Problemi sulle equazioni parametriche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Problemi sulle equazioni parametriche"

Transcript

1 A Problemi sulle equazioni arametriche Le soluzioni di un equazione letterale sono funzioni dei arametri che in essa comaiono e ci si uò chiedere er quali valori di tali arametri un equazione ha delle soluzioni che soddisfano articolari condizioni. Per esemio, data l equazione x þ ðk Þx k ¼ 0 ci interessa saere er quali valori di k le soluzioni sono reali coincidenti. Si otrebbero trovare le soluzioni in funzione del arametro k e oi imorre che siano uguali, ma è molto iù semlice ragionare sul discriminante: un equazione di secondo grado ammette soluzioni reali coincidenti se ¼ 0. Calcoliamo allora il discriminante e oniamolo uguale a zero: ¼ ðk Þ þ8k ¼ k þ 6k þ! k þ 6k þ ¼ 0!! k ¼ ffiffiffiffiffiffiffiffiffiffiffi 9 ¼ ffiffiffi ffiffiffi 8 ¼ þ ffiffiffi Otterremo quindi soluzioni coincidenti attribuendo a k i valori ffiffiffi ffiffiffi oure þ. I roblemi che coinvolgono le relazioni fra i arametri di un equazione letterale e le sue soluzioni, che indicheremo semre con x e x, sono di diverso tio; ce ne sono erò alcuni che si ossono risolvere facilmente alicando le relazioni fra i coefficienti dell equazione e le sue soluzioni. Negli esemi che seguono ti resentiamo i casi iù significativi. I esemio Data l equazione arametrica x ðk Þx þ k þ ¼ 0 determiniamo i valori di k in modo che, essendo le soluzioni reali: a. una radice sia l oosto dell altra b. una radice sia uguale a c. una radice sia inversa dell altra d. il rodotto delle radici sia uguale a 6. La condizione che vale er tutti i casi è che le radici siano reali; imoniamo dunque che sia 0 e risolviamo la disequazione ottenuta: ðk Þ ðk þ Þ 0! k 8k 0! kk ð 8Þ 0 Costruiamo la tabella dei segni di ciascun fattore della disequazione: Le soluzioni sono quindi reali se k 0 _ k 8. Analizziamo adesso le varie richieste tenendo resente che è a ¼ b ¼ k c ¼ k þ. a. Una radice è l oosto dell altra se x ¼ x cioè se x þ x ¼ 0. Ma x þ x ¼ b, basta quindi imorre che sia k ¼ 0! k ¼ a Per questo valore di k, tuttavia, le soluzioni non sono reali e quindi il roblema non ha soluzioni. b. Ricordiamo che soluzione di un equazione è quel valore che sostituito all incognita rende l equazione una

2 uguaglianza vera; basta allora sostituire al osto di x e risolvere l equazione in k così ottenuta: ðk Þþk þ ¼ 0! k ¼ 9 Questa volta il valore trovato di k aartiene all insieme definito dalla condizione di realtà delle radici (9 > 8) ed è quindi la soluzione del roblema. c. Una radice è inversa dell altra se x ¼ x cioè se x x ¼ Ma x x ¼ c, basta quindi imorre che sia k þ ¼! k ¼ 0 a Per questo valore di k le soluzioni sono reali e sono anche coincidenti; ne consegue che esse devono essere entrambe uguali a. d. Deve essere c a ¼ 6 cioè k þ ¼ 6! k ¼ 7 Anche questo valore di k è accettabile erché minore di 0. II esemio I lati di un rettangolo sono tali che la sua base suera di 8cm il lato di un quadrato e la sua altezza è uguale al lato dello stesso quadrato diminuito di cm. L area del rettangolo è k volte l area del quadrato. Quali valori uò assumere il arametro k affinché il roblema abbia soluzione? Se indichiamo la misura del lato del quadrato con x, ossiamo indicare la misura della base del rettangolo con x þ 8 e quella della sua altezza con x (figura ). Esrimendo er mezzo di x la relazione fra le aree data dal roblema, otteniamo ðx Þðx þ 8Þ ¼kx con la condizione k > 0, dovendo essere ositiva l esressione di un area. Svolgendo i calcoli otteniamo: kx ¼ x x þ 8x 6! ð k Þx 6x þ 6 ¼ 0 Affinché il roblema abbia soluzione occorre che sia 0, quindi, usando la formula ridotta, abbiamo: Figura ¼ 9 6ðk Þ 0! 9 6k þ 6 0! 6k þ 5 0! k 5 6 In definitiva, tenendo conto della condizione iniziale, deve essere 0 < k 5 6. ESERCIZI Data l equazione coincidenti. xðx Þ m ðx Þðm Þ ¼ x m determina il valore di m in modo che le sue soluzioni siano m ¼

