Interazioni Elettrodeboli. Lezione n. 9. Campo di Dirac Invarianza di Gauge Globale Campi interagenti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Interazioni Elettrodeboli. Lezione n. 9. Campo di Dirac Invarianza di Gauge Globale Campi interagenti"

Transcript

1 Interazioni Elettrodeboli prof. Franceco Ragua Univerità di Milano Lezione n Campo di Dirac Invarianza di Gauge Globale Campi interagenti anno accademico

2 Quantizzazione del Campo di Dirac La quantizzazione del campo di Dirac i effettua in modo del tutto analogo alla quantizzazione del campo di Klein-Gordon Seguendo il notro approccio per il campo di KG Si viluppa il campo nei modi normali Si promuovono i coefficienti dello viluppo a operatori Si impongono le regole di commutazione Alternativamente i può eguire il metodo canonico Si crive la Lagrangiana del campo di Dirac Si individuano i momenti coniugati ai campi Si impongo le relazioni di di commutazioni fra campi e momenti coniugati Anticipiamo che la differenza fondamentale ta nel fatto che nelle regole di commutazione ai commutatori [A,B] i otituicono gli anticommutatori {A,B} La neceità degli anticommutatori può eere motivata alternativamente Dal principio di ecluione di Pauli che richiede l antiimmetria degli tati fermionici cotruiti con gli operatori di creazione e ditruzione Dalla neceità che l Hamiltoniana ia definita poitiva Entrambi gli approcci derivano da motivazioni fiiche Vale la pena approfondire entrambi gli apetti Interazioni Elettrodeboli Franceco Ragua 26

3 Lagrangiana del campo di Dirac La Lagrangiana del campo di Dirac è Notiamo che non contiene i campi L (,, ) ( i / m) L equazione di Dirac egue emplicemente applicando le equazioni di Eulero Lagrange ai campi e Variando i campi L L L aimmetria fra e deriva dal fatto che più Lagrangiane ono poibili Ad eempio ( ) ( φ ) Tuttavia i può dimotrare che le azioni corripondenti differicono per l integrale di una 4-divergenza che i può rendere nullo all infinito Pertanto conducono alle tee equazioni L L φ γ ( / ) ( i/ m) i m Alternativamente, variando i campi L L i m γ ( i/ + m) * ( uav ) ( uav ) L L ( / ) ( [ iγ m ) ] 1 i m ( i γ m) L1 ( i / + m) ( i m ) γ Interazioni Elettrodeboli Franceco Ragua 27

4 Hamiltoniana del campo di Dirac Poiamo a queto punto calcolare i momenti coniugati di I momenti coniugati di ono nulli per l aimmetria fra e nella Lagrangiana L π γ i ( ) L Hamiltoniana è pertanto i γγ i Dal momento che oddifa l equazione di Dirac Abbiamo una utile epreione alternativa per l Hamiltoniana H i Si potrebbe calcolare il momento del campo calcolando il tenore T ν Diamo i due riultati (il calcolo può eere un eercizio) ( i/ m) L H π L i ( i/ m) γ γ γ iγ m γ i γ m ( iα + γ m) H ( iα + mβ) 1, r P d r ( i ) H d i iα + mβ i Interazioni Elettrodeboli Franceco Ragua 28

5 Epanione del campo di Dirac L epanione del campo di Dirac in onde piane i può fare allo teo modo di quanto fatto per il campo calare d i x + i x ( x) ( a, u, e + b, v, e ) ( 2π ) 2E Anche in queto cao conviene definire delle funzioni con ben definite proprietà di ortogonalità i x + i x u, e v, e f, g, ( 2π ) 2E ( 2π ) 2E Le relazioni di ortogonalità ono Il campo diventa ± δ r, δ, r f ( x) f ( x) d Utilizzando quete relazioni i può facilmente invertire l epanione Interazioni Elettrodeboli Franceco Ragua 29 g x g x d δ δ f x g x d r p p r a f ( x) ( x) d g x f x d r,,,, ± ( x) d ( f a + g b ) p p r b g ( x) ( x) d,,

6 Quantizzazione del campo di Dirac Poiamo adeo dicutere la quantizzazione del campo di Dirac Seguendo il notro approccio promuoviamo le funzioni a e b a operatori in uno pazio atratto e fiiamo le regole di anti-commutazione { } a, a 2 π δ δ { b, b } ( 2 ) π δ δ tutte le altre nulle Con queti operatori i poono cotruire gli tati con n particelle nello pazio di Foc 11, n n 2E 2E a a Una analoga epreione i può crivere con gli operatori b (antiparticelle) Le regole di anticommutazione fra gli operatori a e b aicurano che gli tati abbiano la corretta antiimmetria ripetto alle permutazioni di due particelle 11,, jj,,,, nn ± 11,,,, jj,, nn Il egno è + o per permutazioni pari o dipari ripettivamente Nel eguito arà utile trattare eparatamente le due componenti di un campo ( x) a + b x La componente a energia poitiva a x f x a, d La componente a energia negativa 1 n 1 1 n n Interazioni Elettrodeboli Franceco Ragua 21 b ± x g x b d, ±

