Dispense di Fisica Matematica. Prof. Maura Ughi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dispense di Fisica Matematica. Prof. Maura Ughi"

Transcript

1 Dispense i Fisica Matematica Prof. Maura Ughi 13 febbraio 2005

2 Capitolo 1 Equazioni ella Dinamica 1.1 Introuzione, Principio i D Alembert Una grossa scorciatoia mentale valia in Meccanica Classica è il Principio i D Alembert: Ogni problema i inamica si può consierare come un problema i statica aggiungeno alle forze agenti su ogni punto B, el sistema in esame, le forze p B, p B quantità i moto i B Il principio è una interpretazione intelligente e utile elle leggi i Newton F B = p B F B p B Per un singolo punto materiale o per un rigio il Principio si può interpretare come il punto i vista i un osservatore soliale. Per tale osservatore il sistema è in equilibrio purchè si tenga conto elle forze inerzia, appunto ( pb ). = 0 Le questioni i statica si affrontano, essenzialmente, in 3 moi: 1. stazionarietà ell energia potenziale per i sistemi conservativi, 2. Principio ei Lavori Virtuali, 1

3 3. Equazioni Carinali ella Statica, usate con intelligenza. Il Principio i D Alembert ci permette i usare gli stessi 3 metoi in inamica. Precisamente 1. equazioni i Lagrange conservative, 2. equazioni i Lagrange non conservative, 3. Equazioni Carinali ella Dinamica, Nelle applicazioni consiereremo i sistemi costituiti a rigii e è quini necessario calcolare l energia cinetica K e il momento angolare totale L(O) per i rigii Un altro strumento importante è il teorema elle forze vive ( K = potenza elle forze ) che supponiamo noto alla Fisica e useremo nelle applicazioni al caso particolare e importante ei sistemi a un grao i libertà. 1.2 Sistemi olonomi conservativi Dato un sistema olonomo conservativo a l grai i libertà, il moto naturale a una ata configurazione i partenza q(t 0 ) = (q 1 (t 0 ),..., q l (t 0 )) a una ata configurazione i arrivo q(t 1 ) = (q 1 (t 1 ),..., q l (t 1 )) è ato al principio i minima azione o i Hamilton cioè minimizza l azione A = t1 t 0 L, L = K V tra tutti i possibili moti che hanno le stesse configurazioni i partenza e i arrivo. Useremo le seguenti notazioni K = energia cinetica el sistema V = energia potenziale el sistema L = lagrangiana el sistema Poichè L ipene a q, q e t, proceeno come nel capitolo sulla statica ei continui elle ispense i Meccanica Razionale si ottengono le equazioni 2

4 i Eulero per il funzionale A, ette più frequentemente equazioni i Eulero - Lagrange, cioè ( ) L L = 0, i = 1,... l (1.1) Si ottengono irettamente in moo automatico tante equazioni i moto quanti sono i grai i libertà el sistema. 1.3 Sistemi olonomi generali Dal Principio ei Lavori Virtuali e al Principio i D Alembert otteniamo: ( l i=1 ( F B ) p δx B B = 0, δx B virtuale ( esseno δx B = p B x B ) δq i = l i=1 x B δq i ( l i=1 ) F B x B Notiamo ora che: F B x B = Q i = forza generalizzata i esima Definiamo: (Ṗ) Le quantità i (Ṗ) = ( pb p B x (Ṗ) B = i i = Q i, i = 1,..., l ) δq i x B ), che potremmo chiamare erivate elle quantità i moto generalizzate, sono legate all energia cinetica nel seguente moo: 3