3 Determina il valore del arametro k affinché l equazione x þ kx þ k ¼ 0 abbia soluzioni reali. ½k 0 _ k 8Š Determina er quali valori di k l equazione ðk þ Þx ðk Þx þ ¼ 0 non ha soluzioni reali. ½0 < k < 8Š Determina er quali valori di k l equazione kx ðk þ Þx þ k þ ¼ 0 ammette due soluzioni reali distinte. k < 5 Determina er quali valori del arametro k le seguenti equazioni ammettono soluzioni reali: a. x x þ k ¼ 0 k 9 b. x 5x k ¼ 0. k Determina er quali valori del arametro m le seguenti equazioni ammettono soluzioni non reali: a. mx x þ ¼ 0 m > 9 8 b. x ðm þ Þx þ 6 ¼ 0. ½ 5 < m < Š Trova i valori dei arametri in modo che le soluzioni di ciascuna delle seguenti equazioni siano reali e soddisfino le condizioni indicate. 7 Data l equazione ða Þx þðaþþx a ¼ 0, determina er quali valori del arametro a essa ammette in R: a. soluzioni coincidenti a ¼ 5 _ a ¼ b. una soluzione uguale a a ¼ 6 5 c. due soluzioni ooste. ½a ¼ Š 8 Determina il valore del arametro b in modo che l equazione ðb Þx bx þ ¼ 0: a. abbia il rodotto delle soluzioni uguale a 9 b ¼ b. abbia la somma dei reciroci delle soluzioni uguale a ½6 9bŠ c. abbia una soluzione uguale a ½b ¼ _ b ¼ Š d. sia di rimo grado. ½b ¼ _ b ¼ Š (Suggerimento: b. x þ x, quindi...) x x x þ x è la somma dei reciroci delle soluzioni che uò anche essere scritta così 9 Nell equazione x x þ k ¼ 0, trova il valore del arametro k affinché: a. le soluzioni siano reali k b. l equazione sia di rimo grado ½69k RŠ c. la somma dei cubi delle radici sia uguale a k ¼ (Suggerimento: x þ x ¼ ð x þ x Þ x x x x ¼ ð x þ x Þ x x ðx þ x Þ)

4 0 Data l equazione 8x ðk Þx þ k 7 ¼ 0 ed indicate con x e x le sue soluzioni, determina il valore di k in modo che sia: a. x ¼ x b. x ¼ x ½a: k ¼ 5 _ k ¼ 9; b: k ¼ Š c. x ¼ d. x ¼ x c: k ¼ ; d: k ¼ Nell equazione x mx þ m 9 ¼ 0, determina il valore del arametro m in modo che siano verificate a. þ ¼ b. x ¼ c. x ¼ 0 a: m ¼ 9 _ m ¼ ; b: m ¼ ffiffiffi ; c: m ¼ x x x Nell equazione x ðk þ Þx þ k ¼ 0, determina il valore del arametro k in modo che siano verificate a. x ¼ x b. þ ¼ a: k ¼ ; b: k ¼ x x Nell equazione x þ ðk Þx þ ¼ 0 determina il valore del arametro k in modo che: a. x ¼ b. x ¼ 9 x a: k ¼ ; b: k ¼ 5 c. x þ x ¼ d. x ¼ x ½c: k ¼ 0 _ k ¼ ; d: 69kŠ Determina il valore del arametro k affinché l equazione kx ðk Þx þ k ¼ 0 abbia: a. radici coincidenti k ¼ ffiffiffi b. la somma delle radici uguale a ½69kŠ c. soluzioni reciroche ½69kŠ d. la somma dei reciroci delle radici uguale a k ¼ 5 Nell equazione ð mþx þ ðm þ Þx m ¼ 0 determina il valore del arametro m affinchè siano verificate a. x ¼ b. x ¼ x c. x ¼ a: m ¼ 5 ; b: m ¼ ; c: m ¼ 5 x 9 6 Data l equazione ax þ x þ a ¼ 0, determina il valore di a in modo che si abbia: a. x ¼ x b. x ¼ ffiffiffi a: a ¼ ; b: a ¼ c. x þ x ¼ 5 d. ¼ ffiffiffi 6 c: a ¼ ; d: 69a x x 7 Data l equazione x ðm Þx m ð Þ ¼ 0 determina il valore di m in modo che: a. x ¼ x b. x þ x ¼ a: m ¼ ; b: m ¼ 0 8 Data l equazione kx þð 5kÞx ðk þ Þ ¼ 0 determina il valore di k in modo che sia: a. x ¼ 0 b. c. x ¼ x d. x þ x ¼ x þ x ¼ a: k ¼ ; b: k ¼ c: k ¼ 7 ; d: k ¼ 7 _ k ¼ 5