7 Quantizzazione del campo di Dirac Calcoliamo adeo gli anticommutatori (a tempi uguali t t ) { n x, m( x )} { n x, m ( x )} Notiamo che i campi hanno 4 componenti Dal momento che gli operatori a e b anti-commutano fra di loro avremo { } { } n x, m x an x, am x + { bn x, ( x ) bm } Cominciamo con le componenti a energia poitiva { } an x, am x d d f n x f ( x ){ a, a m } { a, a } 2 ( 2π ) d f n x f m ( x ) Ricordiamo t t 1 + i ( r r ) 1 d e u nu m ( 2π ) 2E Analogamente per le componenti a energia negativa 1 d i ( ) { bn x, ( x ) bm } e r r v nv m ( 2π ) 2E 1 + i ( r r ) 1 d e v nv m ( 2π ) 2E Interazioni Elettrodeboli Franceco Ragua 211 { n x, m( x )} π δ δ

8 Quantizzazione del campo di Dirac Sommando i due pezzi 1 i ( ) 1 + r r { n x, m( x )} d e u u + v v ( 2π ) 2E nm Oltre alle relazioni di completezza già tudiate (diapoitiva ) ne eitono altre 1 ( u u + v v ) Inm δ nm ( iiii) 2E nm In concluione otteniamo 1 { n x, m ( x )} δnm d e ( 2π ) Con una procedura imile i ottengono le altre relazioni { n x, m ( x )} δnmδ( r r ) + i ( r r ) iiii iiii iiii i i i iiii, { n x m ( x )}, { n x m ( x )} Interazioni Elettrodeboli Franceco Ragua 212

9 Hamiltoniana e regole di commutazione Veniamo adeo all epreione dell Hamiltoniana in funzione degli operatori di creazione e ditruzione È conveniente partire dalle relazioni H d i x d f a + g b r (,,,, ) ± Utilizzando l epanione di otteniamo i x d E f a g b,,,, ± Introducendo nell Hamiltoniana Eeguiamo l integrazione ul volume Utilizziamo le relazioni di ortogonalità: opravvivono olo due termini Interazioni Elettrodeboli Franceco Ragua 21 x d ( f a + g b, ) ±,,, H d i d d d f a + g b E f a g b, ' ± ( ) ( ) r r,,,,,,,,, ± H d d E d f f a a g g b b, ' ± (,,,, ) r,,,, d d E a a b b (, δ δ, δ δ ),, nel cao di Dirac c è olo una derivata d E a, a b b, ± (,, )

10 Hamiltoniana e regole di commutazione H d E a a b b,, ± (,, ) Il termine relativo ai quanti a è già otto forma di un operatore numero Per mettere anche il econdo termine otto forma di operatore numero abbiamo biogno di commutare i due operatori Se aveimo una regola di commutazione (eliminiamo il termine infinito) b,, b, c b, b, c + b, b,, H d E a, a b, b Queta Hamiltoniana non è definita poitiva ± I quanti b contribuicono con energia negativa! Al contrario, con una regola di anticommutazione b, b c b b c b b, H d E a a + b b { },,,,,, (,, ),, ± (,, ) Queta volta anche i quanti b contribuicono all energia con egno poitivo Adottare regole di anticommutazione è neceario per avere una Hamiltoniana definita poitiva Nel dettaglio del calcolo la differenza è tata introdotta dal fatto che l equazione di Dirac è di primo ordine nel tempo Interazioni Elettrodeboli Franceco Ragua 214

11 Invarianza di gauge globale Anche la Lagrangiana del campo di Dirac è invariante per traformazioni di fae cotante: traformazioni di gauge globali L ( i / m) i e α + i e α Ovviamente e la fae è cotante la Lagrangiana è invariante ( i/ m) + iα iα L e ( i/ + m) e i i e α e α ( i / m) L Calcoliamo adeo la corrente che corriponde a queta invarianza Per una traformazione infiniteima δ ( 1 iδα) δ iδα i δα δ Analogamente i δα Ricordiamo l epreione per la corrente di Noether n N L δ L δ L δ + n ( n ) δα ( ) δα ( ) δα N iγ ( i ) j γ Abbiamo ritrovato la corrente di probabilità della teoria di Dirac È una corrente conervata j L ( ) ( ) iγ L Interazioni Elettrodeboli Franceco Ragua 215

12 Invarianza di gauge globale Calcoliamo adeo la carica conervata aociata alla conervazione della corrente Q j d r ( x) γ ( x) d r x x d r Le epanioni dei campi ono x d f a + g b,,,, ± Inerendo le due epreioni nella carica,,,, ± ( x) d ( f a + g b ) Utilizzando le proprietà di ortogonalità delle funzioni f e g opravvivono olo due termini Q d d d r f f a a + g g b b Q d d d f a + g b f a + g b r,,,, (,,,, ) (,,,,,,,, ) (,, δ δ,, δ δ ) d a, a, + b, b, Q d d a a + b b Interazioni Elettrodeboli Franceco Ragua 216

