Integrazione di funzioni goniometriche e irrazionali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Integrazione di funzioni goniometriche e irrazionali"

Transcript

1 Integrazione di funzioni goniometriche e irrazionali In questo arofondimento resentiamo alcune tecniche er integrare articolari classi di funzioni goniometriche e irrazionali.. Integralidifunzionigoniometriche Integrali del tio sin n cos m Illustriamo mediante alcuni esemi le tecniche di integrazione degli integrali del tio sin n cos m, essendo n ed m due interi ositivi. Il rocedimento di integrazione varia a seconda che n ed m siano ari o disari. ESEMPIO Caso in cui n è disari Calcoliamo sin cos. sin cos sin sin cos sin cos Þ cos sin cos sin cos 4 sin Þ cos þ sin Þ cos 4 cos os5 5 ESEMPIO Caso in cui m è disari Calcoliamo cos. Integrale da calcolare sin cos I due integrali ottenuti ossono ricondursi alla forma f 0 Þ½f ÞŠ Utilizziamo una tecnica simile a quella dell esemio recedente. cos cos cos sin Þ cos cos cos sin sin sin cos sin Il rimo integrale è immediato e il secondo è della forma f 0 Þ½f ÞŠ /8

2 ESEMPIO Caso in cui n e m sono ari Calcoliamo sin 4. sin 4 sin Þ cos Dalle formule di bisezione segue: sin cos e cos os 4 þ 4 cos cos 4 þ os 4 cos 4 cos 4 þ cos 8 8 Dalle formule di bisezione si deduce: cos os 4 Abbiamo una somma di integrali immediati 8 þ sin 4 4 sin In generale: una tecnica simile a quella dei rimi due esemi (riscrivere la funzione integranda in modo che comaia un solo fattore uguale a sin o a cos Þ si alica er calcolare gli integrali del tio sin n cos m se n è disari o m è disari; una tecnica simile a quella indicata nel terzo esemio (utilizzo delle formule di bisezione sin cos, cos os e, in certi casi, della formula sin cos sin Þ si alica er calcolare gli integrali del tio sin n cos m quando sia n sia m sono ari. Integrali che sono funzioni razionali di sin e cos Se la funzione integranda è una funzione razionale di sin e cos, si uò condurre l integrale a quello di una funzione razionale frazionaria con la sostituzione: t tan e l imiego delle formule arametriche: sin t þ t e cos t þ t Questo rocedimento, ur avendo il regio della generalità, orta sesso a calcoli iuttosto laboriosi ed è quindi consigliabile solo quando non sembra esservi nessun altro metodo er risolvere l integrale. ESEMPIO Integrazione di funzioni goniometriche tramite le formule arametriche Calcoliamo sin. Ponendo t tan, ossia arctan t, si ha: þ t dt quindi, ricordando che sin t þ t, abbiamo: /8

3 sin t þ t = sin þ t dt t dt ln jtjþc ln tan Integrali del tio sin m cos n, cos m cos n sin m sin n, Questi integrali si calcolano tramite le formule di Werner, che consentono di trasformare la funzione integranda in una somma. ESEMPIO Utilizzo delle formule di Werner Calcoliamo: sin cos 4. Ricordando che: sin cos ½ sin Þþ sin þ ÞŠ abbiamo: sin cos 4 ½ sin Þþ sin 7ÞŠ Formule di Werner sin þ sin 7Þ Ora abbiamo una somma di integrali immediati cos 4 cos 7. Integralidifunzioniirrazionali Integrali diendenti da n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a þ b Se la funzione integranda è una funzione irrazionale che contiene un solo radicale del tio n ffiffiffiffiffiffiffiffiffiffiffiffiffi a þ b, il calcolo dell integrale uò essere condotto a quello di una funzione razionale mediante la sostituzione ffiffiffiffiffiffiffiffiffiffiffiffiffiffi n a þ b t. ESEMPIO Integrazione ffiffiffiffiffiffiffiffiffiffiffiffiffiffi di funzioni contenenti un solo radicale del tio n a þ b Calcoliamo ffiffiffiffiffiffiffiffiffiffiffi. þ 4 Poniamo ffiffiffiffiffiffiffiffiffiffiffi þ 4 t, da cui t 4. Ne segue: t dt Quindi abbiamo: t 4 ffiffiffiffiffiffiffiffiffiffiffi t dt þ 4 t qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 4Þ 8 ffiffiffiffiffiffiffiffiffiffiffi þ 4 t 8Þ dt t 8t /8