5 9 Data l equazione kx kx þ k þ ¼ 0, determina il valore di k in modo che: a. le soluzioni siano coincidenti k ¼ 8 b. il rodotto delle soluzioni sia uguale alla metà della loro somma ½69kŠ c. la somma delle soluzioni sia uguale a. ½8k R f0gš 0 Nell equazione kx ðk þ Þx þ k ¼ 0, determina il valore del arametro k affinchè siano verificate le seguenti condizioni: a. x x ¼ x þ x b. x þ x þ x x ¼ 5 c. x þ x ¼ a: k ¼ ; b: 69 K R; c: k ¼ Determina il valore del arametro k, affinchè l equazione ðk Þx þ ðk Þx þ þ k ¼ 0 abbia: a. la somma degli inversi delle radici uguale a k ¼ b. la somma dei quadrati delle radici uguale a ½69k RŠ Trova il valore di m in modo che l equazione ðm Þx mx þ m þ ¼ 0 : a. abbia radici reali distinte ½8m RŠ b. abbia radici reali coincidenti ½69m RŠ c. x x þ x x ¼ 0 ffiffiffiffiffi 7 Trova i valori del arametro a er i quali l equazione ð aþx þða þ Þx ða Þ ¼0 soddisfa le seguenti condizioni: a. x ¼ b. x x ðx þ x Þ ¼ 6 c. x ¼ 0 ^ x ¼ a: a ¼ ; b: a ¼ 7 ; c: 69a R 0 Nell equazione x ðk þ Þx þ k ¼ 0 determina il valore del arametro k in modo che siano verificate a. x ¼ ffiffiffi b. x þ x ¼ x x x c. þ x ¼ 7 5 x þ x a: k ¼ ffiffiffi ; b: k ¼ 5 ; c: k ¼ _ k ¼ 5 Considerata l equazione ð kþx ðk þ Þx k ¼ 0, determina il valore del arametro reale k in modo che: a. la somma delle radici sia maggiore di k < _ k > 8 b. il rodotto delle radici sia minore di k < c. la somma dei reciroci delle radici sia maggiore di k < 0

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Risolvi le seguenti disequazioni intere di secondo grado. esercizio guidato 0 þ 0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 9 þ 0 Risolviamo l equazione associata ¼ ¼ 0 Disegniamo

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Equazioni di grado sueriore al secondo Risolvi in R, mediante scomosizione, le seguenti equazioni di grado sueriore al secondo. esercizio guidato þ 9 ¼ 0 Scomoniamo il olinomio

Dettagli

I fasci di circonferenze

I fasci di circonferenze A I fasci di circonferenze Se combiniamo linearmente le equazioni di due circonferenze otteniamo un fascio di circonferenze. Per esemio, date le circonferenze di equazioni la loro combinazione lineare

Dettagli

A Ripasso. Nella seguente tabella sono riassunti gli schemi risolutivi per le equazioni di secondo grado incomplete.

A Ripasso. Nella seguente tabella sono riassunti gli schemi risolutivi per le equazioni di secondo grado incomplete. A Riasso Scheda Equazioni di secondo grado comlete e incomlete Un equazione di secondo grado, in forma normale, nell incognita è del tio: a þ b þ c ¼ 0, con a 6¼ 0 Nella seguente tabella sono riassunti

Dettagli

LA PARABOLA E LE DISEQUAZIONI

LA PARABOLA E LE DISEQUAZIONI LA PARABOLA E LE DISEQUAZIONI DI SECONDO GRADO 6 Per ricordare H Una funzione di secondo grado la cui equazione assume la forma y ˆ a b c si chiama arabola. Le sue caratteristiche sono le seguenti (osserva

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Il sistema di riferimento cartesiano Trova le misure dei segmenti che hanno come estremi le seguenti coie di unti e le coordinate dei loro unti medi. Að, Þ B, ; C 0, D, ; Eð,

