Esercitazioni di Statistica Dott.ssa Cristina Mollica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it"

Transcript

1 Esercitazioi di Statistica Dott.ssa Cristia Mollica Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese: Azieda Prestito 4M 35 AGZ 400 Bartoletti 15 Breda 200 Geoovia 10 Si calcoli l'idice di cocetrazioe della ripartizioe dei prestiti tra le varie aziede. Avedo ordiato i seso crescete gli importi dei prestiti si ha Prestiti F i A i Q i F i - Q i ed è possibile calcolare il rapporto di cocetrazioe dei Gii come segue R = 1 ( F Q ) i i= 1 1 i= 1 F i i = / 2 = I maiera aaloga si può ache calcolare R = 1 i= i= 1 Q F i i = / 2 = 0.731

2 Esercizio 2. Dalla distribuzioe del reddito di u collettivo di 500 idividui è stata calcolata la seguete spezzata di cocetrazioe. Qual è la percetuale di reddito deteuto dai 350 idividui più poveri? I 350 idividui più poveri rappresetao il 70% della popolazioe, ifatti 350 / 500 = 0.7. Dal grafico si evice che il 70% degli idividui più poveri detiee circa il 20% del reddito.

3 Esercizio 3. Co riferimeto alla seguete distribuzioe del umero di cellulari posseduti da 4 famiglie Famiglia # Cellulari Rossi 2 Biachi 2 Verdi 2 Neri 2 disegare la curva di cocetrazioe, calcolare il rapporto di cocetrazioe e commetare il risultato. Il carattere è equidistribuito tra le uità, quidi la curva di cocetrazioe corrispoderà co la retta di equidistribuzioe e il rapporto di cocetrazioe sarà pari a 0.

4 Distribuzioi doppie Esercizio 4. Su 10 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M Costruire la tabella di frequeze assolute a doppia etrata. X F M Esercizio 5. Data la seguete distribuzioe doppia di frequeze X y 1 y 2 y 3 y 4 x x x calcolare: 1. le distribuzioi di frequeze assolute margiali dei due caratteri; 2. le distribuzioi relative codizioate (profili riga e coloa); 3. i caratteri soo idipedeti? 1. le distribuzioi margiali per i due caratteri risultao X i i x 1 22 y 1 18 x 2 33 y 2 12 x 3 11 y y

5 2. le distribuzioi relative codizioate risultao - Profili riga X y 1 y 2 y 3 y 4 x x x Profili coloa X y 1 y 2 y 3 y 4 x x x I caratteri soo idipedeti i quato le distribuzioi relative codizioate di u carattere rispetto alle modalità dell'altro soo tra loro uguali.

6 Esercizio 6. Data la seguete distribuzioe doppia delle variabili X (umero dipedeti) e (fatturato, i migliaia di euro) su di u collettivo di aziede X < > 500 < > calcolare: 1. quate aziede hao u fatturato compreso tra 100 e 500; 2. quate aziede hao u umero di dipedeti superiore a 15 ed u fatturato superiore a 500; 3. tra le aziede co fatturato iferiore a 50, qual è la percetuale di aziede co u umero di dipedeti compreso tra 3 e 15?; 4. tra le aziede co u umero di dipedeti superiore a 15, qual è la percetuale di aziede co u fatturato superiore a 100?; 5. le distribuzioi di frequeze assolute per i caratteri X e ; 6. le distribuzioi relative codizioate (profili riga e coloa); 7. le medie codizioate del carattere rispetto alle modalità del carattere X (si cosideri come estremo superiore dell ultima classe 2000); 8. i caratteri X e soo idipedeti? 1. Quate aziede hao u fatturato compreso tra 100 e 500? Quate aziede hao u umero di dipedeti superiore a 15 ed u fatturato superiore a 500? Tra le aziede co fatturato iferiore a 50, qual è la percetuale di aziede co u umero di dipedeti compreso tra 3 e 15? (60/160)*100 = 37.5% 4. Tra le aziede co u umero di dipedeti superiore a 15, qual è la percetuale di aziede co u fatturato superiore a 100? [(40+30)/110]*100 = 63.64% 5. le distribuzioi margiali risultao X i i < < > >

7 6. le distribuzioi relative codizioate risultao - per riga < > 500 < > per coloa < > 500 < > le medie codizioate soo pari a x y X=x < > I caratteri o soo idipedeti. Esercizio 7. Co riferimeto alla distribuzioe di u collettivo di idividui secodo i caratteri X ed X M F A 24 6 B 41 9 C calcolare le frequeze teoriche sotto l ipotesi di idipedeza tra i due caratteri; 2. calcolare le frequeze sotto l ipotesi di perfetta dipedeza tra i due caratteri.