4 Integrali diendenti da ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a Se la funzione integranda è una funzione irrazionale contenente un solo radicale del tio ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a, il calcolo dell integrale uò avvenire tramite la sostituzione: a sin t, con t La condizione su t garantisce l invertibilità della funzione a sin t ESEMPIO Integrazione ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi di funzioni contenenti un solo radicale del tio a ffiffiffiffiffiffiffiffiffiffiffiffiffi Calcoliamo 4. In questo caso a, quindi oniamo sin t, ossia t arcsin. Ne segue che: cos tdt Abbiamo quindi: ffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sin t cos tdt 4 cos tdt os tþ dt ffiffiffiffiffiffiffiffiffiffiffiffiffi 4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 4 sin t sin t ffiffiffiffiffiffiffiffiffiffiffiffiffi cos t cos t Formula di bisezione: cos t os t Osserva È lecito ffiffiffiffiffiffiffiffiffiffiffiffi scrivere cos ffiffiffiffiffiffiffiffiffiffiffiffi t cos t invece di cos t jcos tj erché stiamo suonendo t. t þ sin t arcsin þ sin arcsin Ricordando che t arcsin sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi arcsin þ 4 Alicando la formula di dulicazione del seno: sin arcsin sin arcsin cos arcsin arcsin þ ffiffiffiffiffiffiffiffiffiffiffiffiffi 4 Integrali diendenti da ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ a o ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 Se la funzione integranda è una funzione irrazionale che contiene un solo radicale, del tio ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ a oure a, il calcolo dell integrale uò essere condotto a quello di una funzione razionale mediante la sostituzione: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a t ESEMPIO Integrazione ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi di funzioni ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi contenenti un solo radicale del tio þ a o a ffiffiffiffiffiffiffiffiffiffiffiffiffi Calcoliamo þ 4. Poniamo: ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 4 t, cioè t ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 4 þ 4/8

5 Ne segue: ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 4 e t þ 4 t dt Abbiamo allora: ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 4 t ) þ 4 t Þ ) þ 4 t t þ ) t 4 t t t 4 t ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 4 t t þ 4 t dt t þ 4Þ 4t dt L integrale si uò ricondurre a una somma di integrali immediati er scomosizione t 4 þ t þ 4 t dt lnjtjþ 8 t ffiffiffiffiffiffiffiffiffiffiffiffiffi Ricorda ora che t t þ 4 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi lnj þ 4 þ jþ ffiffiffiffiffiffiffiffiffiffiffiffiffi 8 þ 4 þ Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 4 þ Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi lnj þ 4 þ jþ ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 4 Svolgendo i calcoli 5/8

6 Esercizi. Integralidifunzionigoniometriche Esercizi reliminari Test Per calcolare quale dei seguenti integrali è utile la sostituzione tan t? sin A cos B cos C tan D cos Effettuando nell integrale þ sin la sostituzione tan t, a quale dei seguenti integrali si viene ricondotti? A t þ 4t þ dt B t þ 4t þ dt C t þ t þ 4t þ dt D t þ t þ 4t þ dt ESERCIZIO GUIDATO Calcola i seguenti integrali: a. sin cos 4 b. cos 4 a. sin cos 4 sin sin cos 4 sin cos Þ cos 4 :::::::::: b. cos 4 cos Þ os :::::::::: a. 7 cos7 5 cos5 ; b. sin 4 þ 4 sin þ 8 Calcola i seguenti integrali. 4 cos sin sin cos sin cos sin cos 4 ESERCIZIO GUIDATO Calcola cos. sin cos þ cos þ cos sin 5 sin5 cos þ 5 cos5 8 sin þ sin Þ sin cos sin cos tan þ tan Þ tan 4 ½ sin 4 cos þ Š 5 cos5 4 sin 4 5 sin5 ½ ln jcos jþtan Š tan þ tan þ Poni tan t, ossia arctan t e þ t dt Verifica che con queste sostituzioni l integrale si trasforma in t dt. Calcola quest ultimo integrale, quindi ritorna alla variabile ricordando la sostituzione oerata. h ln tan þ ln tan i 6/8