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Il sistema di riferimento nel iano Trova le misure dei segmenti che hanno come estremi le seguenti coie di unti e le coordinate dei loro unti medi. Að, Þ B, ; C 0, D, ; Eð, Þ

Dettagli

5. EQUAZIONI e DISEQUAZIONI

5. EQUAZIONI e DISEQUAZIONI 5. EQUAZIONI e DISEQUAZIONI 1. Per ognuna delle affermazioni seguenti, indicare se e vera o falsa, motivando la risposta (a) L equazione di primo grado (1 2)x = 2 ha soluzione x = 2(1+ 2). V F (b) La disequazione

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

L integrazione delle funzioni razionali fratte

L integrazione delle funzioni razionali fratte L integrazione dee funzioni razionai fratte Ci occuiamo de integrazione dee funzioni f ðxþ che si resentano nea forma x ð Þ essendo x ð Þe Bx ð Þ due oinomi. Ricordiamo che una frazione agebrica si dice:

Dettagli

Nuovi lineamenti di matematica

Nuovi lineamenti di matematica N. Dodero P. Baroncini R. Manfredi Nuovi lineamenti di matematica Per il triennio dei licei serimentali N. Dodero P. Baroncini R. Manfredi Nuovi lineamenti di matematica con 6000 esercizi con la collaborazione

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

MODULI DI LINEAMENTI DI MATEMATICA

MODULI DI LINEAMENTI DI MATEMATICA N. DODERO - P. BARONCINI - R. MANREDI TRIENNIO licei scientifici MODULI DI LINEAMENTI DI MATEMATICA er il triennio della scuola secondaria di secondo grado A DISEQUAZIONI ALGEBRICHE UNZIONI SUCCESSIONI

Dettagli

Equazioni di secondo grado parametriche

Equazioni di secondo grado parametriche Equazioni di secondo grado parametriche Data un equazione parametrica di secondo grado, determinare per quali valori di k:. l equazione ha due soluzioni reali; Porre 0. da ora in poi, nei punti seguenti,

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

EDIZIONE RIFORMA. Paolo Baroncini Roberto Manfredi Ilaria Fragni. Lineamenti BLU.Math. con CD ROM

EDIZIONE RIFORMA. Paolo Baroncini Roberto Manfredi Ilaria Fragni. Lineamenti BLU.Math. con CD ROM EDIZIONE RIFORMA Paolo Baroncini Roberto Manfredi Ilaria Fragni Lineamenti BLU.Math con CD ROM Paolo Baroncini Roberto Manfredi Ilaria Fragni Lineamenti BLU.Math lineamenti.math Blu Volume 011 De Agostini

Dettagli

Identità ed equazioni

Identità ed equazioni Matematica e-learning - Identità ed equazioni Prof. erasmo@galois.it A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al

Dettagli

Equazioni di secondo grado Prof. Walter Pugliese

Equazioni di secondo grado Prof. Walter Pugliese Equazioni di secondo grado Prof. Walter Pugliese La forma normale di un equazione di secondo grado Un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza già studiati per le

Dettagli

Nozioni fondamentali sulle disequazioni

Nozioni fondamentali sulle disequazioni Capitolo 1 n n n n Nozioni fondamentali sulle disequazioni Disequazioni intere di primo e di secondo grado Sistemi. Regola dei segni Disequazioni binomie e trinomie n Nozioni fondamentali sulle disequazioni

Dettagli

PALESTRA PER IL RECUPERO

PALESTRA PER IL RECUPERO PARABOLA. PALESTRA PER IL RECUPERO ESERCIZI SVOLTI ESERCIZI Raresentare graficamente la arabola di equazione assegnata. 1 y x þ x Determiniamo la coordinate del vertice b " x V b a 1 ð 1Þ 1 # a y V c b

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado www.competenzamatematica.it E. Modica A.S. 018/019 1 Equazioni di secondo grado Definizione 1. Dicesi equazione di secondo grado, un equazione del tipo: ax + bx + c = 0 con a,

Dettagli

Integrazione di funzioni goniometriche e irrazionali

Integrazione di funzioni goniometriche e irrazionali Integrazione di funzioni goniometriche e irrazionali In questo arofondimento resentiamo alcune tecniche er integrare articolari classi di funzioni goniometriche e irrazionali.. Integralidifunzionigoniometriche