8 1. Sotto l'ipotesi di idipedeza, le frequeze cogiute ij soo date da ij = i j / X M F A B C La tabella di frequeze o è quadrata duque o può sussistere iterdipedeza perfetta tra i due caratteri. Si può solo avere dipedeza perfetta di da X i quato il carattere ha u umero iferiore di modalità. U esempio di tale dipedeza è dato dalle segueti frequeze X M F A B C Esercizio 8. Per ciascua delle segueti distribuzioi, forire il grafico di dispersioe degli scostameti dalla media, calcolare la covariaza e il coefficiete di correlazioe lieare tra i caratteri X e. x y x y x y

9 - prima distribuzioe x i x i - x y i y i - y x i 2 y i 2 x i y i Media di X: x = 60 / 6 =10 Media di : y = 58 / 6= Mometo secodo di x: x ( 2) = 1 2 x i = 618 / 6 =103 Variaza di X: σ 2 X = x ( 2) x 2 = = 3 Scarto quadratico medio di X: σ X = σ X 2 = 3 Mometo secodo di : y ( 2) = 570 / 6 = 95 Variaza di : σ 2 = 95 ( 58 / 6) 2 =1.5 i=1 Scarto quadratico medio di : σ = σ 2 = Covariaza: σ X= xi yi xy = 580 / / 6 = 0 Correlazioe: ρ σ /( σ σ ) = = 0 - secoda distribuzioe: ρ X = terza distribuzioe: ρ X = 1 i= 1 X = X X

10 Esercizio 9. Su 5 uità statistiche soo stati osservati due caratteri X e co le segueti realizzazioi: - I caratteri X e soo idipedeti? - I caratteri X e soo icorrelati? X Distribuzioe di frequeze relative di codizioate ai diversi valori di X X I caratteri o soo idipedeti. 2. x i y i x i 2 y i 2 x i y i

11 Media di X: x = 9 / 5 Media di : y = 2 Mometo secodo di x: x ( 2) =19 / 5 Variaza di X: σ X 2 = 19/5 (9/5) 2 = 14/25 Scarto quadratico medio di X: σ X = σ X 2 = 14/25 Mometo secodo di : y ( 2) = 22 / 5 Variaza di : σ 2 = 22/5 2 2 = 2/5 Scarto quadratico medio di : σ = σ 2 = 2/5 Covariaza: σ X = 1 x i y i xy =18 / / 5 = 0 Correlazioe: ρ X =σ X /(σ X σ )= 0 14/25Ŋ 2/5 = 0 Esercizio 10. Date le segueti statistiche descrittive sui valori dei caratteri X ed rilevati su ua popolazioe x y x i 2 y i 2 1 x i y i calcolare il coefficiete di correlazioe. Mometo secodo di x: x ( 2) =145 / 5 = 29 Variaza di X: σ X 2 = = 4 Scarto quadratico medio di X: σ X = σ X 2 = 2 Mometo secodo di : y ( 2) = 623 / 5 =124.6 Variaza di : σ 2 = = 3.6 Scarto quadratico medio di : σ = σ 2 = 1.9 Covariaza: σ X = 1 x i y i xy = = 3.4 Correlazioe: ρ X =σ X /(σ X σ )= 3.4/(2Ŋ 1.9)= 0.9

12

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli Esercitazioi di Statistica Dott. Dailo Alui Fegatelli dailo.aluifegatelli@uiroma.it Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

ES 1.3. Data la distribuzione unitaria di una variabile quantitativa X. la media aritmetica di X è data dal rapporto tra il totale n

ES 1.3. Data la distribuzione unitaria di una variabile quantitativa X. la media aritmetica di X è data dal rapporto tra il totale n ES 1.3 1 Media e variaza Data la distribuzioe uitaria di ua variabile quatitativa X x 1... x i... x, la media aritmetica di X è data dal rapporto tra il totale x i e il umero delle uità rilevate: x = 1

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

Principio alla base della misura del legame tra X ed Y

Principio alla base della misura del legame tra X ed Y Pricipio alla base della misura del legame tra X ed Y Y o varia Asseza di legame Al variare di X Varia ache Y X ed Y soo coessi Come si misura la risposta di Y al variare di X? Dipede dalla atura di X

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Relazioni statistiche

Relazioni statistiche Relazioi statistiche Idipedeza: asseza di qualsiasi relazioe tra due caratteri I caso di preseza di u legame, questo può essere di: Coessioe: relazioe reciproca tra due caratteri qualitativi Dipedeza:

Dettagli

Tavole di Contingenza Connessione

Tavole di Contingenza Connessione Tavole di Cotigeza Coessioe Ua tavola di cotigeza per due geerici feomei X e Y è ua rappresetazioe simbolica di ua tabella a doppia etrata y 1 y y j y k x 1 11 1 1j 1k 1 x 1 j k x i i1 i ik i x h h1 h

Dettagli

Statistica - Esercitazione 1 Dott. Danilo Alunni Fegatelli

Statistica - Esercitazione 1 Dott. Danilo Alunni Fegatelli Statistica - Esercitazioe 1 Dott. Dailo Alui Fegatelli dailo.aluifegatelli@uiroma1.it Esercizio 1: Distribuzioi di frequeza (a) Religioe (b) Reddito familiare (c) Salario i Euro (d) Classe di reddito (I,

Dettagli

Lo studio della relazione lineare tra due variabili

Lo studio della relazione lineare tra due variabili Lo studio della relazioe lieare tra due variabili X e caratteri etrambi quatitativi X variabile idipedete variabile dipedete * f ( ) f(): espressioe fuzioale che descrive la legge di dipedeza di da X 1

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

Esempio. Tabella a doppia entrata. n 2. n 24. n.6

Esempio. Tabella a doppia entrata. n 2. n 24. n.6 Esempio Distribuzioe degli studeti di Scieze della Comuicazioe frequetati la facoltà ell a.a. 001/00 per Corso di Laurea e Numero di Corsi Frequetati Numero Corsi Frequetati CDL 1 3 4 5 6 7 STC 1 19 50

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Libri T ablet 1284 47 971 62 1123 75 1047 69 921 103 874 113 889 136

Libri T ablet 1284 47 971 62 1123 75 1047 69 921 103 874 113 889 136 Esercitazioe 0 ESERCIZIO arco e Giulio hao due egozi i viale dei Giardii. arco vede libri, Giulio vede elettroica, tra cui tablet. arco e Giulio, avedo a disposizioe il umero di libri veduti ed il umero

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA FACOLTÀ DI SOCIOLOGIA a. a. 011 01 Esame del 11-01-01 STATISTICA ESERCIZIO 1 U idagie sulle abitudii alimetari dei requetatori di u cetro itess ha moitorato il umero di caè cosumati i u gioro ormale e

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità Variabilità o Dispersioe Defiizioe Attitudie di u feomeo ad assumere diverse modalità Le medie o bastao Esempio: caratteri quatitativi Codomiio A u.s. Numero televisori u 8 u 8 u3 8 u4 8 u5 8 Me=M=8 Codomiio

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

2.2 - La dipendenza assoluta e parametrica

2.2 - La dipendenza assoluta e parametrica . - La dipedeza assoluta e parametrica Tabelle a doppia etrata X\Y Y Y Y j Y c X j c. X j c. X i i i ij X k k k kj...j ic i. kc k..c.. per i assegato: i. c ij j per j assegato:.j k ij i k c ij i j.....

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità Lezioe III: Variabilità Cattedra di Biostatistica Dipartimeto di Scieze Biomediche, Uiversità degli Studi G. d Auzio di Chieti Pescara Prof. Ezo Balloe Lezioe a- Misure di dispersioe o di variabilità Misure

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

La correlazione e la regressione. Antonello Maruotti

La correlazione e la regressione. Antonello Maruotti La correlazioe e la regressioe Atoello Maruotti Outlie 1 Correlazioe 2 Associazioe tra caratteri quatitativi Date due distribuzioi uitarie secodo caratteri quatitativi X e Y x 1 x 2 x y 1 y 2 y associate

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

Esercitazione 6 del corso di Statistica 2

Esercitazione 6 del corso di Statistica 2 Esercitazioe 6 del corso di Statistica Dott.ssa Paola Costatii 7 marzo Decisioe vera falsa è respita Errore di I tipo Decisioe corretta o è respita Probabilità = Decisioe corretta Probabilità = - Probabilità

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Statistica - Esercitazione 1 Dott. Danilo Alunni Fegatelli

Statistica - Esercitazione 1 Dott. Danilo Alunni Fegatelli Esercizio 1: Statistica - Esercitazione 1 Dott. Danilo Alunni Fegatelli danilo.alunnifegatelli@uniroma1.it (a) Religione (b) Reddito familiare (c) Salario in Euro (d) Classe di reddito (I, II, ecc.) (e)

Dettagli

1.5 - Variabilità, concentrazione e asimmetria

1.5 - Variabilità, concentrazione e asimmetria .5 - Variabilità, cocetrazioe e asimmetria G. Alleva - Statistica - Parte.5 Obiettivo: Misura della variabilità di ua distribuzioe statistica Mutabilità, Dispersioe, Variabilità, Eterogeeità E l attitudie

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Migo A.A. 2015-2016 Facoltà di Scieze Politiche, Sociologia, Comuicazioe Corso di laurea Magistrale i «Orgaizzazioe e marketig per la comuicazioe

Dettagli

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y.