5 Lemma (Ṗ) i = ( ) K K Otteniamo quini per i sistemi olonomi le equazioni ( ) K K = Q i (1.2) Equazioni i Lagrange non conservative. Notiamo subito che, se invece il sistema è conservativo, si ritrovano le equazioni i Lagrange ottenute al principio i minima azione nel caso conservativo. Infatti: ( ) L L = ( ) (K V ) ( poichè V non ipene alle q i, V = 0 ) = ( ) K K + V ( poichè per i sistemi conservativi Q i = V ) = ( ) K K Q i = 0 (K V ) Nota i Approfonimento Per chi è interessato iamo la imostrazione el Lemma, che si basa su un uso intelligente elle erivate parziali e elle regole i erivazione i una funzione composta. Dimostrazione el Lemma 4

6 1. (Ṗ) i = p B x B = = [ ( p B x ) B ( ) = p B x B p B p B ( )] xb ( ) xb 2. p B x B = K Infatti: v B = x B(q(t), t) = l j=1 x B q j q j + x B t v B = x B = ( ) m B v B v B = 1 m B v 2 q B 2 i = K ( esseno K = 1 m B v 2 B 2 ) p B x B = 3. p B ( ) xb = K Infatti si ha che: ( ) xb = v B 5

7 ( posto f(q(t), t) = x B si ha infatti che: ( vei sopra la forma i v B ) v B. l f(q(t), t) = f q j + f q j t j=1 l 2 x = B q j + 2 x B q j=1 j t = ( l ) = x B q j + x B = q j t j=1 Segue che p B ( ) xb = m B v B v B ( ) = 1 m B v 2 B 2 = K 1.4 Equazioni Carinali ella Dinamica Dalle Equazioni Carinali ella Statica e al Principio i D Alembert si ha: R e ṗ B = 0 etto P = m B v B = = ( per efinizione el centro i massa G ) M v G R e = P = (M v G). Passiamo all equazione per i momenti: 6

8 M e (O) (x B x O ) ṗ B = 0 M e (O) = (x B x O ) ṗ B = { ] ( ) } [(x B x O ) p B (x B x O ) p B ( etto L(O) = ) (x B x O ) p B = L(O) (v B v O ) m B v B = ( esseno v B v B = 0 ) = L(O) + v O m B v B = L(O) + v O P. Riassumeno, etti: P = m Bv B = M v G L(O) = (x B x O ) m B v B quantità i moto el sistema momento angolare el sistema E.C.D. R e = M e (O) = P L(O) + v O P 7

9 Notiamo subito un ennesima proprietà el centro i massa: M e (G) = L(G) + v G M v G = L(G) cioè se il polo O coincie con il centro i massa G la erivata el momento angolare el sistema è pari al momento elle forze esterne ( rispetto a G ovviamente ) anche se il centro i massa si muove. Ovviamente se il polo O è fisso il termine con v O è nullo. 1.5 Energia cinetica e momento angolare per i rigii Per calcolare entrambe le quantità useremo la formula i Poisson ( vei Cap. 3 elle Dispense i Mecccanica Razionale ) per le velocità ei punti i un rigio, quini ricorare bene che quanto segue è applicabile solo a un sistema rigio. Energia Cinetica K K = 1 m B v 2 B 2 ( formula i P oisson : v B = v O + ω (x B x O ) ) = 1 m B (v 2 O + ω (x B x O )) (v O + ω (x B x O )) = 1 m B v 2 O 2 ( = I 1 ) + 1 m B (ω (x 2 B x O )) (ω (x B x O )) ( = I 2 ) + m B v O ω (x B x O ) ( = I 3 ) I 1 = 1/2Mv 2 O M massa totale ( termine ovuto alla traslazione ) 8

10 I 2 : ( usano la solita proprietà a b c = a b c e raccoglieno a fattor comune il primo ω ella formula ) I 2 = 1 2 ω m B (x B x O ) [ω (x B x O )] ( ricorano la efinizione elle trasformazioni inerzia I O ( vei Cap. 7 elle Dispense i Meccanica Razionale ) ) = ( termine ovuto a precessione ) 1 2 ω I O ω I 3 : ( raccoglieno a fattor comune v O e ω ) v O ω m B (x B x O ) ( solita efinizione el centro i massa G ) = v O ω M(x G x O ) ( termine misto traslazione - precessione ) Ulteriore proprietà i G è quini che il termine misto I 3 è nullo se si prene O G ( questa è un applicazione ai rigii el Teorema i Kőnig più generale ) Notiamo inoltre che, se urante il moto il rigio ha un punto fisso O, I 1 e I 3 sono nulli esseno v O = 0 in tal caso. Se il rigio ruota intorno a un asse fisso, preso O un punto i tale asse e u il versore i tale asse, ritroviamo la formula elementare ( esseno ω = ω u ) K = 1 2 ω u I O (ω u) = 1 2 ω2 u I O u = 1 2 ω2 I r, (r = asse i rotazione fisso) 9

11 Se il rigio trasla, tutti i suoi punti hanno la stessa velocità e ω è nullo, quini I 2 e I 3 sono nulli, O è un punto qualsiasi el rigio, a esempio G. Riassumeno: moto rigio generico K = 1 2 Mv2 G ω I G (ω) moto rigio con un punto O fisso ( precessione ) K = 1 2 ω I O (ω) moto rigio con un asse fisso, ( r = asse fisso ) K = 1 2 I rω 2 moto rigio i traslazione K = 1 2 Mv2 G Per i sistemi rigii piani in moto sul loro piano, il calcolo è semplificato notevolmente perchè ω ha sempre irezione normale al piano el moto, etto al solito e 3 l asse ortogonale al piano el moto avremo che ω I O (ω) = ω 2 e 3 I O (e 3 ) = ω 2 I 3O ove I 3O è il momento inerzia rispetto alla retta per O ortogonale al piano el moto 10

12 Riassumeno per i rigii piani: moto rigio piano generico K = 1 2 Mv2 G I 3Gω 2 moto rigio piano con un punto O fisso K = 1 2 I 3Oω 2 moto rigio piano i traslazione K = 1 2 Mv2 G Esempio 1.1 ( Biella Manovella, calcolo i K ) Figura 1.1: aste omogenee, uguali, lunghezza l e massa m K = K OA + K AB 11

13 K OA : OA ruota intorno a O con velocità angolare ϕ e 3 K OA = 1 2 I 3O ϕ 2 = 1 ml ϕ2 K AB : AB ha moto rototraslatorio con velocità angolare ϕ e 3 K AB = 1 2 m v2 G ml ϕ2 Per calcolare v 2 G 2 si possono seguire varie strae, a esempio scrivere le coorinate el centro i massa i AB e erivarle rispetto al tempo per ottenere v G : x G2 (t) = 3 2 lcosϕ(t) e 1 + l 2 sinϕ(t) e 2 v G2 = x G 2 vg2 2 = l 2 ( 3sinϕ e 1 + cosϕ e 2 ) ϕ = l2 4 ϕ2 ( 9sin 2 ϕ + cos 2 ϕ ) = l2 4 ϕ2 ( 8sin 2 ϕ + 1 ) Sommano i vari contributi si ottiene: K = 1 ( ) 2 2 ml2 ϕ sin2 ϕ Momento Angolare L(O) Distinguiamo ue casi: 1. Se il polo O, rispetto a cui si calcola il momento, è un punto el rigio allora per ogni altro punto B el rigio v B = v O +ω (x B x O ), quini: O R, L(O) = (x B x O ) m B v B 12

14 = m B (x B x O ) [v O + ω (x B x O )] [ ] = m B (x B x O ) v O + + m B (x B x O ) [ω (x B x O )] = ( per la efinizione i G e ella trasformazione inerzia I O ) = M(x G x O ) v O ( termine i traslazione ) +I O (ω) )( termine i precessione ) Notiamo che: O fisso L(O) = I O (ω) O G L(G) = I G (ω) 2. Se il polo O non appartiene al rigio non si può usare la formula i Poisson, si può però usare la formula i trasporto ei momenti per trasportare in un conveniente punto A el rigio, quini O / R, A R, L(O) = (x B x O ) m B v B = [(x B x A ) + (x A x O )] m B v B ( con A R fissato a piacere ) = L(A) + (x A x O ) m B v B = ( esseno P = m B v B = M v G ) = L(A) + (x A x O ) M v G ( Consiglio: non provare a manare a memoria le formule preceenti, cercare i capire il proceimento ) 13

15 Notiamo che nella inamica i un rigio le informazioni essenziali sulla sua inerzia sono quelle relative sia al centro i massa che alla trasformazione inerzia. Esempio 1.2 Figura 1.2: S(O; i, j, k) terna soliale, rettangolo omogeneo in rotazione intorno a AD, ϕ angolo i rotazione, cerniera cilinrica in O L(O) = I O (ω) = I 11 I 12 0 I 12 I I 33 ω = ϕ j 0 ϕ 0 = I 12 ϕ I 22 ϕ 0 = I 12 ϕ i + I 22 ϕ j Notare che L(O) non è parallelo a ω se 0, a causa el momento eviatore I 12, ( vei Cap. 7 elle Dispense i Meccanica Razionale, ( 7.24 ) ) che fa sì che j non sia asse principale inerzia relativo a O. 14

16 Nel caso ei rigii piani ( in moto nel loro piano, quini non nell esempio preceente ) c è al solito una grossa semplificazione. Infatti in tal caso ω è sempre iretto ortogonalmente al piano e l asse ortogonale è sempre un asse principale. Quini per i rigii piani L(O) = I O (ω) = I 3O ω aveno al solito chiamato e 3 = k l asse ortogonale al piano. Esempio 1.3 ( Biella - manovella, calcolo i L(O) ) ( vei esempio 1.1 ) L(O) = L OA (O) + L AB (O) L OA (O) : O OA L OA (O) = ml2 3 ϕ e 3 L AB (O) : O / AB, L AB (O) = L AB (G 2 ) + (x G2 x O ) m v G2 L AB (G 2 ) = ml2 12 ϕ e 3 ( ricorare che la velocità angolare i AB è ϕ e 3 ) i j k (x G2 x O ) m v G2 = 3 2 lcosϕ l 2 sinϕ 0 m 3lsinϕ ϕ m l cosϕ ϕ = 3 4 ml2 ϕ e 3 L(O) = ml 2 ϕ e 3 15

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5 Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

Test di autovalutazione

Test di autovalutazione Test i autovalutazione Marco Mougno Corso i laurea in Ingegneria per l Ambiente, le Risorse e il Territorio Facoltà i Ingegneria, Università i Firenze Via S. Marta 3, 5139 Firenze, Italia email: marco.mougno@unifi.it

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica I parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO Quantità di Moto Definizione 1 Per un punto P dotato di massa m e velocità v, sidefinisce quantità di moto il seguente vettore Q := m v. (1) Definizione

Dettagli

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccanica e del Veicolo SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come:

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come: 9 Moti rigidi notevoli In questo capitolo consideriamo alcuni esempi particolarmente significativi di moto di un sistema rigido. Quelle che seguono sono applicazioni delle equazioni cardinali di un sistema

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 REGISTRO DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di FISICA MATEMATICA (500474) Impartito presso: Corso

Dettagli

Legge di conservazione dell Energia Meccanica

Legge di conservazione dell Energia Meccanica 4-SBAC Fisica / ENERGIA e LAVORO Leggi ella Dinamica e spesso un problema molto complicato!!! risolverle e trovare la legge el moto r(t) Esempio Leggi i VARIAZIONE Leggi i CONSERVAZIONE energia massa carica

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Momento angolare L. P. Maggio Prodotto vettoriale

Momento angolare L. P. Maggio Prodotto vettoriale Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del

Dettagli

Studio del comportamento. Esercitazione 02

Studio del comportamento. Esercitazione 02 DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Stuio el comportamento inamico i i un elettromagnete t Esercitazione Moellizzazione i un sistema i inuttori Sistema i inuttori: i è un multiporta Legame

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 27 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI. ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A.

PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A. PRV SCRITT DI MECCNIC RZINLE (9 gennaio 2015) In un piano verticale, un disco D omogeneo (massa m, raggio r), rotola senza strisciare sull asse ; al suo centro è incernierata un asta omogenea (massa m,

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 10 Gennaio 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il sistema di riferimento Oxy. L estremo

Dettagli

Esercizi su Derivate parziali, differenziabilità e piani tangenti

Esercizi su Derivate parziali, differenziabilità e piani tangenti Esercizi su Derivate parziali, ifferenziabilità e piani tangenti 1. Per le funzioni che seguono, eterminare il graiente ella funzione ata nel punto inicato e l equazione el piano tangente al grafico ella

Dettagli

derivando due volte rispetto al tempo:

derivando due volte rispetto al tempo: DINAMICA RELATIVA Cinematica relativa: Teorema di Galileo: derivo: utilizzando le formule di Poisson: ricaviamo che: dunque la nostra velocità assoluta risulta: Teorema di Coriolis: derivando due volte

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006 Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

Formulario Meccanica

Formulario Meccanica Formulario Meccanica Cinematica del punto materiale 1 Cinematica del punto: moto nel piano 3 Dinamica del punto: le leggi di Newton 3 Dinamica del punto: Lavoro, energia, momenti 5 Dinamica del punto:

Dettagli

Modulo 01: Omogeneizzazione della classe Sistemi di misura Richiami di trigonometria

Modulo 01: Omogeneizzazione della classe Sistemi di misura Richiami di trigonometria Progettazione Disciplinare 01: Omogeneizzazione della classe Sistemi di misura Richiami di trigonometria Segmento 01 : Principio di omogeneità Presentazione: il modulo è propedeutico agli argomenti che

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli

Fisica Generale A 8. Esercizi sui Princìpi di Conservazione

Fisica Generale A 8. Esercizi sui Princìpi di Conservazione Fisica Generale A 8. Esercizi sui Princìpi di Conservazione http://campus.cib.unibo.it/2462/ May 29, 2015 Esercizio 1 Un punto materiale di massa m = 0.1 kg è appoggiato su di un cuneo liscio, di massa

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

PRINCIPIO DEI LAVORI VIRTUALI

PRINCIPIO DEI LAVORI VIRTUALI PRINCIPIO DEI LAVORI VIRTUALI Velocità possibili e velocità virtuali Ciponiamoilproblemadideterminareequazionipuredimoto,ovveroequazioni che non introducono incognite di reazioni. Consideriamo il seguente

Dettagli

MP. Moti rigidi piani

MP. Moti rigidi piani MP. Moti rigidi piani Quanto abbiamo visto a proposito dei moti rigidi e di moti relativi ci consente di trattare un esempio notevole di moto rigido come il moto rigido piano. Un moto rigido si dice piano

Dettagli

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido Capitolo 2 Statica del corpo rigido La statica è la parte della meccanica che si occupa dello studio dell equilibrio di corpi in quiete, ossia fermi, o mobili di moto rettilineo uniforme. In effetti applichiamo

Dettagli

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1).