Dettagli

EQUAZIONI LINEARI. Attività di recupero ATTIVITÀ DI RECUPERO. A. Rivedere il ripasso punto per punto nel testo e on line

EQUAZIONI LINEARI. Attività di recupero ATTIVITÀ DI RECUPERO. A. Rivedere il ripasso punto per punto nel testo e on line Attività di recupero A. Rivedere il ripasso punto per punto nel testo e on line B. Esercizi da completare e domande. Completare l uguaglianza: a þ a :::::, a) in modo che risulti un identità; b) in modo

Dettagli

Problemi geometrici che hanno come modello sistemi parametrici misti

Problemi geometrici che hanno come modello sistemi parametrici misti Problemi geometrici che hanno come modello sistemi arametrici misti Discussione di un roblema con arametro lcuni roblemi, er essere esressi nel modo iù generale ossibile, contengono un arametro. In questi

Dettagli

lineamenti di matematica

lineamenti di matematica Nella Dodero Paolo Baroncini Roberto Manfredi lineamenti di matematica geometria analitica e comlementi di algebra er il triennio del liceo scientifico internet: www.ghisettiecorvi.it e-mail: redazione@ghisettiecorvi.it

Dettagli

PALESTRA PER IL RECUPERO

PALESTRA PER IL RECUPERO PIAN CARTESIAN E RETTA PALESTRA PER IL RECUPER SVLTI Determinare l equazione della retta passante per ð 3; Þ e per il punto P d intersezione della retta r di equazione 0 e della retta s di equazione 0.

Dettagli

Le equazioni e le disequazioni frazionarie

Le equazioni e le disequazioni frazionarie MATEMATICAperTUTTI Le equazioni e le disequazioni frazionarie Le equazioni frazionarie ESERCIZIO SVOLTO Le equazioni frazionarie. Quando l equazione è frazionaria, cioè l incognita compare al denominatore,

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 4 Novembre 016 Trinomi di secondo grado Possiamo usare le soluzioni dell equazione di secondo grado per scomporre il trinomio

Dettagli

Sistemi di primo grado

Sistemi di primo grado Appunti di Matematica Sistemi di primo grado Consideriamo il seguente problema: Un trapezio rettangolo di area cm ha altezza di cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della

Dettagli

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni.

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni. Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF3 / PS-MF3 II Lezione EQUAZIONI E SISTEMI Dr. E. Modica erasmo@galois.it www.galois.it IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza

Dettagli

1 Identità ed equazioni

1 Identità ed equazioni 90. Le equazioni 1 Identità ed equazioni Consideriamo due tipi di uguaglianze. La somma di un numero con il suo triplo è uguale al quadruplo del numero stesso. Scriviamo questa frase con i simboli matematici

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene:

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene: 1 EQUAZIONI 1. (Da Veterinaria 2006) L equazione di secondo grado che ammette per soluzioni x1 = 3 e x2 = -1/ 2 è: a) 2x 2 + (2 3-2)x - 6 = 0 b) 2x 2 - (2 3-2)x - 6 = 0 c) 2x 2 - (2 3-2)x + 6 = 0 d) 2x

Dettagli

Problemi parametrici. Con riferimento alla figura 1a, si ha che: pffiffiffi. n ACB d ¼ 60. d CBA ¼ x ¼ 120 x

Problemi parametrici. Con riferimento alla figura 1a, si ha che: pffiffiffi. n ACB d ¼ 60. d CBA ¼ x ¼ 120 x A Problemi arametrici La risoluzione di un roblema uò ortare a scrivere un equazione che contiene un arametro e in questo caso, come abbiamo già visto nel caitolo sulle equazioni, non si vuole conoscere

Dettagli

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un'equazione di secondo grado nell'incognita x è scritta nella forma: ax + bx + c = 0, dove a, b e c sono numeri reali, e a 0 altrimenti l'equazione non sarebbe più di secondo

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo

Dettagli

Sistema di due equazioni di primo grado in due incognite

Sistema di due equazioni di primo grado in due incognite Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore

Dettagli

Disequazioni di II grado

Disequazioni di II grado Disequazioni di II grado Scomposizione di un trinomio di 2 grado La scomposizione del trinomio di 2 grado ax 2 + bx + c dipende dal discriminante. Se questo è positivo esistono radici reali e distinte

Dettagli

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 2 I SISTEMI LINEARI

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 2 I SISTEMI LINEARI PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI I SISTEMI LINEARI Stabilisci se il sistema è determinato, indeterminato o impossibile senza risolverlo [determinato] [impossibile] Determina per

