformatore a vuoto

Dettagli

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3 Chiorri, C. (0). Fodameti di psicometria - Risposte e soluzioi Capitolo Domade di teoria. Per le caratteristiche geerali vedi paragrafo. p. 79. Per le procedure di calcolo vedi per la moda pp. 79-8, per

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

STATISTICA E PROBABILITA nella Scuola Secondaria di secondo grado Mathesis Roma, 8 novembre 2016

STATISTICA E PROBABILITA nella Scuola Secondaria di secondo grado Mathesis Roma, 8 novembre 2016 STATISTICA E PROBABILITA ella Scuola Secodaria di secodo grado Mathesis Roma, 8 ovembre 06 Ferdiado Casolaro () fcasolar@uisaio.it - ferdiado.casolaro@uia.it Apputi estratti dal corso di Statistica (periodo

Dettagli

ESERCITAZIONI 1 (vers. 1/11/2013)

ESERCITAZIONI 1 (vers. 1/11/2013) ESERCITAZIONI 1 (vers. 1/11/2013 Daiela De Caditiis tutoraggio MAT/06 Igegeria dell Iformazioe - sede di Latia, prima qualche richiamo di teoria... CALCOLO COMBINATORIO Il pricipio fodametale del calcolo

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO Pricipio fodametale del calcolo combiatorio Se u eveto E si può presetare i modi e u secodo eveto E 2 si può maifestare i 2 modi, allora l eveto composto E E 2 si può presetare i modi. 2 ORDINE/ RIPETIZIONE

Dettagli

Cenni di Calcolo di probabilità e. Il concetto di probabilità

Cenni di Calcolo di probabilità e. Il concetto di probabilità Cei di Calcolo di probabilità e Statistica Dario Maio http://www.csr.uibo.it/~maio/ dmaio@deis.uibo.it 1 Il cocetto di probabilità Il termie probabilità è usato el liguaggio quotidiao per deotare casi

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015 ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa

Dettagli

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO Spesso bisoga cofrotare far di loro 2 o più dati statistici che si riferiscoo a feomei rilevati o i spazi/luoghi diversi o i tempi diversi o comuque i ambiti diversi e che quidi risetoo dell UNITÀ DI MISURA

Dettagli

Soluzioni Esercizi Capitolo 3

Soluzioni Esercizi Capitolo 3 Soluzioi Esercizi Capitolo 3 Esercizio 1 a. I u mazzo di carte fracesi lo spazio campioario è costituito da 52 elemeti. Nel caso dell'estrazioe di u fate, il umero di eveti favorevoli è 4, per cui la probabilità

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

ELEMENTI CALCOLO COMBINATORIO CALCOLO DELLE PROBABILITA' VARIABILI CASUALI TEORIA DEI GIOCHI

ELEMENTI CALCOLO COMBINATORIO CALCOLO DELLE PROBABILITA' VARIABILI CASUALI TEORIA DEI GIOCHI ELEMENTI DI CALCOLO COMBINATORIO CALCOLO DELLE PROBABILITA' VARIABILI CASUALI TEORIA DEI GIOCHI SABO ELEMENTI DI CALCOLO COMBINATORIO Dato u isieme di elemeti a 1, a 2, a 3,..., a è possibile da questo

Dettagli

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova).

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizi di Probabilità e Statistica della 2 a settimaa (Corso di Laurea i Matematica, Uiversità degli Studi di Padova). Esercizio. Sia (Ω, A, P) uo spazio probabilizzato e B A o trascurabile. Dimostrare

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1 Paolo Siviglia Calcolo combiatorio Itroduzioe I questa parte della matematica vegoo affrotati i problemi riguardati lo studio dei raggruppameti che si possoo realizzare co gli elemeti di u isieme. Problemi

Dettagli

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica MEDIE STATISTICHE La raccolta dei dati e la successiva loro elaborazioe permettoo di trarre alcue coclusioi su u dato feomeo oggetto di studio. A questo fie si assume che u valore calcolato a partire dai

Dettagli

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione PREMESSA Descrizioe parametrica di ua popolazioe Sappiamo che u famiglia parametrica di fuzioi desità di probabilità è defiita da uo o più parametri Θ = {θ, θ,., θ }. Ad esempio, la d.d.p. di tipo espoeziale

Dettagli

Tavole di Contingenza Connessione

Tavole di Contingenza Connessione Tavole di Cotigeza Coessioe Ua tavola di cotigeza per due geerici feomei X e Y è ua rappresetazioe simbolica di ua tabella a doppia etrata y 1 y y j y k x 1 11 1 1j 1k 1 x 1 j k x i i1 i ik i x h h1 h

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Elementi di Calcolo Combinatorio

Elementi di Calcolo Combinatorio Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma alessadro.degregorio@uiroma1.it Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli