Anemia. Anemia - percentuali

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Anemia. Anemia - percentuali"

Transcript

1 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14 - Il primo terzile era fra 9 e 1 - La media aritmetica era fra 13 e 14 - La distribuzioe era fortemete simmetrica - Nel verificare che il trattameto iduce aemia (Hgb<13), la media è risultata statisticamete sigificativa (assumedo che la variaza fosse ota e pari a 5) emia - percetuali emoglobia 1-13 % Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14 - Il primo terzile era fra 9 e La media aritmetica era fra 13 e 14 - La distribuzioe era fortemete simmetrica - Nel verificare che il trattameto iduce aemia (Hgb<13), la media è risultata statisticamete sigificativa (assumedo che la variaza fosse ota e pari a 5) 1

2 emia - quatili emoglobia 1-13 % Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14 - Il primo terzile era fra 9 e La media aritmetica era fra 13 e 14 - La distribuzioe era fortemete simmetrica - Nel verificare che il trattameto iduce aemia (Hgb<13), la media è risultata statisticamete sigificativa (assumedo che la variaza fosse ota e pari a 5) emia - quatili emoglobia % % cum

3 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14 - Il primo terzile era fra 9 e 1 - La media aritmetica era fra 13 e 14 - La distribuzioe era fortemete simmetrica - Nel verificare che il trattameto iduce aemia (Hgb<13), la media è risultata statisticamete sigificativa (assumedo che la variaza fosse ota e pari a 5) emia calcolo della media emoglobia valore cetrale (x) x 1765 / =

4 emia test sulla media emoglobia - Nel verificare che il trattameto iduce aemia (Hgb<13), la media è risultata statisticamete sigificativa (assumedo che la variaza fosse ota e pari a 5) - media del campioe = H0: µ=13 H1: µ<13 T-test su ua media -Campioe grade, variaza ota: ok x µ t = σ = = Cerchiamo sulle Tavole della Normale (0,1), z da.00 a 3.99 N(0,1) z z = value = ( ) = Φ(.117) p

5 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14 - Il primo terzile era fra 9 e 1 - La media aritmetica era fra 13 e 14 - La distribuzioe era fortemete simmetrica - Nel verificare che il trattameto iduce aemia (Hgb<13), la media è risultata statisticamete sigificativa (assumedo che la variaza fosse ota e pari a 5) emia - Nel verificare che il trattameto iduce aemia (Hgb<13), la media è risultata statisticamete sigificativa (assumedo che la variaza fosse ota e pari a 5): VERO Se il test viee fatto a due code - la sigificatività aumeta - la media osservata rimae sigificativa al livello del 5% Φ(.1) = p - value = ( ) = =

6 emia - Nel verificare che il trattameto iduce aemia co u test a due code, la media (1.6) è risultata statisticamete sigificativamete diversa da 13 al livello del 5% L itervallo di cofideza al 95% - cotiee il valore 13 - cotiee il valore 1.6 ( x 1.96 σ, x σ ) ( , ) 95% CI= = = (1.3,1.97) L IC otteuto vuol dire che: z α = ella popolazioe l emoglobia è compresa fra 1.3 e preso a caso u idividuo della popolazioe, ci aspettiamo u valore dell emoglobia compreso fra 1.3 e co ua variabilità espressa dalla deviazioe stadard della popolazioe (variaza=5) Risposta I u ospedale, u gruppo di 40 pazieti prede il farmaco, e u gruppo di 35 pazieti prede il farmaco. Si osservao rispettivamete 3 Risposte co e co. - è più efficace di di quasi il 70% (3/ = 1.68) - è più efficace di : prob(risposta) è 80% cotro 54.3% - è più efficace di di quasi il 50% (0.8//0.54 = 1.47) - La differeza osservata risulta sigificativa al livello del 5% - La differeza osservata risulta sigificativa al livello del 1% P =3/40=0.8 P =/35=0.543 Test del chi-quadrato H0: X = 0 (valore di riferimeto: asseza di associazioe) H1: X > 0 (siccome X o può valere meo di 0, il test è sempre uilaterale) 6

7 Risposta: il test del Chi-Quadrato Mettiamo i dati i tabella farmaco Risposta No Si Dobbiamo calcolare le frequeze attese sotto H0: riga x col / Calcolo della statistica test: Somma delle quatità: (osservata-attesa) / attesa X = La regioe di rifiuto cambia a secoda del livello di sigificatività scelto: - la soglia per il test al livello α=5% è Rifiutiamo H0 - al livello (più cauto ) del 1% è ccettiamo H0. L evideza di ua associazioe c è, ma o è fortissima... Risposta I u ospedale, u gruppo di 40 pazieti prede il farmaco, e u gruppo di 35 pazieti prede il farmaco. Si osservao rispettivamete 3 Risposte co e co. - è più efficace di di quasi il 70% (3/ = 1.68) - è più efficace di : prob(risposta) è 80% cotro 54.3% - è più efficace di di quasi il 50% (0.8//0.54 = 1.47) - La differeza osservata risulta sigificativa al livello del 5% - La differeza osservata risulta sigificativa al livello del 1% P =3/40=0.8 P =/35=

8 3 Relazioe dose colesterolo (ed età) I u ospedale, si vuole verificare se aumetado la dose sommiistrata di u certo farmaco i pazieti co colesterolo alto, si riesce a ridurlo più efficacemete. Si ivestiga quidi la relazioe ) (lieare) fra dose (mg) e livello del colesterolo (mg/dl). Risulta β = 0.4 ( p = 0.003) Qualcuo osserva ache che è oto che all aumetare dell età il colesterolo tede ad aumetare. Come iterpretiamo la ostra aalisi? Relazioe dose colesterolo (ed età) ) β = 0.4 ( p = 0.003) all aumetare dell età il colesterolo tede ad aumetare Sul campioe, per ogi mg i più di farmaco si è osservata ua riduzioe del colesterolo di 0.4 mg/dl La relazioe lieare fra dose e colesterolo è egativa (decrescete) e o forte (o è vicia a -1) Quado la dose o iflueza il colesterolo, c è ua prob. dello 0.3% di osservare el campioe ua relazioe decrescete co ua pedeza della retta pari a -0.4 Osservado el campioe ua relazioe decrescete co ua pedeza della retta pari a -0.4 abbiamo ua prob. dello 0.3% che tuttavia ella popolazioe la dose o ifluezi il colesterolo Osservado el campioe ua relazioe decrescete co ua pedeza della retta pari a -0.4 abbiamo ua prob. quasi del 100% (100% meo 0.3%) che ella popolazioe u aumeto di 1 mg di dose faccia dimiuire il colesterolo di 0.4 mg/dl L età è sicuramete u cofodete della relazioe dose colesterolo, quidi questa aalisi è distorta (biased) Se i soggetti più aziai hao ricevuto dosi iferiori di farmaco, questa aalisi potrebbe essere distorta (biased) a causa del cofodimeto Sapedo che le dosi o risultao associate statisticamete co le età dei soggetti, l aalisi o è affetta da bias da cofodimeto Sapedo che i soggetti più aziai hao ricevuto dosi superiori di farmaco, l aalisi adrebbe aggiustata per età per avere ua stima più precisa del β, che potrebbe essere iferiore a

9 4 emia: cofroto fra trattameti I u ospedale, u gruppo di 40 pazieti prede il farmaco, e u gruppo di 35 pazieti prede il farmaco. Si è visto che ell iduzioe di Risposta è più efficace di di quasi il 50% (RR = 1.47). Si vuole ora guardare il livello di emoglobia post-trattameto. I dati campioari soo: x x = 10. = 9.8 s s = 3.1 = La media complessiva è esattamete pari a 10 - La variabilità è leggermete superiore el gruppo - La variabilità è leggermete superiore el gruppo - Per valutare la sigificatività della differeza di emoglobia fra e, bisoga usare u T-test per dati appaiati - Sapedo che risulta p-value=0.57: diciamo che siamo al limite della sigificatività statistica covezioale ttezioe! Media complessiva: fare la media poderata Cofroto della variabilità: meglio i termii relativi, cioè tramite il coefficiete di variazioe Dati appaiati?: No, i due gruppi soo distiti, il fatto che l emoglobia è posttrattameto o ha rilevaza (sarebbero appaiati se stessimo valutado la differeza fra il valore prima () e il valore dopo () il trattameto sullo stesso gruppo di pazieti). gruppo medie std mmotari ali: media x cv = std / media (x100) Media = 751 / 75 =

10 Calcolo della statistica test: s = Se vogliamo usare il metodo delle regioi di rifiuto: le soglie per u test bilaterale al livello α=5% soo ±1.96. La ostra t cade all itero cioè i zoa di accettazioe. Calcoliamo ache il p-value: Svolgiamo il test Ipotesi e tipo di Test: H 0 : µ µ = 0 vs H1 : µ µ 0 ; T-test Ipotesi del test: assumiamo variaze uguali elle popolazioi, campioi gradi: soddisfatte. ( 1) s + ( 1) s ( 40 1) 3.1+ ( 35 1) Coclusioe: il p-value è molto alto, accettiamo l ipotesi ulla: o c è differeza fra i due gruppi = = 1 + x x 0.4 t = = s = ( 1 0.7) Φ( 0.57) = 0.7 p - value = = 10

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

La correlazione e la regressione. Antonello Maruotti

La correlazione e la regressione. Antonello Maruotti La correlazioe e la regressioe Atoello Maruotti Outlie 1 Correlazioe 2 Associazioe tra caratteri quatitativi Date due distribuzioi uitarie secodo caratteri quatitativi X e Y x 1 x 2 x y 1 y 2 y associate

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE 6 INFERENZA STATISTICA Isieme di metodi che cercao di raggiugere coclusioi sulla popolazioe, sulla base delle iformazioi coteute i u campioe estratto da quella popolazioe. INFERENZA

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

Confronto di due misure Campioni indipendenti

Confronto di due misure Campioni indipendenti Statistica7 /11/015 Cofroto di due misure Campioi idipedeti o meglio.. rispodere al quesito Due serie di misure soo state estratte dalla stessa popolazioe (popolazioe comue o idetica) o soo state estratte

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A Uiversità degli Studi di Padova Corso di Laurea i Medicia e Chirurgia - A.A. 015-16 Corso Itegrato: Statistica e Metodologia Epidemiologica Disciplia: Statistica e Metodologia Epidemiologica Doceti: prof.ssa

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ES 1 I u collettivo di 40 pazieti osservati, la media dei globuli biachi era pari a.9 ( 1000/ml 3 ) e la variaza era pari a 0.336. Forire ua

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo Esercizio 1 Soluzioi 1. Ricordiamo che l ampiezza di u itervallo di cofideza è fuzioe della umerosità campioaria edellivellodicofideza. Aparità di tutto il resto, l ampiezza dimiuisce al crescere di eaumetaal

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità Lezioe III: Variabilità Cattedra di Biostatistica Dipartimeto di Scieze Biomediche, Uiversità degli Studi G. d Auzio di Chieti Pescara Prof. Ezo Balloe Lezioe a- Misure di dispersioe o di variabilità Misure

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

6 Stima di media e varianza, e intervalli di confidenza

6 Stima di media e varianza, e intervalli di confidenza Si può mostrare che, per ogi fissato α, t,α z α, e t,α z α per + I pratica t,α e z α soo idistiguibili per 200. 6 Stima di media e variaza, e itervalli di cofideza Lo scopo esseziale della Statistica ifereziale

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

Relazioni statistiche

Relazioni statistiche Relazioi statistiche Idipedeza: asseza di qualsiasi relazioe tra due caratteri I caso di preseza di u legame, questo può essere di: Coessioe: relazioe reciproca tra due caratteri qualitativi Dipedeza:

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA FACOLTÀ DI SOCIOLOGIA a. a. 011 01 Esame del 11-01-01 STATISTICA ESERCIZIO 1 U idagie sulle abitudii alimetari dei requetatori di u cetro itess ha moitorato il umero di caè cosumati i u gioro ormale e

Dettagli

Legge Gamma e Legge Chi quadro

Legge Gamma e Legge Chi quadro Legge Gamma e Legge Chi quadro Sia G ua variabile aleatoria di legge Gamma di parametri a e λ reali positivi, G Γ(a, λ, la cui fuzioe di desità è: f G (x = λa Γ(a e λx x a per x 0 dove Γ( è la fuzioe Gamma

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA $! %! """ # &' ( )* &' + %, -. / %,! 0 -$ 34! % 3 3 3 3 )5* 3$&6 ( &7'* / $& : 3; / ( 8/ &* &')&56 &/ * : 5'9 $ : x A > x B I risultati del trial ci permettoo di decidere

Dettagli

4. Proprietà degli stimatori

4. Proprietà degli stimatori Uiversità degli Studi di Basilicata Facoltà di Ecoomia Corso di Laurea i Ecoomia Aziedale - a.a. 0/03 lezioi di statistica del 0, e 3 giugo 03 - di Massimo Cristallo - 4. Proprietà degli stimatori Si è

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI TATITICA MEDICA ED EERCIZI I METODI PER IL CONFRONTO DI MEDIE (Campioi idipedeti) IL PROBLEMA oo stati rilevati i dati relativi alla frequeza cardiaca (misurata i battiti al miuto)

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

(sqm ottenuto dividendo per n-1 ) =

(sqm ottenuto dividendo per n-1 ) = STATISTICA PER L ANALISI ORGANIZZATIVA AA 006-007 Per casa Soluzioi Esercizio.. Durate ua ricerca soo state rilevate le lughezze di tre differeti variabili ecoomiche per ciascuo di 50 paesi i via di sviluppo.

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

Principio alla base della misura del legame tra X ed Y

Principio alla base della misura del legame tra X ed Y Pricipio alla base della misura del legame tra X ed Y Y o varia Asseza di legame Al variare di X Varia ache Y X ed Y soo coessi Come si misura la risposta di Y al variare di X? Dipede dalla atura di X

Dettagli

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità Variabilità o Dispersioe Defiizioe Attitudie di u feomeo ad assumere diverse modalità Le medie o bastao Esempio: caratteri quatitativi Codomiio A u.s. Numero televisori u 8 u 8 u3 8 u4 8 u5 8 Me=M=8 Codomiio

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

Tavole di Contingenza Connessione

Tavole di Contingenza Connessione Tavole di Cotigeza Coessioe Ua tavola di cotigeza per due geerici feomei X e Y è ua rappresetazioe simbolica di ua tabella a doppia etrata y 1 y y j y k x 1 11 1 1j 1k 1 x 1 j k x i i1 i ik i x h h1 h

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Migo A.A. 2015-2016 Facoltà di Scieze Politiche, Sociologia, Comuicazioe Corso di laurea Magistrale i «Orgaizzazioe e marketig per la comuicazioe

Dettagli

Esercitazione 6 del corso di Statistica 2

Esercitazione 6 del corso di Statistica 2 Esercitazioe 6 del corso di Statistica Dott.ssa Paola Costatii 7 marzo Decisioe vera falsa è respita Errore di I tipo Decisioe corretta o è respita Probabilità = Decisioe corretta Probabilità = - Probabilità

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verifica delle iotesi Iotesi ulla Il rocesso di verifica di iotesi è u rocesso di falsificaioe dell iotesi ulla (coteete lo stato dell arte) cotro l iotesi alterativa (coteete il uovo) Essa rareseta

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 5 luglio 2012

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 5 luglio 2012 Politecico di Milao - Scuola di Igegeria Idustriale II Prova i Itiere di Statistica per Igegeria Eergetica 5 luglio 2012 c I diritti d autore soo riservati. Ogi sfruttameto commerciale o autorizzato sarà

Dettagli

PROBLEMI DI INFERENZA SU MEDIE

PROBLEMI DI INFERENZA SU MEDIE PROBLEMI DI INFERENZA SU MEDIE STIMA PUNTUALE Il problema della stima di ua media si poe allorchè si vuole cooscere, sulla base di osservazioi campioarie, il valore medio μ che u dato carattere preseta

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Statistica inferenziale e mercati azionari

Statistica inferenziale e mercati azionari Statistica ifereziale e mercati azioari Di Cristiao Armellii, cristiao.armellii@alice.it Dalla statistica ifereziale sappiamo che se m = media del campioe s = scarto quadratico medio del campioe = umerosità

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di tatistica A-Di Prof. M. Romaazzi 27 Geaio 2015 ogome e Nome..................................... N. Matricola.......... Valutazioe l puteggio massimo teorico di questa prova

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

CAPITOLO 2 Semplici esperimenti comparativi

CAPITOLO 2 Semplici esperimenti comparativi Douglas C. Motgomer Progettazioe e aalisi degli esperimeti 006 McGraw-Hill CAPITOLO emplici esperimeti comparativi Metodi statistici e probabilistici per l igegeria Corso di Laurea i Igegeria Civile A.A.

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Esercitazione 5 del corso di Statistica (parte 2)

Esercitazione 5 del corso di Statistica (parte 2) Eercitazioe 5 del coro di Statitica (parte ) Dott.a Paola Cotatii 5 Maggio Eercizio Per verificare l efficacia di u coro di tatitica vegoo cofrotati i redimeti medi di due campioi di tudeti di ampiezza

Dettagli

Proprietà asintotiche stimatori OLS e statistiche collegate

Proprietà asintotiche stimatori OLS e statistiche collegate Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe

Dettagli

ES 1.3. Data la distribuzione unitaria di una variabile quantitativa X. la media aritmetica di X è data dal rapporto tra il totale n

ES 1.3. Data la distribuzione unitaria di una variabile quantitativa X. la media aritmetica di X è data dal rapporto tra il totale n ES 1.3 1 Media e variaza Data la distribuzioe uitaria di ua variabile quatitativa X x 1... x i... x, la media aritmetica di X è data dal rapporto tra il totale x i e il umero delle uità rilevate: x = 1

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli Esercitazioi di Statistica Dott. Dailo Alui Fegatelli dailo.aluifegatelli@uiroma.it Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M

Dettagli

ESERCIZI DI STATISTICA RISOLTI Federico Emanuele Pozzi

ESERCIZI DI STATISTICA RISOLTI Federico Emanuele Pozzi ESERCIZI DI STATISTICA RISOLTI Federico Emauele Pozzi Risolverò solo u compito itegralmete. Se avete domade sulla risoluzioe di specifici esercizi postate el forum, e le aggiugerò qui. Qui preseto solo

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

1.5 - Variabilità, concentrazione e asimmetria

1.5 - Variabilità, concentrazione e asimmetria .5 - Variabilità, cocetrazioe e asimmetria G. Alleva - Statistica - Parte.5 Obiettivo: Misura della variabilità di ua distribuzioe statistica Mutabilità, Dispersioe, Variabilità, Eterogeeità E l attitudie

Dettagli

Corso di laurea in STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI

Corso di laurea in STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI Corso di laurea i STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI Raccolta delle prove scritte degli esami del corso di STATISTICA INFERENZIALE STATISTICA INFERENZIALE SMID a.a. 00/3 Prova scritta

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione PREMESSA Descrizioe parametrica di ua popolazioe Sappiamo che u famiglia parametrica di fuzioi desità di probabilità è defiita da uo o più parametri Θ = {θ, θ,., θ }. Ad esempio, la d.d.p. di tipo espoeziale

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3 Chiorri, C. (0). Fodameti di psicometria - Risposte e soluzioi Capitolo Domade di teoria. Per le caratteristiche geerali vedi paragrafo. p. 79. Per le procedure di calcolo vedi per la moda pp. 79-8, per

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Esercizi sulle Serie numeriche

Esercizi sulle Serie numeriche AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Serie umeriche Esercizio svolto. Discutere il comportameto delle segueti serie umeriche: a +! b [ ] log c log+ d log + e arcta f g h i l log log! 3! 4

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

Esercitazioni di Biostatistica. In collaborazione con la Dott.ssa Antonella Zambon

Esercitazioni di Biostatistica. In collaborazione con la Dott.ssa Antonella Zambon Esercitazioi di Biostatistica I collaborazioe co la Dott.ssa Atoella Zambo ESERCIZIO Nome Geere Età (ai compiuti) Livello istruzioe Distaza (km) Atoio M 8.0 Claudio M 7. Lucia F.0 Aa F 6. Marco M Giuseppe

Dettagli

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE.

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE. DISTRIBUZIONE LOG-NORMALE. La variabile si dice log-ormalmete distribuita se: l è ormalmete distribuita g( l g ( e 0 +. uzioe di desità di probabilità: f ( d d f ( dg( d f (g( dg( d f (. & ep$ - / $ %,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome.

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica Argometi: costruzioe di modelli matematici di variabili casuali mediate i parametri stocastici; defiizioe della migliore stima di ua misura; valutazioe dell icertezza della miglior

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Esempio. Tabella a doppia entrata. n 2. n 24. n.6

Esempio. Tabella a doppia entrata. n 2. n 24. n.6 Esempio Distribuzioe degli studeti di Scieze della Comuicazioe frequetati la facoltà ell a.a. 001/00 per Corso di Laurea e Numero di Corsi Frequetati Numero Corsi Frequetati CDL 1 3 4 5 6 7 STC 1 19 50

Dettagli