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale 1. Risolvere, nel campo reale, le seguenti equazioni di secondo grado: (a) 81x 0; (b) (x 1) 7x ; (c)

Dettagli

Sol. Sia P = (x, y) un punto che soddisfa l equazione Y 2 = X 3 + ax + b. Ricordiamo che per definizione P = (x, y) è un punto regolare di E se

Sol. Sia P = (x, y) un punto che soddisfa l equazione Y 2 = X 3 + ax + b. Ricordiamo che per definizione P = (x, y) è un punto regolare di E se Teoria Elementare dei Numeri. Soluzioni Esercizi 5. Curve ellittiche. 1. Sia E una curva su R di equazione Y 2 = X 3 + ax + b. Verificare che è una curva regolare di R 2 (senza punti singolari) se e solo

Dettagli

Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07

Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Pianetagalileo - (ultimo aggiornamento: 23/07/07) Introduzione: L equazione logistica uò descrivere lo sviluo di una oolazione

Dettagli

Equazioni. Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof.

Equazioni. Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Equazioni Istituto San Gabriele 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Un equazione è un uguaglianza tra due espressioni

Dettagli

Appunti di matematica Percorso

Appunti di matematica Percorso Ilaria Fragni Aunti di matematica Percorso Analisi infinitesimale EDIZIONE RIFORMA Ilaria Fragni Aunti di matematica Percorso Analisi infinitesimale EDIZIONE RIFORMA internet: www.cedamscuola.it e-mail:

Dettagli

Equazioni di secondo grado intere letterali

Equazioni di secondo grado intere letterali Equazioni di seondo grado intere letterali Esempio. k ) x k + )x + k + 0 a k b k + ) k + Disussione. Se k 0 k l equazione si abbassa di grado. Disutiamo il aso a 0 aso in ui l equazione diventa di primo

Dettagli

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Disequazioni 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Date due espressioni algebriche A e B contenenti numeri e lettere

Dettagli

Soluzione. Soluzione. Soluzione. Soluzione

Soluzione. Soluzione. Soluzione. Soluzione SUCCESSIONI E PROGRESSIONI Esercizio 78.A, 5, 8,, 4, La differenza tra ogni termine e il suo precedente è sempre uguale a 3. Pertanto si tratta di una progressione aritmetica crescente di ragione 3. La

Dettagli

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione

Dettagli

162 Capitolo 5. Equazioni di grado superiore al secondo. c ) x x 2 7x 196; e ) x x x 2; f ) x x x

162 Capitolo 5. Equazioni di grado superiore al secondo. c ) x x 2 7x 196; e ) x x x 2; f ) x x x 6 Capitolo Equazioni di grado superiore al secondo 7 Esercizi 7 Esercizi dei singoli paragrafi - Equazioni riconducibili al prodotto di due o più fattori ) Trovare gli zeri dei seguenti polinomi + ; b

Dettagli

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre www.matematicamente.it Verifica II liceo scientifico: Sistemi, Radicali, Equiestensione 1 Verifica di matematica, classe II liceo scientifico Sistemi, problemi con sistemi, radicali, equiestensione 1.

Dettagli

Dr. Erasmo Modica

Dr. Erasmo Modica UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI PRIMO GRADO Dr. Erasmo Modica erasmo@galois.it IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza

Dettagli

non ha significato in R ¼

non ha significato in R ¼ MATEMATICAerTUTTI I radicai ESERCIZIO SVOLTO Potenze e radici. Saiamo che si uò estrarre a radice quadrata soo di numeri ositivi o nui e che i risutato è un numero ositivo o nuo. La radice cubica di un

Dettagli

Modelli di secondo grado

Modelli di secondo grado MATEMATICAperTUTTI ESERCIZIO SVOLTO Le equazioni di secondo grado incompete. Un equazione di secondo grado si può sempre scrivere nea sua forma normae ax þ bx þ c 0 dove a, b, c sono numeri reai con a

Dettagli

Complementi di algebra

Complementi di algebra Complementi di algebra Equazioni di grado superiore al secondo Come per le equazioni di grado, esistono formule risolutive anche per le equazioni di e grado ma non le studieremo perché sono troppo complesse,mentre

