MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2013/2014 Prof. C. Presilla. Prova A3 17 settembre 2014

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2013/2014 Prof. C. Presilla. Prova A3 17 settembre 2014"

Transcript

1 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 203/204 Prof. C. Presilla Prova A3 7 settembre 204 Cognome Nome iscritto al secondo anno iscritto al terzo anno fuoricorso o con più di 55 CFU penalità esercizio voto

2 Esercizio Dimostrare che tutte le soluzioni dell equazione z 3 +3z +5=0 hanno modulo strettamente maggiore di. Si ragioni per assurdo. [punteggio 5] Sia z 0 una soluzione dell equazione z 3 +3z+5 = 0 e si supponga, per assurdo, che risulti z 0 apple. Poiché z 0 =( 5 z 3 0 )/3, possiamo minorare z 0 come z 0 5 z = 4 3. Siamo così giunti ad una contraddizione, deve pertanto essere z 0 >. Alternativamente, si ponga f(z) =z 3 +5 e g(z) =3z e si osservi che le funzioni intere f e g sono tali che f(z) g(z) sulla circonferenza z =. Per il teorema di Rouché le funzioni f e f + g hanno lo stesso numero di zeri all interno del cerchio z <. I tre zeri di f(z) sono esterni a tale cerchio dunque f(z)+g(z) = 0 non ha soluzioni z <.

3 Esercizio 2 potenze: Determinare il raggio di convergenza delle seguenti serie di a) X n 2 n [( ( ) n )/2]z n, b) n=0 X n 2+i n z n. n=0 [punteggio 5] a) Il coe ciente n-esimo della serie riscritta nella forma P n=0 a nz n è n a n = 2 n n dispari 0 n pari equindi R =limsup m! = lim sup m! n m = lim m! n a m /m n a n /no sup m: n pari = lim m! n2/nm m =, n o n 2/n dove n m = m se m è dispari e n m = m + se m è pari. In conclusione, R =/. b) Il coe ciente n-esimo della serie è a n = n 2+i n = n 2 n e ilnn esiha a n a n+ = n 2 n (n + ) 2 n+ = n n + 2 n!!. Il raggio di convergenza della serie è R =/.

4 Esercizio 3 Determinare il dominio di analiticità della funzione f(z) = sin z p cos z assumendo per f(z) il ramo corrispondente al ramo di log z che ha come linea di diramazione il semiasse immaginario positivo. [punteggio 6] Le funzioni sin z e cos z sono intere, pertanto i punti di non analiticità di f sono tutti e solo quelli determinati dalla radice p cos z =exp 2 log(cos z). La linea di diramazione del ramo scelto di log(cos z) è determinata dall equazione cos z =it, 0 apple t<. L equazione risulta equivalente a e iz 2 2ite iz +=0, la cui soluzione è e iz =it + p (it) 2 =i t ± p t 2 +. Osservando che, al variare di 0 apple t<, la soluzione t+ p p t 2 + rappresenta il semiasse reale [, ) mentret t 2 + il segmento reale [, 0), si ha rispettivamente h z(t) = i log t + p t 2 + e i /2i =(/2+2k) iln t + p t 2 +, t 2 [0, ), k 2, h p z(t) = i log t 2 + t e i /2i =( /2+2k) iln p t 2 + t, t 2 [0, ), k 2, Tali punti rappresentano gli assi immaginari negativi passanti per z =(/2+ 2k) e gli assi immaginari positivi passanti per z =( /2+2k).

5 Esercizio 4 Sia f(z) analitica in C con Im f 0 (z) funzione limitata in C. Dimostrare che f(z) =a + bz con a, b 2 C. [punteggio 6] Si ponga g(z) =exp[ g(z) =exp[re( if 0 (z)]. La funzione g è analitica in C eilsuomodulo if 0 (z))] = exp[im(f 0 (z))] è una funzione limitata in C. Per il teorema di Liouville possiamo quindi a ermare che g(z) è costante in C. Segue che anche f 0 (z) è costante in C, diciamo f 0 (z) =b con b 2 C. Da ciò possiamo dedurre che f(z) =bz + h(z) con h 0 (z) =08z 2 C. D altro canto h(z) =f(z) bz è anche analitica in C e pertanto costante in C, diciamo h(z) =a con a 2 C.

6 Esercizio 5 Stabilire se esiste lim z!0 f 000 (z), dove f(z) = (z ) 2 (z 2). In caso a ermativo determinare il valore di tale limite. [punteggio 5] La funzione f(z) ha un polo semplice in z = 2 e uno doppio in z =ed è altrove analitica. Pertanto f(z) e tutte le sue derivate sono analitiche in z = 0. In particolare f 000 (z) è continua in z =0erisulta lim f 000 (z) =f 000 (0). z!0 Il modo più rapido per determinare il valore di f 000 (0) è il seguente. Nella regione 0 < z < la funzione f(z) è sviluppabile in serie di Taylor e, ricordando il risultato notevole della serie geometrica, si ha 2 f(z) = z 2 z/2 2 z2 z2 + + = 2 +z + z2 + z = 2z n +2z +3z2 +4z = z z z = z z2 6 z3 + O(z 4 ). 4 + z z2 + z2 4 + z Da questa espressione e dall unicità dello sviluppo in serie di Taylor segue immediatamente f 000 (0) = ! = 6 8.

7 Esercizio 6 Si calcoli l integrale reale 0 x a dx, a 2 R, +x3 specificando per quali valori di a l integrale risulta convergente. [punteggio 6] Si ponga f(z) =e ( a)logz /( + z 3 ), assumendo per il logaritmo il ramo log z =lnr +i, z = re i, r > 0, 0 < <2. Si osservi che f ha poli semplici in z = ez =e ±i /3 eunalineadi diramazione coincidente con il semiasse reale positivo. Si integri f lungo il cammino chiuso = + R r,dove (x) =x + i0, r apple x apple R, R( ) =Re i,0apple apple2 /3, 2(x) =xe i2 /3, R x r, e r( ) =re i, 2 /3 0. Per R>er<siha f(z)dz = f(z)dz + f(z)dz + f(z)dz + f(z)dz =2 i Res z=e i /3 e ( a)logz =2 i e( 3z 2 R a)logz +z 3 =2 i 3 e i(+a) /3. z=e i /3 Gli integrali sui cammini che compongono f(z)dz = R e ( r a)(ln x+i0) (xe i0 ) 3 + ei0 dx = 2 valgono R e ( r a)lnx r x 3 + dx, 2 f(z)dz = r e ( R a)(ln x+i2 /3) (xe i2 /3 ) 3 + ei2 /3 dx = e R i(2 a)2 /3 r e ( a)lnx x 3 + dx, R a)lnr f(z)dz apple e( R R = 3 R2 a 2(R 3 ) R!! 0, se a>, r f(z)dz apple e( a)lnr 3 r 3 2 r = 3 r2 a 2( r 3 ) r!0! 0, se a<2. Prendendo i limiti R!e r! 0, per <a<2 si conclude 0 x a x 3 + dx =2 i 3 = 3 = 3 e i(+a) /3 ei(2 a)2 /3 2i e i(+a) /3 e i(+a) /3 sin(( + a) /3).

8 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 203/204 Prof. C. Presilla Prova B3 7 settembre 204 Cognome Nome iscritto al secondo anno iscritto al terzo anno fuoricorso o con più di 55 CFU penalità esercizio voto

9 Esercizio Stabilire, motivando sinteticamente in caso di risposta positiva o portando un esempio esplicito nel caso di risposta negativa, se k kè una norma nello spazio vettoriale indicato. a) kxk = X k= x k k /2, x 2 `2(R) b) kfk =sup f(x), f 2 C (R) x2r c) kxk = x + x + x 2 + x 3, x 2 R 3 d) kxk =sup x k, x 2 `(R) k2n /2 e) kfk = f(x) dx 2, f 2 C (R) \ C b (R) R X f) kxk = x k, x 2 span(`f (R)) k= [punteggio 5] a) No. Si prenda x = (x,x 2,...) con x k = /( p k(log k) 2/3 ). Risulta x 2 `2(R) in quanto X x k 2 = k= mentre kxk = X k= X k= k(log k) 4/3 < x k k /2 = X =. k(log k) 2/3 k= b) No. Esistono funzioni f 2 C (R) non limitate. Si può scegliere, ad esempio, f come una funzione sempre nulla tranne che per dei picchi di forma triangolare centrati sugli interi positivi. Il picco k-simo centrato su x = k è un triangolo di base /k 3 e altezza k. c) No. Se x =(0,, ) si ha kxk = 0. d) Si. Risulta ` ` e(`, k k ) spazio vettoriale normato. e) Si. Risulta C (R) \ C b (R) C 2 (R) e(c 2 (R), k k 2 ) spazio vettoriale normato. f) No. Si consideri x =(x,x 2,...) con x k =/k. Risultax 2 span(`f (R)) = `0(R) mentre P k= x k =.

10 Esercizio 2 Sia W un sottospazio chiuso di uno spazio di Hilbert separabile (V,h, i). Dimostrare che ogni vettore v 2 V può essere scritto come v = w + z, w 2 W, z 2 W?. Omettere la dimostrazione dell univocità di tale decomposizione. [punteggio 5] Vedi Rudimenti di analisi infinito dimensionale, pagina 95.

11 Esercizio 3 Sia A 2L(V ) un operatore lineare limitato nello spazio Euclideo (V,h, i). Dimostrare che ka Ak = kak 2. [punteggio 5] Sapendo che la norma del prodotto di due operatori è minore o uguale al prodotto delle norme degli stessi operatori e utilizzando la proprietà ka k = kak, si ha immediatamente ka AkapplekA kkak = kak 2. Dimostriamo ora che vale la disuaglianza opposta, ovvero kak apple p ka Ak. Si osservi che 8v 2 V, con v 6= 0, si ha kavk 2 = hav, Avi = ha Av, vi apple ka Avk kvk = ka Avk kvk 2 kvk! ka Auk apple kvk 2 kuk sup u6=0 = ka Akkvk 2, dove si è utilizzata la disuguaglianza di Cauchy-Schwarz hu, vi apple kuk kvk e la definizione di norma di A A. Segue immediatamente kavk kak =sup v6=0 kvk apple p ka Ak.

12 Esercizio 4 Dimostrare che nello spazio delle funzioni fondamentali K vale l identità tra distribuzioni +X k= e ikx =2 (x), dove la serie indica il limite per n!delle distribuzioni regolari ' gn con g n (x) = P n k= n eikx. [punteggio 6] Usiamo la notazione in cui la distribuzione regolare ' gn la corrispondente funzione g n (x). Per definizione viene confusa con +X k= e ikx = lim Per x 6= 0siha nx n! k= n e ikx. nx k= n e ikx = nx k=0 e ix k + nx k=0 e ix k = eix(n+) e ix + e ix(n+) e ix e ix(n+) = e ix/2 (e ix/2 e ix/2 ) + e ix(n+) e ix/2 (e ix/2 e ix/2 ) = e ix/2 +e ix(n+/2) + eix/2 e ix(n+/2) 2i sin(x/2) 2i sin(x/2) sin(x/2) + sin(x(n +/2)) = sin(x/2) sin(x(n +/2)) =. sin(x/2) Utilizzando il risultato noto lim n! R sin(nx) f(x)dx = f(0), 8f 2K, x ovvero in termini di distribuzioni sin(nx) lim = (x), n! x e osservando che per x ' 0sihasin(x/2) ' x/2, concludiamo che +X k= e ikx sin(x(n +/2)) = lim =2 (x). n! sin(x/2) Si osservi che l identità così ottenuta è formalmente la rappresentazione in serie di Fourier di 2 (x).

13 Esercizio 5 Sia + l operatore di traslazione a destra che agisce nello spazio di Banach complesso (`2(C), k k 2 ) + (x,x 2,x 3,...)=(0,x,x 2,...). Determinare lo spettro puntuale e continuo di +. Si ricordi che k + k =. [punteggio 6] Per determinare lo spettro puntuale di + studiamo l iniettività dell operatore zi + al variare di z 2 C. Si vuole determinare se Ker(zI + ) contiene il solo vettore nullo ovvero se (zi + )x = 0 è soddisfatta per x 2 `2(C) solo da x = 0 (operatore zi + iniettivo). L equazione agli autovalori (zi + )x =0implica zx =0, zx k = x k, k =2, 3,... Se z = 0 le equazioni per k 2 forniscono l unica soluzione x = 0. Se z 6= 0, dalla prima equazione si ha x = 0, che usata nell equazione per k = 2 fornisce x 2 = 0, che usata nell equazione per k = 3 fornisce x 3 = 0, e così via. Pertanto anche per z 6= 0 l unica soluzione possibile è x = 0. In conclusione l operatore zi + è i n i e t t i v o 8z 2 C e p( + )=;. Per determinare lo spettro continuo di + studiamo la suriettività di zi + al variare di z 2 C \ p ( + )=C. Si tratta di determinare se Ran(zI + )= {y 2 `2(C) : y =(zi + )x, x 2 `2(C)} coincide con tutto `2(C) (operatore zi + suriettivo) oppure ne è un sottoinsieme proprio. L equazione vettoriale (zi + )x = y equivale al sistema di infinite equazioni scalari zx 0=y zx k x k = y k, k =2, 3,... Se z = 0, deve essere y =0quindizI z 6= 0, deve aversi + è certamente non suriettivo. Se x = y z, x 2 = x + y 2 z x 3 = x 2 + y 3 z. x k = x k + y k z = y z 2 + y 2 z, = y z 3 + y 2 z 2 + y 3 z, = y z k + y 2 z k +...y k z 2 + y k z. Per 0 < z apple, al vettore y =(, 0, 0,...) 2 `2(C) corrisponde la soluzione x con componenti x k = z k che non appartiene a `2(C). Pertanto anche in questo caso l operatore zi + è non suriettivo. Infine, considerando che ( + ) B(0, k + k)ek + k =, concludiamo che c( + )=B(0, ).

14 Esercizio 6 Calcolare la trasformata di Fourier della funzione xe 3(x 2)2. Si rammenti il risultato notevole F[e x2 ]( )= p e 2 /4. [punteggio 6] A partire dal risultato notevole F[e x2 ]( )= e x2 e i x dx = p e R 2 /4, e utilizzando le proprietà generali della trasformata di Fourier, F[f(ax)]( )= F[f(x)]( /a), a 2 R, a 6= 0, a si ha F[f(x + b)]( )=F[f(x)]( )e i b, b 2 R, F[e 3x2 ]( )= r 3 e 2 /2, F[e 3(x 2)2 ]( )= r 3 e 2 /2 e i 2. Infine F[xe 3(x 2)2 ]( )=i d d F[e 3(x 2)2 ]( ) r =i 3 e 2 /2 2i 6 r i = 2 e /2 2i 2i.

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2014/2015 Prof. C. Presilla. Prova A4 27 gennaio 2016

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2014/2015 Prof. C. Presilla. Prova A4 27 gennaio 2016 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 204/205 Prof. C. Presilla Prova A4 27 gennaio 206 Cognome Nome iscritto al secondo anno iscritto al terzo anno fuoricorso o con più di 55 CFU penalità esercizio

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3)

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a. 2014-2015, lez.3) 1 Analisi Numerica 1 mod. a.a. 2014-2015, Lezione n.3

Dettagli

ESERCIZI DI MATEMATICA APPLICATA

ESERCIZI DI MATEMATICA APPLICATA ANTONIO LEACI Analisi Complessa ( È data la funzione: f(z (z2 + e z sin z Si studi l analiticità di f(z nel piano complesso C Si determinino e si classifichino le eventuali singolarità Si calcoli il residuo

Dettagli

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016 Lecce, 12IX2016 1 Tracciare il grafico della funzione definita dalla seguente e- { 1 + x } f(x) = x exp 1 x sin(1/x)[e x + 2x 2 log cos x] x z 2 i z = z 2 e rappresentare le soluzioni sul piano complesso

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

Metodi Matematici della Fisica. S3

Metodi Matematici della Fisica. S3 Metodi Matematici della Fisica. S Filippo Cesi 0 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 6 CFU 8 CFU 4 + 6 CFU altro: problema 4 5 6 7 8 9 0 test totale voto in trentesimi voto

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 7 A.A. 6/7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

F. Fagnani, A. Tabacco e P. Tilli. Versione 21 marzo. Introduzione all Analisi Complessa e Teoria delle distribuzioni.

F. Fagnani, A. Tabacco e P. Tilli. Versione 21 marzo. Introduzione all Analisi Complessa e Teoria delle distribuzioni. F. Fagnani, A. Tabacco e P. Tilli Introduzione all Analisi Complessa e Teoria delle distribuzioni 2 marzo 2006 3 Serie di Taylor e di Laurent. Residui 3. Successioni e serie di numeri complessi Una successione

Dettagli

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es.

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. Analisi Matematica 2 5 febbraio 2013 Nome, Cognome, Matricola: Cognome del Docente: Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. 7 1 Esercizio 1.

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 5 GIUGNO 6 Si svolgano cortesemente i seguenti Problemi. PRIMO PROBLEMA (PUNTEGGIO: 3/3) Dati due operatori hermitiani  and ˆB in uno spazio di Hilbert

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel Lezione : struttura di IR n, prodotto scalare, distanza e topologia.

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Analisi Matematica e Geometria 1

Analisi Matematica e Geometria 1 Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

Le Funzioni di Bessel

Le Funzioni di Bessel Le Funzioni di Bessel Serie di Laurent del prodotto Siano f, g : C due funzioni olomorfe in un anello := {z C r < z z 0 < R}, r < R. Allora f(z)g(z) è olomorfa in e quindi si potrà scrivere come una serie

Dettagli

Esercizi sulle trasformate di Fourier

Esercizi sulle trasformate di Fourier Esercizi sulle trasformate di Fourier Corso di Fisica Matematica, a.a. 3-4 Dipartimento di Matematica, Università di Milano 8 Novembre 3 Questi esercizi richiederanno il calcolo di integrali a volte non

Dettagli

Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame

Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Le seguenti domande teoriche sono domande-tipo da esame. L elenco di domande

Dettagli

3) Enunciare e dimostrare le regole di trasformazione algebriche e analitiche della trasformata di Fourier.

3) Enunciare e dimostrare le regole di trasformazione algebriche e analitiche della trasformata di Fourier. Lecce, 16/4/2008 1) Calcolare il valor principale del seguente integrale: x + 1 (x 2 + 4)x dx Y (t) 3Y (t) + 2Y (t) = H(t 1) e t t > 0, Y (0) = 0, Y (0) = 1, 3) Enunciare e dimostrare le regole di trasformazione

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Metodi I Secondo appello

Metodi I Secondo appello Metodi I Secondo appello Chi recupera la prima prova fa la parte A in due ore. Chi recupera la seconda prova fa la parte B in due ore. Chi fa l appello per intero fa A., B., le prime tre domande di A.2

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Eserciziario del corso di Metodi Matematici per l Ingegneria. (Proff. Ugo Gianazza - Giuseppe Savaré)

Eserciziario del corso di Metodi Matematici per l Ingegneria. (Proff. Ugo Gianazza - Giuseppe Savaré) Eserciziario del corso di Metodi Matematici per l Ingegneria (Proff. Ugo Gianazza - Giuseppe Savaré) Dott. Antonio Marigonda 6 febbraio 9 Dipartimento di Matematica F. Casorati Università di Pavia Ufficio

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 A ESERCIZIO 1. (6 punti) Data la funzione reale di due variabili reali f(x, y) = ln x 3y + 3y x 1 (a) determinare

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Matematica Applicata Tutoraggio 3. in serie di Laurent nella corona circolare 0 < z 1 < 2.

Matematica Applicata Tutoraggio 3. in serie di Laurent nella corona circolare 0 < z 1 < 2. Serie di Laurent Esercizio Sviluppare z 2 in serie di Laurent nella corona circolare 0 < z < 2. Soluzione con il calcolo dei coefficienti. Scomponendo f(z) in frazioni semplici, si ha ( 2 z ) z + il primo

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

Il teorema di Stone Weierstrass

Il teorema di Stone Weierstrass APPENDICE B Il teorema di Stone Weierstrass Definizione B.1. Siano X un insieme non vuoto e A un sottospazio vettoriale dello spazio delle funzioni a valori reali (risp. complessi) su X. Si dice che A

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio 1. Si consideri il seguente sistema 2x 3y + z =5 x ky +2z = k kx y z = 1 Si trovino il numero delle soluzioni al variare del parametro

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 8 Gennaio 06 Soluzioni Esercizio Siano z e z due numeri complessi con modulo e argomento rispettivamente (ρ, θ ) e (ρ, θ ) tali