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1). j B A l 2 1 ω1 r ϑ i Piede di biella Testa di biella Biella Braccio di manovella Siti interessanti sul meccanismo biella-manovella: http://it.wikipedia.org/wiki/meccanismo_biella-manovella http://www.istitutopesenti.it/dipartimenti/meccanica/meccanica/biella.pdf

Dettagli

Teoria dei Sistemi e Controlli Automatici M

Teoria dei Sistemi e Controlli Automatici M Teoria dei Sistemi e Controlli Automatici M 3 marzo 23 Figura : Prototipo di quadrirotore. Modello del Velivolo Si fissi un sistema di riferimento inerziale F i = {O i, i i, j i, k i } ed un sistema di

Dettagli

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2014-2015 A. Ponno (aggiornato al 9 gennaio 2015) 2 Ottobre 2014 1/10/14 Benvenuto, presentazione

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

CINEMATICA DEI CAMPI FLUIDI ED EQUAZIONI DI CONSERVAZIONE

CINEMATICA DEI CAMPI FLUIDI ED EQUAZIONI DI CONSERVAZIONE CINEMATICA DEI CAMPI FLUIDI ED EQUAZIONI DI CONERAZIONE M. Capozzi Copyright ADEPRON Tutti i Diritti Riservati - www.aepron.it CINEMATICA DEI CAMPI FLUIDI ED EQUAZIONI DI CONERAZIONE Marco CAPOZZI * *

Dettagli

1 REGOLE DI DERIVAZIONE

1 REGOLE DI DERIVAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Facoltà i Farmacia e Meicina - Corso i Laurea in CTF REGOLE DI DERIVAZIONE Prima i tutto ricoriamo che la erivata i una funzione f in x è il ite el rapporto

Dettagli

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2)

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2) 1 Esercizio (tratto dal problema 7.42 del Mazzoldi 2) Un disco di massa M = 8Kg e raggio R è posto sopra un piano, inclinato di un angolo θ = 30 o rispetto all orizzontale; all asse del disco è collegato

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 015-16 7/9/016 Nome Cognome Matricola: 1) Si consideri il sistema di equazioni del primo ordine ẋ = y, ẏ = η y sin x, determinando i punti di equilibrio, il loro

Dettagli

METODO DEGLI SPOSTAMENTI

METODO DEGLI SPOSTAMENTI Corso / MTODO DGLI SPOSTAMNTI.. Introuzione ee conizioni a contorno e souzione Per trovare gi spostamenti incogniti ei noi bisogna introurre nea reazione matriciae i equiibrio e conizioni a contorno, espresse

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2 Indice 1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale..................... 1 1.2 Un esempio................................. 2 2 Spazi Vettoriali, Spazio e Tempo 7 2.1 Cos

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema esame 7 giugno 011 Esercizio 1. Nel meccanismo in figura una massa puntiforme m è vincolata a scorrere orizzontalmente a una scanalatura orizzontale, per effetto el

Dettagli

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI Dinamica Prof. Paolo Biondi Dipartimento GEMINI Dinamica: studio delle cause che determinano il moto dei corpi Forza = massa per accelerazione Unità di misura Newton (N): forza che applicata al chilogrammo

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

1. Considerare il seguente sistema di vettori applicati:

1. Considerare il seguente sistema di vettori applicati: 1 Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Correzione prova scritta Esame di Fisica Matematica febbraio 011 1. Considerare il seguente sistema di vettori applicati:

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Equilibrio statico sul piano inclinato

Equilibrio statico sul piano inclinato Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un

Dettagli

Prova Scritta del 24/02/2012

Prova Scritta del 24/02/2012 Prova Scritta del 4/0/01 Esame di FISICA (Compito A) Corso di Studi: Informatica Prof. A. Sgarlata Problema n.1 La bacchetta omogenea in figura, lunga L =.0m econmassam =1.5kg puó ruotare intorno a un

Dettagli

a.a. : Ore: 56 Crediti totali: 6 Tipologia di insegnamento: intero Docente: Prof. Emilio Mariotti associato

a.a. : Ore: 56 Crediti totali: 6 Tipologia di insegnamento: intero Docente: Prof. Emilio Mariotti associato Titolo: FISICA SPERIMENTALE per geologia (I modulo, mutuato come Istituzioni di Fisica da Scienze Naturali e Scienze Ambientali) Facoltà: Scienze M.F.N. a.a. : 2004-2005 Ore: 56 Crediti totali: 6 Tipologia