13 Invarianza di gauge globale Q d a a + b b,, (,, ) Vediamo che anche in queto cao per traformare il econdo operatore in un operatore numero abbiamo biogno di regole di commutazione Vediamo adeo l effetto di avere utilizzato anticommutatori b, b c b b c b b, Q d E a a b b { },,,,,,,, ± (,, ) Con queta celta le particelle e le antiparticelle hanno cariche oppote Nei due calcoli che abbiamo fatto ( Q e H ) abbiamo cartato il contributo infinito che deriva dal commutatore Nel cao dei campi fermionici abbiamo però cambiato anche il egno degli operatori Dobbiamo preciare la definizione del prodotto normale nel cao di campi fermionici Il prodotto normale porta gli operatori di ditruzione a detra e inerice un egno + o a econda del numero pari o dipari di permutazioni : aa : a a : baa : a ba Interazioni Elettrodeboli Franceco Ragua 217

14 Invarianza di gauge globale L invarianza globale di gauge della Lagrangiana di Dirac porta alla corrente conervata L ( i / m) j γ L apetto importante, coneguenza dell invarianza di gauge, è il fatto che i campi appaiono nella forma j O Banalizzando, la preenza contemporanea di un campo hermitiano coniugato e un campo normale aicura che compaia il prodotto della fae e della ua complea coniugata il cui prodotto è 1 Meno banale: la preenza contemporanea di un campo hermitiano coniugato e un campo normale aicura che la carica ia conervata I campi contengono operatori di creazione e ditruzione:protoni e antiprotoni x d f a + g b p p (, ),,, ' ±,,,, ± ( x) d ( f a + g b ) L azione della corrente induce una variazione di carica nulla Δ Q Q p Q p Q T a a +1 1 a b b a b b 1 +1 Interazioni Elettrodeboli Franceco Ragua 218

15 Campi interagenti La teoria quantitica dei campi fin qui vita decrive l evoluzione di particelle libere Gli operatori numero Nˆ aa commutano con l Hamiltoniana Il numero delle particelle in ogni modo rimane cotante Non riolve il problema di avere una teoria capace di decrivere un numero di particelle variabile nel tempo È necearia una teoria con campi interagenti La teoria dei campi quantitici interagenti va oltre gli obbiettivi del coro Tuttavia dicutiamo brevemente alcuni apetti 1 1 Ritorniamo all ocillatore quantitico unidimenionale Hˆ mpˆ + mω qˆ 2 2 L energia potenziale ha una forma quadratica Di olito riultato di approimazioni al primo ordine Eenziale per trovare la oluzione algebrica Implica la conervazione del numero di quanti ( N commuta con H ) Per introdurre la poibilità di variazione del numero dei quanti occorre andare oltre l approimazione armonica 2 2 Interazioni Elettrodeboli Franceco Ragua 219

16 Campi interagenti Introduciamo un termine anarmonico di terzo grado Hˆ mpˆ + mω qˆ + λqˆ 2 2 Eprimendo l Hamiltoniano in funzione degli operatori a e a 1 Hˆ ( aˆˆ a + aa ˆˆ ) ω + λ( aˆ + aˆ ) Hˆ ˆ + λ H 2 Non i può riolvere con i metodi algebrici utilizzati precedentemente Si può verificare che N a a e H' non commutano Gli autovettori di H hanno un numero variabile di quanti Non eite una oluzione eatta di queto problema Si ricorre al metodo perturbativo Si tratta il termine λ H' come perturbazione Si epandono gli autovettori (e autovalori) di H in funzione degli autovettori dell Hamiltoniano imperturbato H Agli autovettori imperturbati r corripondono gli autovettori perturbati ˆ ( ) H r Er r r c Hˆ rn n r Er r n r r r r E E E E + λ + λ + r Interazioni Elettrodeboli Franceco Ragua 22

17 Campi interagenti Si trova il eguente riultato ˆ r H r E r 1 r E r H r r r r r E E E E + λ + λ + Per calcolare la correzione del econdo ordine occorre calcolare elementi di matrice del tipo È facile renderi conto che il econdo elemento di matrice è divero da zero anche per r, in particolare per r +, r + 1, r 1, r Queta emplice dicuione motra che l introduzione di un termine anarmonico porta a coniderare procei con numero di particelle non cotante In particolare allo tato r> (che ha numero definito di quanti) i otituice uno tato che ha un numero differenti di quanti di H r Nella derivazione della Lagrangiana del campo crn n n 2 il termine del potenziale era diventato q 2 n qn 1 φ τδx τ dx Δx x Prodotto di due campi L interazione è rappreentata dal prodotto di almeno tre campi Interazioni Elettrodeboli Franceco Ragua 221 E 2 r r r H H r E r E ( ˆ+ ˆ ) ( ˆ+ ˆ ) r H r r a a r r H r a a

18 Campi interagenti Abbiamo gia vito la forma di alcune interazioni Kein Gordon * * em iq φf φi φf φi j 4 Mfi i d x jem x A x Dirac em f γ i j q x x Come eempio l interazione di un fermione con il campo elettromagnetico LD iγ m 1 ν LA F F 4 ν F A A Lint eγ A L LD + LA + Lint Se l interazione non contiene derivate dei campi i momenti coniugati non cambiano ν ν ν π L ( φ) L Hamiltoniana è pertanto H HD + HA + Hint Hint Lint Interazioni Elettrodeboli Franceco Ragua 222