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y. DIPENDENZA O CONNESSIONE Due caratteri X e Y cogiutamete cosiderati si dicoo tra loro coessi quado le modalità di u carattere ifluezao il maifestarsi delle modalità dell altro. Ovvero quado la coosceza

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome.

Dettagli

STATISTICA 1 ESERCITAZIONE 4

STATISTICA 1 ESERCITAZIONE 4 STATISTICA 1 ESERCITAZIONE 4 Dott. Giuseppe Padolfo 21 Ottobre 2013 Percetili: i valori che dividoo la distribuzioe i ceto parti di uguale umerosità. Esercizio 1 La seguete tabella riporta la distribuzioe

Dettagli

Anemia. Anemia - percentuali

Anemia. Anemia - percentuali 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. Esercitazioi del corso: STATISTICA Sommario Esercitazioe : Matrice di dati Distribuzioi uivariate Rappresetazioi grafiche Idici di Posizioe Statistica a. a. - RICHIAMI MATEMATICI ) Approssimazioe

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Appunti di Probabilità e Statistica. a.a. 2014/2015 C.d.L. Informatica Bioinformatica I. Oliva. 1 Indici statistici. Lezione 2

Appunti di Probabilità e Statistica. a.a. 2014/2015 C.d.L. Informatica Bioinformatica I. Oliva. 1 Indici statistici. Lezione 2 Apputi di Probabilità e Statistica a.a. 2014/2015 C.d.L. Iformatica Bioiformatica I. Oliva Lezioe 2 1 Idici statistici Idici statistici Idici di posizioe Idici di variabilità Idici di forma medie aalitiche

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015 ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Confronto di due misure Campioni indipendenti

Confronto di due misure Campioni indipendenti Statistica7 /11/015 Cofroto di due misure Campioi idipedeti o meglio.. rispodere al quesito Due serie di misure soo state estratte dalla stessa popolazioe (popolazioe comue o idetica) o soo state estratte

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Regressione e correlazione

Regressione e correlazione Regressioe e correlazioe Regressioe e correlazioe I molti casi si osservao gradezze che tedoo a covariare, ma () Se c è ua relazioe di dipedeza fra due variabili, ovvero se il valore di ua variabile (dipedete)

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE.

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE. DISTRIBUZIONE LOG-NORMALE. La variabile si dice log-ormalmete distribuita se: l è ormalmete distribuita g( l g ( e 0 +. uzioe di desità di probabilità: f ( d d f ( dg( d f (g( dg( d f (. & ep$ - / $ %,

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 1 Febbraio 014 - Esercizio 1) I ua ricerca si è iteressati a verificare le dimesioi i micrometri di u graulocita eutrofilo.

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioni lineari Indici di covarianza e correlazione)

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioni lineari Indici di covarianza e correlazione) STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioi lieari Idici di covariaza e correlazioe) ) Trasformazioi lieari di variabili statistiche I varie situazioi si operao trasformazioi

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Scheda n.6: legame tra due variabili; correlazione e regressione

Scheda n.6: legame tra due variabili; correlazione e regressione Scheda.6: legame tra due variabili; correlazioe e regressioe October 26, 2008 Covariaza e coefficiete di correlazioe Date due v.a. X ed Y, chiamiamo covariaza il umero Cov (X, Y ) = E [(X E [X]) (Y E [Y

Dettagli

STATISTICA. ES: Viene svolta un indagine per stabilire il numero di figli in 20 famiglie. I risultati sono raccolti nella seguente tabella:

STATISTICA. ES: Viene svolta un indagine per stabilire il numero di figli in 20 famiglie. I risultati sono raccolti nella seguente tabella: STATISTICA DEF: La statistica si occupa di raccogliere ed elaborare dati che riguardao eomei collettivi( cioè quelli che si possoo descrivere solo mediate l osservazioe di u umero otevole di casi) li aalizza

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

5. INDICI DI VARIABILITA'

5. INDICI DI VARIABILITA' UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso di Laurea i Scieze per l'ivestigazioe e la Sicurezza. INDICI DI VARIABILITA' Prof. Maurizio Pertichetti

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Soluzioni esercizi Capitolo 7