Dettagli

Capitolo 2. Funzioni

Capitolo 2. Funzioni Caitolo 2 Funzioni 2.1. De nizioni Un concetto di fondamentale imortanza è quello di funzione. roosito la seguente de nizione: Vale a questo De nizione 10 Dati due insiemi (non vuoti) X e Y, si chiama

Dettagli

Le equazioni di alcune superfici dello spazio

Le equazioni di alcune superfici dello spazio A Le equazioni di acune suerfici deo sazio L equazione di una suerficie ciindrica In geometria anaitica si dice suerficie ciindrica una quaunque suerficie ce a come direttrice una curva aartenente ad un

Dettagli

LE DISEQUAZIONI DI SECONDO GRADO. Prof. Stefano Spezia

LE DISEQUAZIONI DI SECONDO GRADO. Prof. Stefano Spezia LE DISEQUAZIONI DI SECONDO GRADO 1. L EQUAZIONE ASSOCIATA 4x + 3x 2 + 6 > + 2x 3x 2 + 4x + 6 > + 2x 3x 2 + 4x 2x + 6 > 0 3x 2 + 2x + 6 > 0 Forma normale Ogni disequazione di secondo grado può essere ricondotta

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

LINEAMENTI DI MATEMATICA

LINEAMENTI DI MATEMATICA N. DODERO - P. BARONCINI - R. MANFREDI ITC MODULI DI LINEAMENTI DI MATEMATICA er il biennio degli istituti tecnici commerciali IGEA - LICEO TECNICO - ERICA Equazioni e sistemi di secondo grado Disequazioni

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche.

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Equazioni Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Nelle espressioni compare una lettera, chiamata incognita. Possiamo attribuire un valore a questa incognita, e vedere

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Liceo Scientifico Statale G. Stampacchia Tricase Oggetto: Test di ingresso Conoscenze e competenze sul programma previsto nella classe seconda del Liceo Scientifico. Algebra Q) Ordinare in forma crescente

Dettagli

Gli angoli e le funzioni goniometriche

Gli angoli e le funzioni goniometriche Gli angoli e le funzioni goniometriche A a. Poiché sin sin cos e cos Ö á Ücos l equazione diventa: cos cos cos b. Il grafico della funzione cos si ottiene dal grafico della funzione cos alicando rima una

Dettagli

1. Introduzione alle funzioni

1. Introduzione alle funzioni Unità Funzioni. Introduzione alle funzioni Tema A Che cos è una funzione? In questa Unità rirendiamo e arofondiamo un tema fondamentale già introdotto nel rimo biennio e che ci accomagnerà in tutto il

Dettagli

Anno 2. Equazioni di secondo grado

Anno 2. Equazioni di secondo grado Anno Equazioni di secondo grado 1 Introduzione In questa lezione impareremo a utilizzare le equazioni di secondo grado. Al termine di questa lezione sarai in grado di: descrivere le equazioni di secondo

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Parabola. 1. Le parabole con vertice nell origine. La parabola come luogo geometrico

Parabola. 1. Le parabole con vertice nell origine. La parabola come luogo geometrico Parabola Unità8 1. Le arabole con vertice nell origine La arabola come luogo geometrico Nelle Unità recedenti abbiamo imarato a scrivere le equazioni nel iano cartesiano di alcuni luoghi geometrici che

Dettagli

NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:... b =

NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:... b = Soluzioni Test di ingresso: MATEMATICA C.d.L. Scienze Geologiche (26/09/202) VALUTAZIONE mancata risposta o risposta errata: 0 punti risposta corretta: punto NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:....

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

Monomi e polinomi. MATEMATICAperTUTTI. Monomi 1 ESERCIZIO SVOLTO

Monomi e polinomi. MATEMATICAperTUTTI. Monomi 1 ESERCIZIO SVOLTO MATEMATICAperTUTTI Monomi ESERCIZIO SVOLTO I monomi. Un espressione letterale come a b si dice monomia perché in essa non compaiono operazioni di addizione o sottrazione; in un monomio le lettere che compaiono

Dettagli

SOLUZIONE = p 4 x = 1 4 x2 +

SOLUZIONE = p 4 x = 1 4 x2 + SOLUIONE (a) Per rovare che F () = + arcsin è una rimitiva di f() = sull intervallo (, ) è su ciente rovare che F () =f(), er ogni (, ) F () = + + / / = + + = = + + = + = f() (b) Sicuramente G() è una