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli

1. Teorema di reciprocità

1. Teorema di reciprocità 1. Teorema di reciprocità Conideriamo un mezzo in cui ono preenti le orgenti (J 1, M 1 ) che producono un campo (E 1, H 1 ) e le orgenti (J 2, M 2 ) che producono un campo (E 2, H 2 ). Determineremo una

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

16. Onde elastiche. m s

16. Onde elastiche. m s 1 Catena di ocillatori 16. Onde elatiche Vogliamo dicutere il fenomeno della propagazione ondulatoria in un mezzo elatico. A tale copo conideriamo un inieme di punti materiali dipoti lungo una retta, ad

Dettagli

= 20 m/s in una guida verticale circolare. v A A

= 20 m/s in una guida verticale circolare. v A A Eercizio (tratto dal Problema 4.39 del Mazzoldi Un corpo di maa m = 00 Kg entra con elocità A licia di raggio = 5 m. Calcolare: = 0 m/ in una guida erticale circolare. la elocità nei punti B e C;. la reazione

Dettagli

7. La teoria dell' "età" dei neutroni. Il modello di rallentamento continuo

7. La teoria dell' età dei neutroni. Il modello di rallentamento continuo 7. La teoria dell' "età" dei neutroni. Il modello di rallentamento continuo Si è vito opra il trattamento generale dello cattering neutronico in mezzi infiniti. Ora conidereremo il cao della ditribuzione

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 13

Controllo di Azionamenti Elettrici. Lezione n 13 Controllo di Azionamenti Elettrici Lezione n 1 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di Palermo CTROLLO DIRETTO DI COPPIA DI AZIAMENTI C MOTORE IN CORRENTE

Dettagli

DINAMICHE COMPLESSE NEL FERRO DI CAVALLO

DINAMICHE COMPLESSE NEL FERRO DI CAVALLO DINAMICHE COMPLEE NEL FERRO DI CAVALLO La mappa a erro di cavallo L inieme invariante Dinamica imbolica Dinamiche nell inieme invariante Ferro di cavallo e cao C. Piccardi e F. Dercole Politecnico di Milano

Dettagli

Meccanica Applicata alle Macchine Appello del 12/01/2012

Meccanica Applicata alle Macchine Appello del 12/01/2012 Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

La trasformata di Fourier in Ottica

La trasformata di Fourier in Ottica Edoardo Milotti 5/11/2007 La traformata di Fourier in Ottica Queta nota contiene una breviima introduzione alle traformate di Fourier in Ottica 1. Il principio di Huygen Il principio di Huygen afferma

Dettagli

A.A MATERIALI POLIMERICI B. Capitolo 5 Calore specifico

A.A MATERIALI POLIMERICI B. Capitolo 5 Calore specifico A.A. 2005-06 MATERIALI POLIMERICI B Capitolo 5 Calore pecifico A preione cotante il calore pecifico c p (JK -1 kg -1 ) o la capacità termica molare (JK -1 mol -1 ) ((298) = M 0 c p(298) con M 0 peo molecolare

Dettagli

ESERCIZIO 1 L/2 C.R. D

ESERCIZIO 1 L/2 C.R. D SRIZIO Il itema di corpi rigidi in figura è oggetto ad uno potamento impreo (cedimento), in direzione verticale e vero il bao, in corripondenza del vincolo in. Si vuole determinare la nuova configurazione

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

Progetto di reti correttrici e controllori PID e traduzione nel discreto con il metodo di emulazione

Progetto di reti correttrici e controllori PID e traduzione nel discreto con il metodo di emulazione Progetto di reti correttrici e controllori PID e traduione nel dicreto con il metodo di emulaione Eerciio. Si conideri lo chema di controllo rappreentato in figura dove P () = con a = 40. a + r(t) + S

Dettagli

H = H 0 + V. { V ti t t f 0 altrove

H = H 0 + V. { V ti t t f 0 altrove Esercizio 1 (Regola d oro di Fermi Determinare la probabilità di transizione per unità di tempo da uno stato a ad uno stato b al primo ordine perturbativo di un sistema per cui si suppone di aver risolto

Dettagli

1_ Filtro passa-basso Con A(jw) si indica la funzione di trasferimento del filtro, il cui modulo A assume un valore costante

1_ Filtro passa-basso Con A(jw) si indica la funzione di trasferimento del filtro, il cui modulo A assume un valore costante PPUNTI DI ELETTNIC FILTI TTII 6 Campi di applicazione I filtri nel ettore dell elettronica ono utilizzati per : attenuare i diturbi, il rumore e le ditorioni applicati al egnale utile; eparare due egnale

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 24 Giugno 2 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Nel cao di itemi lineari continui tempo-varianti, la matrice

Dettagli

UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE ATTENZIONE

UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE ATTENZIONE U.21/0 UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE 21.1. Introduzione 21.2. Conduzione 21.3. Convezione 21.4. Irraggiamento 21.5. Modalità imultanee di tramiione del calore ATTENZIONE

Dettagli

Lezione 11. Progetto del controllore

Lezione 11. Progetto del controllore Lezione Progetto del controllore Specifiche di progetto Conideriamo nuovamente un itema di controllo in retroazione: d y + + + y () G() + + n Fig : Sitema di controllo Supporremo aegnata la funzione di

Dettagli

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008 MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008 SOLUZIONI 1. (4 punti) L indice di maa corporea (IMC) è ottenuto dal rapporto tra maa, eprea in Kg, e l altezza, eprea in m, al quadrato.

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID Controllo di Azionamenti Elettrici Lezione n 3 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di alermo Caratteritiche e predipoizione dei regolatori ID 1 Introduzione

Dettagli

ESERCIZI SVOLTI di ANALISI DEI SISTEMI

ESERCIZI SVOLTI di ANALISI DEI SISTEMI ESERCIZI SVOLTI di ANALISI DEI SISTEMI Davide Giglio DIST - Univerità di Genova Via Opera Pia, 3 645 - Genova, Italy Tel: +39 353748 Fax: +39 35354 Davide.Giglio@unige.it Queta raccolta di eercizi volti

Dettagli

Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui:

Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui: Il recipiente diegnato in figura ha una configurazione cilindrica avente diametro interno D = 000 mm è chiuo con fondi emiferici, eo è itemato u due elle A e B pote ad una ditanza L AB = 7000 mm e fuoriece

Dettagli

Nel caso di molte misure e statistica gaussiana

Nel caso di molte misure e statistica gaussiana Dicrepanza Nella tragrande maggioranza dei cai le concluioni perimentali implicano il confronto tra due o più valori. Queti valori poono eere delle miure (e quindi con un incertezza), delle time teoriche

Dettagli

DETERMINAZIONE DELLA LATITUDINE E DELLA LONGITUDINE SENZA L USO DELLE RETTE D ALTEZZA

DETERMINAZIONE DELLA LATITUDINE E DELLA LONGITUDINE SENZA L USO DELLE RETTE D ALTEZZA DETERMINAZIONE DELLA LATITUDINE E DELLA LONGITUDINE SENZA L USO DELLE RETTE D ALTEZZA Quando i oerva un atro nell'itante del uo paaggio al idiano dell'oervatore i parla di oervazioni idiane. Un atro, in

Dettagli

Appello di Meccanica Quantistica I

Appello di Meccanica Quantistica I Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per

Dettagli

PROBLEMI RISOLTI DI DINAMICA

PROBLEMI RISOLTI DI DINAMICA PROBLEMI RISOLTI DI DINAMICA 1 Un autoobile di aa 100 Kg auenta in odo unifore la ua velocità di 30 / in 0 a) Quale forza agice durante i 0? b) Quale forza arebbe necearia per ipriere un accelerazione

Dettagli

Lezione XXI - 09/04/2003 ora 8:30-10:30 - Esercizi sulle perdite di carico - Originale di Berti Sara.

Lezione XXI - 09/04/2003 ora 8:30-10:30 - Esercizi sulle perdite di carico - Originale di Berti Sara. Lezione XXI - 09/04/00 ora 8:0-10:0 - Eercizi ulle perdite di carico - Originale di Berti Sara. Eercizio 1 Calcolare la potenza di una pompa necearia a far correre il fluido attravero un tubo collegato

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

F = 150 N F 1 =? = 3,1 s. 3,2

F = 150 N F 1 =? = 3,1 s. 3,2 ESERCIZI SVOLTI : Principi di Newton Lavoro Energia Prof.. Marletta ITC Zanon - Udine ESERCIZIO (): Una caa di 30 kg viene tirata con una corda che forma un angolo di 50 col pavimento u una uperficie licia.

Dettagli

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d.

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d. 1 Stati Coerenti Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana H = 1 m p + 1 m ω x (1) Per semplicitá introduciamo gli operatori autoaggiunti adimensionali

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

LAVORO ED ENERGIA. 1J = 1N 1m

LAVORO ED ENERGIA. 1J = 1N 1m ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto

Dettagli

ALCUNI SIMBOLI E FORMULE UTILI NELL ESERCIZIO 3, DOMANDE 3B, 3C, 3D (pagg. 5 e 6)

ALCUNI SIMBOLI E FORMULE UTILI NELL ESERCIZIO 3, DOMANDE 3B, 3C, 3D (pagg. 5 e 6) Univerità C. Cattaneo Liuc, Coro di Statitica, Seione n., 01 Laboratorio Excel Seione n. Venerdì 101 Gruppo PZ Lunedì 7101 Gruppo AD Martedì 8101 Gruppo EO PROGRAMMA SVOLTO NELLA SESSIONE N. (I) Tabella

Dettagli

Corso di Laurea in Ingegneria Energetica FISICA GENERALE T-A (9 Settembre 2011) Prof. Roberto Spighi