Soluzioni esercizi Capitolo 7 Soluzioi esercizi Capitolo 7 Quado si valuta la relazioe fra due variabili, occorre prestare particolare attezioe al fatto che i modelli statistici specifici per ogi scala di misura siao applicabili: i

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Differenze semplici medie, confronti in termini di mutua variabilità La distribuzione del prezzo

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management UNIVERSITÀ DEGLI STUDI DI BERGAMO Facoltà di Igegeria Corso di Risk Maagemet Prof. Filippo Stefaii Matrice di variaze-covariaze A.A. 009/00 Corso 600 Corso di Laurea Specialistica i Igegeria Edile Risk

Dettagli

STATISTICA - Prof.ssa Mary Fraire Modulo Base

STATISTICA - Prof.ssa Mary Fraire Modulo Base Prove scritte co soluzioi, date i vari aa.aa., dalla Prof.ssa Mary Fraire per gli esami di profitto degli studeti del STATISTICA - Prof.ssa Mary Fraire Modulo Base 0) Data la seguete distribuzioe statistica

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della 1 La stima putuale Argometi trattati: Stima putuale e stimatore Proprietà degli stimatori Stima putuale della media della popolazioe e sua distribuzioe Stima putuale di ua proporzioe e sua distribuzioe

Dettagli

Esercitazione 5 del corso di Statistica (parte 2)

Esercitazione 5 del corso di Statistica (parte 2) Eercitazioe 5 del coro di Statitica (parte ) Dott.a Paola Cotatii 5 Maggio Eercizio Per verificare l efficacia di u coro di tatitica vegoo cofrotati i redimeti medi di due campioi di tudeti di ampiezza

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica è sorta i tempi atichissimi co i cesimeti: storico quello di Augusto che, secodo la tradizioe cristiaa coivolse Maria e Giuseppe, giusto alla ascita di Gesù. Solo el

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di tatistica A-Di Prof. M. Romaazzi 27 Geaio 2015 ogome e Nome..................................... N. Matricola.......... Valutazioe l puteggio massimo teorico di questa prova

Dettagli

ESERCIZI DI STATISTICA RISOLTI Federico Emanuele Pozzi

ESERCIZI DI STATISTICA RISOLTI Federico Emanuele Pozzi ESERCIZI DI STATISTICA RISOLTI Federico Emauele Pozzi Risolverò solo u compito itegralmete. Se avete domade sulla risoluzioe di specifici esercizi postate el forum, e le aggiugerò qui. Qui preseto solo

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

5. Statistica bivariata - Correlazione e regressione

5. Statistica bivariata - Correlazione e regressione Strumeti matematici per la statistica descrittiva Gli strumeti matematici, che sarao illustrati, cosetoo di effettuare l elaborazioe dei dati: questa fase dell idagie statistica, cosiste ella trasformazioe

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

STATISTICA A K (63 ore)

STATISTICA A K (63 ore) STATISTICA A K (63 ore) Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto =400 X =34.000 Km; s cor =9000 Km Calcolare l

Dettagli

Parte V La descrizione dei fenomeni attraverso la statistica

Parte V La descrizione dei fenomeni attraverso la statistica 64 Parte V La descrizioe dei feomei attraverso la statistica Dai capitoli presedeti è stato possibile verificare l importaza odale che il sistema iformativo detiee elle scelte di piaificazioe territoriale.

Dettagli

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo Esercizio 1 Soluzioi 1. Ricordiamo che l ampiezza di u itervallo di cofideza è fuzioe della umerosità campioaria edellivellodicofideza. Aparità di tutto il resto, l ampiezza dimiuisce al crescere di eaumetaal

Dettagli

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO Spesso bisoga cofrotare far di loro 2 o più dati statistici che si riferiscoo a feomei rilevati o i spazi/luoghi diversi o i tempi diversi o comuque i ambiti diversi e che quidi risetoo dell UNITÀ DI MISURA

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V Uiverità degli Studi di Napoli Partheope Facoltà di Scieze Motorie a.a. 0/0 Statitica Lezioe V E-mail: paolo.mazzocchi@uipartheope.it Webite: www.tatmat.uipartheope.it DISTRIBUZIONE DOPPIA di frequeze

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

LABORATIORIO 3. Taratura statica

LABORATIORIO 3. Taratura statica LABORATIORIO 3 Taratura statica Obiettivi dell esercitazioe Obiettivo di questa esercitazioe è lo svolgimeto di ua serie di esperieze di laboratorio per verificare e applicare le coosceze relative alle

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI L osservazioe di uo o più feomei su delle uità statistiche coduce quasi sempre all osservazioi di determiazioi

Dettagli