7 Calcola i seguenti integrali con il metodo illustrato nell esercizio guidato recedente. 5 cos tan 6 4 tan þ sin 6 4 þ tan cos 4 ln tan þ 4 ln tan h þ sin os ln tan i þ ESERCIZI Calcola i seguenti integrali, ricordando le formule di Werner. 9 sin cos 0 sin cos 4 sin sin cos cos cos cos cos cos 6 4 sin sin sin þ sin. Integralidifunzioniirrazionali Esercizi reliminari Per calcolare un integrale in cui comare una radice del tio ffiffiffiffiffiffiffiffiffiffiffiffiffi 9, quale delle seguenti sostituzioni otrebbe essere utile? A 9 sin t B ffiffiffiffiffiffiffiffiffiffiffiffiffi 9 t C sin t D ffiffiffiffiffiffiffiffiffiffiffiffiffi 9 t 4 Per calcolare un integrale in cui comare una radice del tio ffiffiffiffiffiffiffiffiffiffiffiffiffi 9 þ, quale delle seguenti sostituzioni otrebbe essere utile? A 9 sin t 5 ESERCIZIO GUIDATO Calcola i seguenti integrali: ffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffi a. b. þ B ffiffiffiffiffiffiffiffiffiffiffiffiffi 9 þ t C sin t D ffiffiffiffiffiffiffiffiffiffiffiffiffi 9 þ t a. Poni sin t e verifica che con questa sostituzione l integrale si trasforma in cos tdt; risolvi quest ultimo integrale, quindi ritorna alla variabile. ffiffiffiffiffiffiffiffiffiffiffiffiffi t b. Poni þ þ Þ t e verifica che con questa sostituzione l integrale si trasforma in 4t dt; risolvi quest ultimo integrale, quindi ritorna alla variabile. a. arcsin þ ffiffiffiffiffiffiffiffiffiffiffiffiffi ; b. ffiffiffiffiffiffiffiffiffiffiffiffiffi ln þ þ Þþ ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 7/8

8 Calcola i seguenti integrali. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi arcsin 4 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 6 5 arcsin 5 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6 8ln 6 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5 5 ln ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 8ln þ þ 6Þþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 6 ESERCIZI ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 9 ffiffiffiffiffiffiffiffiffiffiffiffiffi 9 9 ffiffiffiffiffiffiffiffiffiffiffiffiffi ln þ þ 9 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 9 " ffiffiffiffiffiffiffiffiffiffiffiffiffi # ffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffi 4 ffiffiffiffiffiffiffiffiffiffiffiffiffi þ 8 arcsin qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 Þ þ 8 ffiffiffiffiffiffiffiffiffiffiffiffiffi ln j ffiffiffiffiffiffiffiffiffiffiffiffiffi 4 j ln jj ffiffiffiffiffiffiffiffiffiffiffiffiffi þ ffiffiffiffiffiffiffiffiffiffiffiffiffi ln þ þ Þþc 8/8

Esercizio 1. Calcolare i seguenti integrali: 1. I (x) = (x 2 2x + 3) lnxdx. 2. I (x) = x ln ( 1 x *** Soluzione. 1. Integriamo per parti: = x3.

Esercizio 1. Calcolare i seguenti integrali: 1. I (x) = (x 2 2x + 3) lnxdx. 2. I (x) = x ln ( 1 x *** Soluzione. 1. Integriamo per parti: = x3. Esercizio. I ( = ( + 3 ln. I ( = ln ( +. Integriamo per parti: ( 3 I ( = lnd 3 + 3 ( 3 ( 3 = 3 + 3 ln 3 + 3 Poniamo: ( 3 J ( = 3 + 3 ( = 3 + 3 = 3 9 + 3 + C ( ( 3 3 I ( = 3 + 3 ln 9 + 3 + C = 3 9 (3 ln

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

Problemi sulle equazioni parametriche

Problemi sulle equazioni parametriche A Problemi sulle equazioni arametriche Le soluzioni di un equazione letterale sono funzioni dei arametri che in essa comaiono e ci si uò chiedere er quali valori di tali arametri un equazione ha delle

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

SOLUZIONE = p 4 x = 1 4 x2 +

SOLUZIONE = p 4 x = 1 4 x2 + SOLUIONE (a) Per rovare che F () = + arcsin è una rimitiva di f() = sull intervallo (, ) è su ciente rovare che F () =f(), er ogni (, ) F () = + + / / = + + = = + + = + = f() (b) Sicuramente G() è una

Dettagli

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx.

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx. Calcolo Integrale 8 Soluzioni. Calcolare l integrale indefinito + d. R. Procediamo effettuando il cambio di variabile t = ossia = t e d = t dt. d = + t dt = t + t dt = log + t + c + t Se torniamo alla

Dettagli

ESERCITAZIONE 19 : INTEGRALI

ESERCITAZIONE 19 : INTEGRALI ESERCITAZIONE 9 : INTEGRALI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 4 23 Aprile 203 Esercizio Calcola i seguenti

Dettagli

Gli angoli e le funzioni goniometriche

Gli angoli e le funzioni goniometriche Gli angoli e le funzioni goniometriche A a. Poiché sin sin cos e cos Ö á Ücos l equazione diventa: cos cos cos b. Il grafico della funzione cos si ottiene dal grafico della funzione cos alicando rima una