Dettagli

Matematica per le scienze sociali Equazioni e disequazioni. Domenico Cucina

Matematica per le scienze sociali Equazioni e disequazioni. Domenico Cucina Matematica per le scienze sociali Equazioni e disequazioni Domenico Cucina University of Roma Tre D. Cucina (domenico.cucina@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini Divisione di polinomi, teorema del resto e teorema di Ruffini Teorema (della divisione con resto tra due polinomi in una variabile). Dati due polinomi A x e B x, con B x 0, esistono sempre, e sono unici,

Dettagli

www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1

www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1 www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di grado 1 Verifica di matematica, classe II liceo scientifico Equazioni di secondo grado, equazioni frazionarie,

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

Cubiche e affinità nelpiano

Cubiche e affinità nelpiano Cubiche e affinità neliano Francesco Daddi Marzo 2009 Vogliamo dimostrare che, assegnata una qualsiasi coia di funzioni cubiche, esiste un affinità che trasforma l una nell altra. E ossibile collegare

Dettagli

1 Identità ed equazioni

1 Identità ed equazioni 1 Identità ed equazioni Consideriamo l uguaglianza espressa dalla seguente frase: Trova un numero tale che il suo doppio sommato con se stesso sia uguale al suo triplo. x > 2x + x = 3x La relazione: 2x

Dettagli

n L insieme dei numeri reali n La retta reale n Calcolo approssimato

n L insieme dei numeri reali n La retta reale n Calcolo approssimato n L insieme dei numeri reali n La retta reale n Calcolo arossimato n L insieme dei numeri reali 1 Amliamento degli insiemi numerici Nelle recedenti unità, doo aver introdotto l insieme N dei numeri naturali,

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Esercizi sull equivalenza Barra vero o falso. Se due rettangoli sono equivalenti e hanno una coia di lati congruenti, allora sono congruenti. Se due triangoli hanno basi congruenti

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

1. DISUGUAGLIANZE GEOMETRICHE

1. DISUGUAGLIANZE GEOMETRICHE 1. DISUGUAGLIANZE GEOMETRICHE (SOLUZIONI) Cosa è una disuguaglianza? Che differenza c è tra una disuguaglianza e una disequazione? Dato un numero reale a definiamo il suo valore assoluto a in iù modi equivalenti:

Dettagli

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

LE EQUAZIONI IRRAZIONALI

LE EQUAZIONI IRRAZIONALI LE EQUAZIONI IRRAZIONALI Per ricordare H Data ua qualsiasi equazioe A B, saiamo che ad essa si ossoo alicare i ricii di equivaleza che cosetoo di aggiugere o togliere esressioi ai due membri oure moltilicare

Dettagli

Test di ingresso: MATEMATICA C.d.L. Scienze Geologiche (27/09/2013) NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:...

Test di ingresso: MATEMATICA C.d.L. Scienze Geologiche (27/09/2013) NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:... Test di ingresso: MATEMATICA C.d.L. Scienze Geologiche (27/09/203) Soluzioni VALUTAZIONE mancata risposta o risposta errata: 0 punti risposta corretta: punto NOME E COGNOME:....................................................

Dettagli

þ k Þy ¼ ð 1 3k Þx 2 þ 21 k

þ k Þy ¼ ð 1 3k Þx 2 þ 21 k A I fasci di paraboe Come equazione di un fascio di rette è a combinazione ineare di due particoari rette, e sue generatrici, anche un fascio di paraboe è a combinazione ineare di due particoari di esse.

Dettagli

GLI ARGOMENTI DI MATEMATICA

GLI ARGOMENTI DI MATEMATICA N. DODERO - P. BARONCINI - R. MANFREDI IPIA GLI ARGOMENTI DI MATEMATICA er gli istituti rofessionali er l industria e l artigianato N. Dodero - P. Baroncini - R. Manfredi GLI ARGOMENTI DI MATEMATICA er

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però

Dettagli

Sezione Esercizi 75

Sezione Esercizi 75 Sezione 0 Esercizi 75 0 Esercizi 0 Esercizi dei singoli paragrafi - le equazioni di secondo grado in una incognita ( ) Risolvi le seguenti equazioni di secondo grado pure a ) x = 0; b ) x = 49 5 ; x =

Dettagli

Matematica ed Elementi di Statistica. Regole di calcolo

Matematica ed Elementi di Statistica. Regole di calcolo a.a. 2011/12 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica Regole di calcolo Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni:

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: LS Fila A Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: NB Ciascun procedimento risolutivo si deve concludere con la frase L'insieme delle soluzioni è a) Trasformando

Dettagli