Corso di Laurea in Ingegneria Energetica FISICA GENERALE T-A (9 Settembre 2011) Prof. Roberto Spighi Coro di Laurea in Ingegneria Energetica FIICA GENERALE -A (9 ettebre 0) Prof. Roberto pighi ) Uain Bolt, pritita ondiale, partecipa ad una gara di 00 etri. Partendo ovviaente da fero, decide di accelerare

Dettagli

a) Caso di rottura duttile con armatura compressa minore di quella tesa

a) Caso di rottura duttile con armatura compressa minore di quella tesa LEZIONI N 39 E 40 FLESSIONE SEMPLICE: LA DOPPIA ARMATURA E LA SEZIONE A T LA VERIFICA DELLA SEZIONE INFLESSA CON DOPPIA ARMATURA a) Cao di rottura duttile con armatura comprea minore di quella tea Si può

Dettagli

Alessandro Scopelliti

Alessandro Scopelliti Aleandro Scopelliti Univerità di Reggio Calabria Univerity of Warwick aleandro.copelliti@unirc.it Robert Barro, viluppando un ragionamento inizialmente propoto da David Ricardo, otiene ulla bae della teoria

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si

Dettagli

corso di Terminali per i Trasporti e la Logistica Umberto Crisalli

corso di Terminali per i Trasporti e la Logistica Umberto Crisalli coro di Terminali per i Traporti e la Logitica ELEMENTI DI TEORIA DELLE CODE Umberto Crialli crialli@ing.uniroma.it INTRODUZIONE Simulazione dei terminali In generale, un terminale è cotituito da un inieme

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Esperienza n 6: Pendolo di Kater

Esperienza n 6: Pendolo di Kater Eperienza n 6: Pendolo di Kater Sperimentatori: Marco Erculiani (N maricola 4549 v.o.) Ivan Noro (N matricola 458656 v.o.) Materiale a dipoizione: I materiali utilizzati per queta eperienza ono: Un pendolo

Dettagli

Modellistica dinamica di sistemi fisici

Modellistica dinamica di sistemi fisici .. MODELLISTICA - Modellitica dinamica. Modellitica dinamica di itemi fiici Nella realtà fiica eitono vari ambiti energetici, per eempio: meccanico (tralazionale e rotazionale) elettrico-magnetico idraulico

Dettagli

Un problema di dadi. Michele Impedovo

Un problema di dadi. Michele Impedovo Un problema di dadi Michele Impedovo Riaunto Quante volte, in media, occorre lanciare un dado a facce perché tutte le facce ecano almeno una volta? Per riolvere queto problema non è neceario calcolare

Dettagli

19.12. Impianti motori con turbine a gas

19.12. Impianti motori con turbine a gas 19.12. Impianti motori con turbine a ga Approfondimenti 19.12.1. Generalità. Il ciclo di Brayton (o ciclo di oule) Il rendimento (h) di un ciclo termodinamico può eere epreo dalla relazione: h q up q inf

Dettagli

Sistemi aperti E 2. E = m w. velocità w in un campo gravitazionale, con accelerazione di gravità g.

Sistemi aperti E 2. E = m w. velocità w in un campo gravitazionale, con accelerazione di gravità g. ) Concetti di bae Sitemi aperti ) Primo principio della termodinamica 3) Secondo principio della termodinamica 4) Stati di equilibrio tabile 5) Diagramma energia-entropia 6) Lavoro, non-lavoro e calore

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 14 Gennaio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 14 Gennaio 2010 CORSO DI LURE IN SCIENZE BIOLOGICHE Prova critta di FISIC 4 Gennaio 00 ) Un bambino lancia una palla di maa m = 00 gr verticalmente vero l alto con velocità v 0 = m/, a partire da una roccia alta h 0 =

Dettagli

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55.

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55. acoltà di Ingegneria a prova intracoro di iica I 30.0.0 Copito A (*) Eercizio n. Una carrucola, aiilabile ad un dico di aa 3.7 kg e raggio 70 c, è libera di ruotare intorno ad un ae orizzontale paante

Dettagli

I brani della batteria MT si possono leggere tutti con la stessa velocità?

I brani della batteria MT si possono leggere tutti con la stessa velocità? t r u m e n t i a p p l i c a t i v i I brani della batteria MT i poono leggere tutti con la tea velocità? Norme traverali dal econdo anno della al terzo della econdaria di primo grado Patrizio E. Treoldi

Dettagli

Flessione su 4 punti. Configurazione sperimentale. Schematizzazione di calcolo. Studio delle sollecitazioni semplici. Taglio.

Flessione su 4 punti. Configurazione sperimentale. Schematizzazione di calcolo. Studio delle sollecitazioni semplici. Taglio. Fleione u punti Configurazione imentale Scematizzazione di calcolo Taglio omento flettente Studio delle ollecitazioni emplici Tratto ollecitato da fleione pura la ua deformata è un arco di cercio Deformazioni

Dettagli

Test 1 - Teoria dei Campi 2010

Test 1 - Teoria dei Campi 2010 Test - Teoria dei Campi 200 Discutere il path-integral della QCD in gauge assiale (nell Euclideo) n µ A a µ = 0, a =,..., 8, () dove n µ e un vettore assegnato. Derivare: - regole di Feynman; - identitaà

Dettagli

Stati limite nel cemento armato Stato limite ultimo per tensioni normali: applicazioni BOZZA

Stati limite nel cemento armato Stato limite ultimo per tensioni normali: applicazioni BOZZA Lezione n. 1 Stati limite nel cemento armato Stato limite ultimo per tenioni normali: applicazioni Nel eguito i riportano alcuni eempi di applicazione delle procedure decritte nel paragrao precedente.