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST) V foglio di esercizi ESERCIZIO. Siano f(t) = t t + per ogni t R ed F una primitiva di f. Se F () =, si calcoli F (). Le primitive di f(t) sono tutte della forma

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Equazioni di grado sueriore al secondo Risolvi in R, mediante scomosizione, le seguenti equazioni di grado sueriore al secondo. esercizio guidato þ 9 ¼ 0 Scomoniamo il olinomio

Dettagli

Esercitazione del Analisi I

Esercitazione del Analisi I Esercitazione del 0-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 0-0 Integrale di funzioni razionali Supponiamo di voler calcolare un integrale del tipo P () Q() d

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica Prof. G.Cardone. Numeri comlessi Calcolare le radici comlesse delle seguenti equazioni: z + i z + = z 4 6 + 6i = i z + i + = (z + ) = i z ( + i) z + i = z = + i i z i + i

Dettagli

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati.

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in Farmacia - anno acc / docente: Giulia Giantesio, gntgli@unifeit Esercizi : Calcolo Integrale Integrali indefiniti

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Svolgimento degli esercizi N. 3

Svolgimento degli esercizi N. 3 Svolgimento degli esercizi N. 3 Prova scritta parziale n. del // Fila. Calcolare il valore del seguente integrale definito: ( x + e x ) dx. ( x + e x ) dx ( x + e 4x + x e x) dx x dx + e 4x dx + x e x

Dettagli

1. Integrali di funzioni irrazionali della forma f(x, n. ax + b ax + b. cx + d = t (1.1).,...,

1. Integrali di funzioni irrazionali della forma f(x, n. ax + b ax + b. cx + d = t (1.1).,..., 1 INTEGRAZIONE DI ALCUNI TIPI DI FUNZIONI IRRAZIONALI 1. Integrali di funzioni irrazionali della forma f(x, n ax+b cx+d ). Sia f una funzione razionale. Le funzioni irrazionali della forma f(x, n ax +

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Risolvi le seguenti disequazioni intere di secondo grado. esercizio guidato 0 þ 0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 9 þ 0 Risolviamo l equazione associata ¼ ¼ 0 Disegniamo

Dettagli

TAVOLA DEGLI INTEGRALI INDEFINITI

TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni elementari c c ln c arc tan c arc tan c a a a e e c TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni composte f( ) f ( ) f '( ) C ' f ln f ( ) c f( ) f '( ) arctan( f

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti 5. CALCOLO INTEGRALE Il calcolo integrale nasce, da un lato per l esigenza di calcolare l area di regioni piane o volumi e dall altro come operatore inverso del calcolo differenziale. 5. Integrali indefiniti

Dettagli

L integrazione delle funzioni razionali fratte

L integrazione delle funzioni razionali fratte L integrazione dee funzioni razionai fratte Ci occuiamo de integrazione dee funzioni f ðxþ che si resentano nea forma x ð Þ essendo x ð Þe Bx ð Þ due oinomi. Ricordiamo che una frazione agebrica si dice:

Dettagli

(File scaricato da dx x + 3 x *** x = t 6. dx = 6t 5 dt

(File scaricato da   dx x + 3 x *** x = t 6. dx = 6t 5 dt Esercizio 818 (File scaricato da http://www.extrabyte.info) : x + 3 x Poniamo: Ciò implica: Quindi l integrale in funzione di t: x = t 6 = 6t 5 Ripristinando la variabile x: 6t 5 F (t) = t 3 + t t 3 =

Dettagli

ESERCITAZIONE: FUNZIONI GONIOMETRICHE

ESERCITAZIONE: FUNZIONI GONIOMETRICHE ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell

Dettagli

ESAME DI MATEMATICA GENERALE I (semestrale) SOLUZIONI DEL TEMA DEL 29 Gennaio 2001

ESAME DI MATEMATICA GENERALE I (semestrale) SOLUZIONI DEL TEMA DEL 29 Gennaio 2001 Esercizio Si enunci il teorema fondamentale del calcolo integrale. ESAME DI MATEMATICA GENERALE I (semestrale SOLUZIONI DEL TEMA DEL 9 Gennaio 00 SECONDA PROVA PARZIALE Teorema (fondamentale del calcolo:

Dettagli

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x)

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x) Integrazione di Funzioni Razionali Un polinomio di grado n N è una funzione della forma P () = a 0 + a +... + a n n dove a 0, a,..., a n sono costanti reali e a n 0. Una funzione della forma R() = P ()

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento della prova scritta - fuori corso - di Matematica II 11 Novembre 2010