Dettagli

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI 1 QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI Margherita Moretti (3D P.N.I.) Viviana Scoca (3D P.N.I.) Simone Moretti (3H P.N.I.) Abstract Si affronta il problema ella eterminazione el quarilatero i

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

Meccanica razionale e statica

Meccanica razionale e statica Università degli Studi eampus Facoltà di Ingegneria Meccanica razionale e statica Novedrate, 15 giugno 011 Teoria Rispondere in modo esauriente ad una sola domanda a scelta. 1. alcolo dell energia cinetica

Dettagli

metodi numerici metodi grafo-numerici metodi grafici metodi meccanici

metodi numerici metodi grafo-numerici metodi grafici metodi meccanici La superficie agraria i un terreno è quella efinita alla proiezione ella superficie fisica el terreno sul piano orizzontale i riferimento. La misura ella superficie i un appezzamento è sempre iniretta.

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2014/2015 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2015 1. Lunedì 2/03/2015, 11 13. ore: 2(2) Presentazione

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

UNIVERSITA DI FIRENZE DIPARTIMENTO DI ENERGETICA S. STECCO SEZIONE DI MECCANICA APPLICATA

UNIVERSITA DI FIRENZE DIPARTIMENTO DI ENERGETICA S. STECCO SEZIONE DI MECCANICA APPLICATA UNIVERSITA DI FIRENZE DIPARTIMENTO DI ENERGETICA S. STECCO SEZIONE DI MECCANICA APPLICATA DISPENSE DI MECCANICA APPLICATA: RICHIAMI DI DINAMICA E MACCHINE ALTERNATIVE Prof. Ing. P. Toni, Ing. R. Giusti,

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 1/13 FM1 - Fisica Matematica I Seconda Prova di Esonero [14-1-13] SOLUZIONI Esercizio 1 (a) La coordinata del centro di massa è data da X cm = 1 (x 1 + x

Dettagli

è definito in tutto il dielettrico e dipende dalla sola carica libera

è definito in tutto il dielettrico e dipende dalla sola carica libera Dielettrici I. Un conensatore a facce piane e parallele, i superficie S e istanza fra le armature, h, viene parzialmente riempito con un ielettrico lineare omogeneo i costante ielettrica.e spessore s Il

Dettagli

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura 13. Magnetismo 13.1 La forza i Lorentz. Il magnetismo è un fenomeno noto a molti secoli, ma fino all inizio ell ottocento la teoria trattava i calamite, aghi magnetici e elle loro interazioni con il magnetismo

Dettagli

a2 Semidischi e asta sono disposti come illustrato in figura. Determinare del sistema:

a2 Semidischi e asta sono disposti come illustrato in figura. Determinare del sistema: Prova scritta di fondamenti di meccanica razionale del 5.6.1 Esercizio 1 Nel piano Oxy di una terna Oxyz si considera il sistema costituito da due semidischi omogenei uguali, D 1 e D, di massa µ, raggio

Dettagli

LV. Principio dei lavori virtuali

LV. Principio dei lavori virtuali LV. Principio dei lavori virtuali Passiamo ora dalla statica del punto alla statica dei sistemi di punti materiali. Anzitutto ci occorre una definizione di equilibrio per un sistema di punti materiali.

Dettagli

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii)

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii) Si usano ue metoi ifferenti per misurare il carico i rottura i un filo i acciaio e si fanno 0 misure per ognuno ei metoi. I risultati, espressi in tonnellate, sono i seguenti: Metoo :..5.7..6.5.6.4.6.9

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiali inematica piana omportamento meccanico dei materiali inematica ed equilibrio del corpo rigido inematica piana Equilibrio esterno aratteristiche di sollecitazione 2

Dettagli