Dettagli

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale CONTROLLORI DI TIO ID rincipi di funzionamento Il termine controllo definice l azione volta per portare e mantenere ad un valore prefiato un parametro fiico di un impianto o di un proceo (ad eempio, la

Dettagli

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo

Dettagli

Caso di A non regolare

Caso di A non regolare Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 5 GIUGNO 6 Si svolgano cortesemente i seguenti Problemi. PRIMO PROBLEMA (PUNTEGGIO: 3/3) Dati due operatori hermitiani  and ˆB in uno spazio di Hilbert

Dettagli

Problema n. 2. Soluzione

Problema n. 2. Soluzione Problema n. Un auto da cora A iaia u un piano orizzontale con elocità cotante = 69 km/ i 11 km/ j ripetto ad un oeratore olidale al uolo Ox. Qual è la elocità dell auto A miurata da un oeratore olidale

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz L induzione elettromagnetica - Legge di Faraday-Lentz Si oerano alcuni fatti perimentali. 1 ) Conideriamo un filo metallico chiuo u e teo (pira) tramite un miuratore di corrente poto in icinanza di un

Dettagli

STRUTTURE IN CEMENTO ARMATO - III

STRUTTURE IN CEMENTO ARMATO - III Suidi didattici per il coro di COSTRUZIONI EDILI Prof. Ing. Franceco Zanghì STRUTTURE IN CEMENTO ARMATO - III AGGIORNAMENTO 26/09/2012 Coro di COSTRUZIONI EDILI Prof. Ing. Franceco Zanghì STATI LIMITE

Dettagli

Q Flusso di calore (Joule m -2 s -1 )

Q Flusso di calore (Joule m -2 s -1 ) Conduzione Convezione Meccanimo Colliioni molecolari Diffuione molecolare Equazione generale ka ha T dt dx ( T ) Radiazione Evaporazione Fotoni Cambiamento di fae Fluo di calore (Joule m -2-1 ) Calore

Dettagli

Modellazione e Analisi di Sistemi Idraulici

Modellazione e Analisi di Sistemi Idraulici Modellazione e Analii di Sitemi Idraulici Modellazione e Analii di Sitemi Idraulici Davide Giglio La ingola vaca Si conideri il itema rappreentato in figura. Il itema conite in una vaca contenente acqua.

Dettagli

V u = C. Funzione di rete. Cambio di punto di vista ω variabile. Il circuito simbolico è resistivo e lineare, con un solo generatore indipendente

V u = C. Funzione di rete. Cambio di punto di vista ω variabile. Il circuito simbolico è resistivo e lineare, con un solo generatore indipendente ambio di pnto di vita variabile Fnzione di rete X X X X l circito imbolico è reitivo e lineare, con n olo eneratore indipendente H Proporzionalità tra caa ed effetto H è na qantità complea, fnzione di

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

acciaio nelle condizioni di esercizio

acciaio nelle condizioni di esercizio Analii di affidabilità di una truttura in acciaio nelle condizioni di eercizio v Dati: 6 m : N(9.5, 1) kn/m : N(3.6, 1.) kn/m : N(10000, 800) N/mm a trave è cotituita da un profilato IP 70. a funzionalità

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

corso di formazione ed aggiornamento

corso di formazione ed aggiornamento coro di formazione ed aggiornamento NUOVE NORME TECNICHE IN ZONA SISMICA di cui all ordinanza n. 37 del P.C.M. del 0.03.003 pubblicata ulla Gazzetta Ufficiale in data 08.05.003 ARGOMENTO DELLA LEZIONE:

Dettagli

Elementi di programmazione lineare. Ottimizzazione di funzioni soggette a vincoli

Elementi di programmazione lineare. Ottimizzazione di funzioni soggette a vincoli Elementi di programmazione lineare Ottimizzazione di funzioni oggette a vincoli Formulazione del problema min Z ma oggetta b c a T d Z:funzione obiettivo calare d: coto fio calare : variabile deciionale

Dettagli

Esercizio: calcolo di media e deviazione standard campionaria

Esercizio: calcolo di media e deviazione standard campionaria Eercizio: calcolo di media e deviazione tandard campionaria Per verificare le pretazioni di un hard dik per PC, i oervano in miure ripetute i tempi di crittura T di uno teo file di grandi dimenioni. In

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata

Dettagli

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche Sistemi dinamici-parte 2 Parentesi di e trasformazioni AM Cherubini 11 Maggio 2007 1 / 25 Analogamente a quanto fatto per i sistemi lagrangiani occorre definire, insieme alla struttura del sistema, anche