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento della prova scritta - fuori corso - di Matematica II 11 Novembre 2010 UNIVERSITÀ DEGLI STUDI DI SALERNO della rova scritta - fuori corso - di Matematica II Novembre Esercizio In R si considerino i seguenti sottosazi vettoriali: V = (x; y; z) R j x y z = x z =, W = (x; y;

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

1 Integrazione per parti

1 Integrazione per parti Integrazione per parti Un pò di teoria Date le funzioni f, g : [a, b] R con f, g C [a, b] la regola di integrazione per parti per gli integrali definiti è: b a f(g ( d = f(bg(b f(ag(a b a f (g( d la regola

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione su: calcolo iti, derivate, integrali) 11 aprile 2010 1 Per altri materiali didattici o per contattarmi: Blog personale: / Indirizzo

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Sito Personale di Ettore Limoli Lezioni di Matematica Prof. Ettore Limoli Sommario Lezioni di Matematica... Equazioni differenziali lineari... Generalità... Equazione differenziale lineare omogenea del

Dettagli

Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di

Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di Analisi Matematica I a.a. -4. Prove scritte e risoluzioni. Pro. Paola Loreti e Daniela Sforza - Determinare il dominio di denizione e calcolare la derivata della funzione f() = e ; + log(log ) Per determinare

Dettagli

Esercitazione n 2. 1 dx = lim e x + e x ω. t dt t=ex = [arctan t]eω 1 = arctan(e ω ) arctan 1. (1 + x) dx = ε ε.

Esercitazione n 2. 1 dx = lim e x + e x ω. t dt t=ex = [arctan t]eω 1 = arctan(e ω ) arctan 1. (1 + x) dx = ε ε. Esercitazione n Integrali impropri Esercizio : Calcolare d. e +e Sol.: Dalla definizione di integrale improprio Allora e + e Dunque e + e ω e e ω e + d e + e t + dt t=e = arctan t]eω = arctane ω arctan

Dettagli

Integrali inde niti. F 2 (x) = x5 3x 2

Integrali inde niti. F 2 (x) = x5 3x 2 Integrali inde niti Abbiamo sinora studiato come ottenere la funzione derivata di una data funzione. Vogliamo ora chiederci, data una funzione f, come ottenerne una funzione, che derivata dia f. Esempio

Dettagli

FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio x x. calcolare i limiti: c) lim 3(

FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio x x. calcolare i limiti: c) lim 3( FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio 0 Cognome e Nome: ) Calcolare il dominio e il segno delle funzioni: f( ) ( ) ln( ) Data la funzione:

Dettagli

, α N, quando f è una delle seguenti

, α N, quando f è una delle seguenti . Determinare lim 0 + α f, α R, e lim 0 α f funzioni: f = ln 8 cos4+, f = ln f = sin sine., α N, quando f è una delle seguenti, f = ln ln, sin sin. Calcolare la derivata della funzione f definita da f

Dettagli

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia Calcolo Integrale 5 Soluzioni. Calcolare l integrale indefinito x + x dx. R. Procediamo effettuando il cambio di variabile t = x ossia x = t e dx = t dt. Quindi dx = x + x t dt = t + t dt = log + t + c

Dettagli

CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n.4, 8 aprile 2013

CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n.4, 8 aprile 2013 CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n., 8 aprile Es.. Calcolare i seguenti integrali indeniti (cioé le funzioni primitive o antiderivate), con l'aiuto del metodo di sostituzione,

Dettagli

A Ripasso. Nella seguente tabella sono riassunti gli schemi risolutivi per le equazioni di secondo grado incomplete.

A Ripasso. Nella seguente tabella sono riassunti gli schemi risolutivi per le equazioni di secondo grado incomplete. A Riasso Scheda Equazioni di secondo grado comlete e incomlete Un equazione di secondo grado, in forma normale, nell incognita è del tio: a þ b þ c ¼ 0, con a 6¼ 0 Nella seguente tabella sono riassunti

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

n L insieme dei numeri reali n La retta reale n Calcolo approssimato

n L insieme dei numeri reali n La retta reale n Calcolo approssimato n L insieme dei numeri reali n La retta reale n Calcolo arossimato n L insieme dei numeri reali 1 Amliamento degli insiemi numerici Nelle recedenti unità, doo aver introdotto l insieme N dei numeri naturali,

Dettagli

Unità Didattica N 29 : L integrale Indefinito

Unità Didattica N 29 : L integrale Indefinito Unità Didattica N 9 L integrale indefinito ) La definizione di integrale indefinito ) Proprietà dell ' integrale indefinito ) Integrali indefiniti immediati ) Integrazione per decomposizione ) Integrazione

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 12 a.a

Analisi Matematica per Bio-Informatici Esercitazione 12 a.a Analisi Matematica per Bio-Informatici Esercitazione a.a. 007-008 Dott. Simone Zuccher Febbraio 008 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx =

2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx = CAPITOLO 1 Integrali 1.1 Integrali indefiniti 1.1.1. Esercizi svolti 1 Calcolare: ( 3 3 + 5 3 3 + 4 4 ) d Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità,

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 11 a.a

Analisi Matematica per Bio-Informatici Esercitazione 11 a.a Analisi Matematica per Bio-Informatici Esercitazione a.a. 007-008 Dott. Simone Zuccer Febbraio 008 Nota. Queste pagine potrebbero contenere degli errori: ci li trova è pregato di segnalarli all autore

Dettagli

Trigonometria. sen α = ordinata del punto B secondo estremo dell arco α (il primo estremo è in A) = BH.

Trigonometria. sen α = ordinata del punto B secondo estremo dell arco α (il primo estremo è in A) = BH. Trigonometria Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al raggio Si assa dai gradi ai radianti con la seguente roorzione: :

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento Prova scritta di Matematica II 09 Febbraio 2011

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento Prova scritta di Matematica II 09 Febbraio 2011 UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 9 Febbraio Esercizio In R si considerino le due rette: t r : 5 y ; s : y t ; a) calcolare una base ortonormale di R a artire dai vettori

Dettagli

ANNO ACCADEMICO Corso di Laurea in Ingegneria Meccanica (Corso A-De) Prova in itinere di Analisi Matematica I 18/12/2014 Compito A

ANNO ACCADEMICO Corso di Laurea in Ingegneria Meccanica (Corso A-De) Prova in itinere di Analisi Matematica I 18/12/2014 Compito A 18/12/2014 Compito A ( ) x+1 1 3 27 x2 e 2x cos 2 x + x 5 x 0 sin x 4 3 Studiare la funzione reale di variabile reale: e disegnarne il grafico x log x + 1 4 Calcolare l integrale indefinito x + 1 3 x 1

Dettagli

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120 Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di AM A.A. - - Docente: Prof. G.Mancini Tutore: Matteo Bruno ed Emanuele Padulano Soluzioni - 9 Maggio. Se f é pari abbiamo che

Dettagli

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1 Capitolo Integrali b Funzione (b \{ }) e Primitiva b+ b+ log e sin cos cos sin tan log cos cot log sin cos tan sin cot arcsin + arctan sinh cosh cosh sinh tanh log(cosh ) coth log(sinh ) cosh tanh sinh

Dettagli

Esercitazione in vista della terza prova matematica

Esercitazione in vista della terza prova matematica Esercitazione in vista della terza prova matematica In vista dell Esame di stato è caldamente consigliato rifare le simulazioni già affrontae durante l anno. ) Stampa le pagine del testo ) Rifare gli esercizi,

Dettagli

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità;

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità; ANALISI MATEMATICA Commissione L. Caravenna, V. Casarino, S. occante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 27 Gennaio 25 TEMA - arte B Esercizio ( unti). Si consideri la funzione

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

Metodi di Integrazione. Integrazione per decomposizione in somma

Metodi di Integrazione. Integrazione per decomposizione in somma Metodi di Integrazione Integrazione per decomposizione in somma Integrazione per parti Integrazione per sostituzione Integrazione per decomposizione in somma In molti casi il calcolo dell integrale indefinito

Dettagli

Esercizi svolti sugli integrali indefiniti

Esercizi svolti sugli integrali indefiniti SCIENTIA http://www.scientiajournal.org/ International Review of Scientific Synthesis ISSN 8-9 Quaderni di Matematica 05 Matematica Open Source http://www.etrabyte.info Esercizi svolti sugli integrali

Dettagli

Goniometria e Trigonometria

Goniometria e Trigonometria Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione La goniometria è la parte della matematica

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

INTEGRALI IMPROPRI. Esercizi svolti

INTEGRALI IMPROPRI. Esercizi svolti INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a c d e f / + 5 d arctan + d 8 + 4 5/ + e + d 9 + 8 + + d 4 d. d. Usando la definizione di integrale

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza + Svolgimento (cenno) a) Dominio={ R,6= }. Non ci sono simmetrie. b)! f() = 4,! + f() = 4. La funzione non può essere prolungata per continuità in =, dove c è un salto.!+1 f() =!+1 arctan + = 1, f()!+1

Dettagli

A Ripasso. 7, :::::g. e si sopprimono tutte le cifre successive.

A Ripasso. 7, :::::g. e si sopprimono tutte le cifre successive. Riasso 1 Scheda Gli insiemi numerici INSIEME NUMERI DESRIZINE PERZINI INTERNE N Z Insieme dei numeri naturali: f 0,1,,,4,5,:::::g Insieme dei numeri interi: þ þ Unità 1 Insieme R Q f :::::, 4,,, 1,0,þ1,þ,þ,þ4,

Dettagli

Verso il calcolo dei limiti: alcuni risultati generali

Verso il calcolo dei limiti: alcuni risultati generali Verso il calcolo dei iti: alcuni risultati generali Ci proponiamo adesso di enunciare e dimostrare alcuni fatti di per sé piuttosto intuitivi, che trovano una giustificazione grazie al concetto di ite.

Dettagli

12 - Tecniche di integrazione

12 - Tecniche di integrazione Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica - Tecniche di integrazione Anno Accademico 05/06 M. Tumminello,

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale

Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Politecnico di Milano Ingegneria Industriale Docenti: P Antonietti, F Cipriani, F Colombo, F Lastaria G Mola, E Munarini, P Terenzi, C Visigalli Terzo appello, Settembre 9 Compito A

Dettagli

Equazioni di erenziali

Equazioni di erenziali Equazioni di erenziali 1. Risolvere la seguente equazione y 0 = 2x cos 2 y. Risoluzione E un equazione di erenziale a variabili searabili. Sono integrali singolari y = 2 + k con k 2. Seariamo le variabili

Dettagli

Complementi di Termologia. III parte

Complementi di Termologia. III parte Prof. Michele Giugliano (Dicembre 00) Comlementi di Termologia. III arte N. 3. - Lavoro nelle trasformazioni. In generale se un gas, soggetto ad una variazione della ressione, varia il volume, esso comie

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

Le equazioni differenziali

Le equazioni differenziali Le equazioni differenziali Unità. Introduzione alle equazioni differenziali Nell Unità 5 abbiamo visto che il concetto di derivata di una funzione ha numerose interretazioni fisiche. Per esemio, se sðtþ

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

1. Introduzione alle funzioni

1. Introduzione alle funzioni Unità Funzioni. Introduzione alle funzioni Tema A Che cos è una funzione? In questa Unità rirendiamo e arofondiamo un tema fondamentale già introdotto nel rimo biennio e che ci accomagnerà in tutto il

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Calcolo Integrale Nello studio del calcolo differenziale si è visto come si può associare ad una funzione la sua derivata. Il calcolo integrale si occupa del problema inverso: data una funzione f è possibile

Dettagli

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 )

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 ) Soluzioni delle Esercitazioni VII -6//8 A. Integrali indefiniti. Si ha +)d. Si ha + )d. Si ha + d +. Si ha d 5. Si ha / + / )d / ) d d + ++c ++c. + / +c + +c. + ) d ln + / +c ln + +c. ) / d )/ +) / d +)/

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

PALESTRA PER IL RECUPERO

PALESTRA PER IL RECUPERO PIAN CARTESIAN E RETTA PALESTRA PER IL RECUPER SVLTI Determinare l equazione della retta passante per ð 3; Þ e per il punto P d intersezione della retta r di equazione 0 e della retta s di equazione 0.

Dettagli

I fasci di circonferenze

I fasci di circonferenze A I fasci di circonferenze Se combiniamo linearmente le equazioni di due circonferenze otteniamo un fascio di circonferenze. Per esemio, date le circonferenze di equazioni la loro combinazione lineare

Dettagli

RICHIAMI di CALCOLO delle PROBABILITA

RICHIAMI di CALCOLO delle PROBABILITA Facoltà di Ingegneria - Università di Bologna Anno Accademico: 00/ TECNICA ED ECONOMIA DEI TRASPORTI Docente: Marino Lui RICHIAMI di CALCOLO delle PROBABILITA PROBABILITA Ci sono fenomeni che non si osso

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9..8 NOTA: lo svolgimento del Tema contiene alcuni commenti di carattere generale. Esercizio Si consideri la funzione TEMA f := log

Dettagli

Procedura per la Risoluzione di Integrali Razionali Fratti

Procedura per la Risoluzione di Integrali Razionali Fratti Procedura er la Risoluzione di Integrali Razionali Fratti Matteo Tugnoli Marc, 0 Di seguito illustriamo una breve rocedura da alicare nel caso di integrazione di frazioni comoste da olinomi di differenti

Dettagli

Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07

Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Pianetagalileo - (ultimo aggiornamento: 23/07/07) Introduzione: L equazione logistica uò descrivere lo sviluo di una oolazione

Dettagli

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile ALCUNI COMPLEMENTI TEORICI Tra le classi di funzioni integrabili secondo Riemann, oltre alle funzioni continue (Paragrafo 66 del libro di testo), ci sono le funzioni monotone (limitate): Teorema Ogni funzione