Dettagli

La macchina sincrona

La macchina sincrona MACCHINE E AZIONAMENTI ELETTRICI Coro di Laurea in Ingegneria Indutriale La macchina incrona Docente Prof. Franceco Benzi Univerità di Pavia e-mail: franceco.benzi@unipv.it Principio di funzionamento Nella

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

Sicché l effetto di una variazione del prezzo sulla domanda del bene può essere scisso in due componenti

Sicché l effetto di una variazione del prezzo sulla domanda del bene può essere scisso in due componenti Appunti equazione di Slutk. Variazione del prezzo e quantità doandata In preenza di un auento del prezzo i conuatori reagicono a due egnali differenti a) è auentato il prezzo relativo del bene in quetione

Dettagli

Sintesi tramite il luogo delle radici

Sintesi tramite il luogo delle radici Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle

Dettagli

Divisori e combinatori

Divisori e combinatori Diviori e combinatori Luca Vincetti a.a. - Diviori e combinatori La combinazione lineare di egnali differenti o, all invero, la uddiviione di un unico egnale in componenti divere fa parte della normale

Dettagli

Diffusione e membrane

Diffusione e membrane Eercizi di fiica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Diffuione e membrane 1) Calcolare il fluo avvettivo di oluto in un tubicino di ezione 0.1 mm 2 in cui corrono 0.2 ml al

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata

Dettagli

Annichilazione elettrone-positrone

Annichilazione elettrone-positrone Annichilazione elettrone-positrone Nicola Cabibbo 23 Novembre 1999 1 Il processo e + e µ + µ Vogliamo prendere in considerazione la annichilazione e + e µ + µ per illustrare una serie di aspetti interessanti

Dettagli

L energia rinnovabile con l antica vite di Archimede

L energia rinnovabile con l antica vite di Archimede Vite Idrodinamica L energia rinnovabile con l antica vite di Archimede Da più di un ecolo Spaan Babcock è conociuto come il più grande fornitore al mondo di pompe a vite di Archimede. La vite idrodinamica

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

Università degli Studi di Pisa. CdLS in Ingegneria dell Automazione. Attività Progettuale

Università degli Studi di Pisa. CdLS in Ingegneria dell Automazione. Attività Progettuale Univerità degli Studi di Pia CdLS in Ingegneria dell Automazione Attività Progettuale Simulazione del Controllo DTC per il motore aincrono dell ETR5 A cura di BABBONI QUAGLI Franceco Andrea Indice Indice

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

Determinazione formula composto chimico dato dalla reazione tra due elementi. Differenza di elettronegatività tra i due elementi

Determinazione formula composto chimico dato dalla reazione tra due elementi. Differenza di elettronegatività tra i due elementi Determinazione formula comoto chimico ato alla reazione tra ue elementi Differenza i elettronegatività tra i ue elementi E. metallo + non metallo Si forma un comoto ionico Si forma un comoto covalente

Dettagli

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

Matematica Avanzata Per La Fisica - I accertamento,

Matematica Avanzata Per La Fisica - I accertamento, 1 Matematica Avanzata Per La Fisica - I accertamento, 13 2 2004 1. Sia X un insieme. Sia H(X) l insieme delle trasformazioni f : X X. Sia G H(X), tale che f G sse f è unijezione. a) Dimostrare che G è

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

TRACCIA DI STUDIO. Tecniche di campionamento. Popolazione e campione

TRACCIA DI STUDIO. Tecniche di campionamento. Popolazione e campione TRACCIA DI STUDIO Popolazione e campione Dopo aver individuato e definito la popolazione da eaminare, che può eere finita o infinita, arebbe ideale condurre l indagine u tutti gli elementi della popolazione;

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 FEBBRAIO 6 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l integrale SOLUZIONE DEL PRIMO PROBLEMA M=. (+ x

Dettagli

CINEMATICA. determinare il vettore velocità (modulo, direzione e verso) all istante Trovare inoltre la traiettoria.

CINEMATICA. determinare il vettore velocità (modulo, direzione e verso) all istante Trovare inoltre la traiettoria. . Data la legge oraria : CINEMATICA x( t) = at con a= m b= m c= 3 m y( t) bt c = + determinare il vettore velocità (modulo, direzione e vero) all itante Trovare inoltre la traiettoria. t=. y x 3 v ˆi ˆ

Dettagli

2.1 Esponenziale di matrici

2.1 Esponenziale di matrici ¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

8.1 Problema della diffusione in meccanica quantistica

8.1 Problema della diffusione in meccanica quantistica 8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

Lo studio dell evoluzione libera nei sistemi dinamici

Lo studio dell evoluzione libera nei sistemi dinamici Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto

Dettagli

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa)

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa) Capitolo 4 Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

Geotecnica e Laboratorio. Tensioni totali, neutrali e efficaci

Geotecnica e Laboratorio. Tensioni totali, neutrali e efficaci Coro di Laurea a ciclo Unico in Ingegneria Edile-Architettura Geotecnica e Laboratorio Tenioni totali, neutrali e efficaci Prof. Ing. Marco Favaretti e-mail: marco.favaretti@unipd.it ebite:.marcofavaretti.net

Dettagli