Dettagli

)DFROWjGL,QJHJQHULD&RUVRGL/DXUHDLQ,QJHJQHULD,QIRUPDWLFD SULPDSDUWH ~~~~~~~~~~~~~~~~~~~~

)DFROWjGL,QJHJQHULD&RUVRGL/DXUHDLQ,QJHJQHULD,QIRUPDWLFD SULPDSDUWH ~~~~~~~~~~~~~~~~~~~~ 8,9(6,7 '(*/,678',',$7( )DFROWjGL,QJJQULD&RUVRGL/DXUDLQ,QJJQULD,QIRUPDWLFD (6(&,,',&$/&/,, SULPDSDUW,7(*$/, Calcolare i seguenti integrali definiti e indefiniti: ~~~~~~~~~~~~~~~~~~~~ 7 8 8 6 )( ) 9)( )

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 06 Luglio 2011

UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 06 Luglio 2011 UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 6 Luglio Gli studenti che devono sostenere l esame da 9 CFU risolvano i quesiti numero 3-4-5-6-7-8-9 Gli studenti che devono sostenere l

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica Parte LIMITI Diamo prima una rapida introduzione teorica.. Limite di una funzione Si dice che la funzione f A per a dove A, a sono numeri oppure che f = A a se, per ogni

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

Scrivere lo sviluppo di Mac Laurin di ordine 3 di una generica funzione f(x), e dire quali ipotesi si devono fare su f(x) per poterlo scrivere.

Scrivere lo sviluppo di Mac Laurin di ordine 3 di una generica funzione f(x), e dire quali ipotesi si devono fare su f(x) per poterlo scrivere. Correzione dell esame di (Analisi) Matematica I - marzo 9 A ESERCIZIO (A) Scrivere lo sviluppo di Mac Laurin di ordine di una generica funzione f(x), e dire quali ipotesi si devono fare su f(x) per poterlo

Dettagli

LE EQUAZIONI IRRAZIONALI

LE EQUAZIONI IRRAZIONALI LE EQUAZIONI IRRAZIONALI Per ricordare H Data ua qualsiasi equazioe A B, saiamo che ad essa si ossoo alicare i ricii di equivaleza che cosetoo di aggiugere o togliere esressioi ai due membri oure moltilicare

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Integrazione delle funzioni razionali

Integrazione delle funzioni razionali Integrazione delle funzioni razionali Riccardo Bardin Per funzione razionale si intende una funzione del tipo A() ove A() e sono polinomi nella variabile. Siano m e n rispettivamente il grado di A() e.

Dettagli

Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 18 Dicembre 2015 Fila A. i 1 2i. z 2 = (1 + i)(1 i)(1 + 3i).

Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 18 Dicembre 2015 Fila A. i 1 2i. z 2 = (1 + i)(1 i)(1 + 3i). Secondo Compitino di Analisi Matematica Corso di laurea in Informatica, corso B 8 Dicembre 05 Fila A Esercizio Si considerino i numeri complessi z = i + i i (a) Calcola il modulo di z e il modulo di z.

Dettagli

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742.

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742. Esercizi Trigonometria Es. n. pag 7. Sviluppa con le formule di duplicazione e semplifica le seguenti espressioni: cos α + sen α + sen α Applichiamo le formule di duplicazione a cos α e sen α cos α sen

Dettagli

Calcolo degli integrali indefiniti

Calcolo degli integrali indefiniti Appendice B Calcolo degli integrali indefiniti Se f è una funzione continua nell intervallo X, la totalità delle sue primitive prende il nome di integrale indefinito della funzione f, o del differenziale

Dettagli

Lineamenti di matematica

Lineamenti di matematica N. DODERO - P. BARONCINI - R. MANFREDI MERCURIO Triennio Lineamenti di matematica er il triennio degli istituti tecnici commerciali Programmatori - MERCURIO Matematica generale: analisi (seconda arte)

Dettagli

Esercitazione 12 - Soluzioni

Esercitazione 12 - Soluzioni Esercitazione - Soluzioni Francesco Davì dicembre 0 Soluzioni esercizio Si può notare che sin x cos 8 x dx sin x sin x cos 8 x dx sin x cos x) cos 8 x dx sin x cos 8 x cos 0 x) dx È possibile allora effettuare

Dettagli

Primitive e Integrali Indefiniti

Primitive e Integrali Indefiniti Capitolo 0 Primitive e Integrali Indefiniti In questo capitolo ci proponiamo di esporre la teoria delle funzioni primitive per funzioni reali di una variabile reale e di dare cenni ai metodi utilizzati

Dettagli