Dettagli

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo appello, 1 Luglio 010 Cognome: Nome: Matricola: Compito A Es. 1: 6 punti Es. : 1 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Il teorema di rappresentazione

Il teorema di rappresentazione APITOLO 6 Il teorema di rappresentazione. Introduzione Lemma.. Sia una circonferenza e sia A il cerchio racchiuso: riesce 2π i Dimostrazione. Primo caso: z / A = 0 se z / A se z A La funzione = é analitica

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Disequazioni in una variabile. Disequazioni in due variabili

Disequazioni in una variabile. Disequazioni in due variabili Disequazioni in una variabile Disequazioni in due variabili 2 () 2 3 > (2) 2 + + > (3) 2 3 + 2 < (4) 2 > + (5) 2 < 3 (6) 3 8 > 5 + 3 + + 5 (7) + < 2 < 2 (8) 2 α (α parametro reale) (9) 3 log /2 ( ) < 2

Dettagli

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 MATRICOLA:...NOME e COGNOME:............................................. Desidero sostenere la prova orale al prossimo appello

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

FUNZIONI TRA INSIEMI. Indice

FUNZIONI TRA INSIEMI. Indice FUNZIONI TRA INSIEMI LORENZO BRASCO Indice. Definizioni e risultati.. Introduzione.. Iniettività e suriettività.3. Composizione di funzioni 4.4. Funzioni inverse 5. Esercizi 5.. Esercizi svolti 5.. Altri

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Programma di Analisi Matematica 2

Programma di Analisi Matematica 2 Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2015/16 1. Integrali impropri del primo tipo 2. Integrali impropri del secondo tipo 3. Teorema del confronto per gli integrali impropri

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0 Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale Spazi di Funzioni Docente:Alessandra Cutrì Spazi vettoriali normati Uno spazio Vettoriale V si dice NORMATO se è definita su V una norma, cioè una funzione che verifica: v 0 e v = 0 v = 0 λv = λ v λ R(o

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R + NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 FEBBRAIO 6 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l integrale SOLUZIONE DEL PRIMO PROBLEMA M=. (+ x

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI Analisi Matematica T1 - A.A.2011-2012 - prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI (Grazie agli studenti del corso che comunicheranno omissioni o errori) 27 SETTEMBRE

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A Prova parziale di ANALISI MATEMATICA I - 5//207 Prova A da Si studino l insieme di definizione ed il segno della funzione definita fx) = log 2 ) 2 sinx3 cos x+5) + arctan 3 x 3 x + π 4 ) 2 Si risolva la

Dettagli

Politecnico di Bari - A.A. 2012/2013 Corso di Laurea in Ingegneria Elettrica Esame di ANALISI MATEMATICA - 3 Luglio 2013.

Politecnico di Bari - A.A. 2012/2013 Corso di Laurea in Ingegneria Elettrica Esame di ANALISI MATEMATICA - 3 Luglio 2013. Esame di ANALISI MATEMATICA - 3 Luglio 2013 (1) Studiare il carattere della serie numerica n 1( 1) n F 0 (n), dove F (x) = Z x 0 log(1 + e t2 ) dt (x 1). (6 punti) log(1 + e t2 ) (2) ata la funzione f(x,

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Versione preliminare si prega di segnalare eventuali errori

Versione preliminare si prega di segnalare eventuali errori Analisi matematica (I mod) Ing. Elettronica PROFF. GIACOMELLI e VERGARA CAFFARELLI ESEMPI DI ESERCIZI D ESAME A.A.8/9 Versione preliminare si prega di segnalare eventuali errori *) Determinare (purché

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Metodi Matematici per l Ingegneria (Prof. Ugo Gianazza) Esercizi in preparazione alla I prova in itinere

Metodi Matematici per l Ingegneria (Prof. Ugo Gianazza) Esercizi in preparazione alla I prova in itinere Metodi Matematici per l Ingegneria Prof. Ugo Gianazza Esercizi in preparazione alla I prova in itinere Dott. Antonio Marigonda Pavia, 9 Novembre 7 Integrali di funzioni trigonometriche Esercizio.. Calcolare

Dettagli

Compito A. Prova intermedia di Analisi Matematica I

Compito A. Prova intermedia di Analisi Matematica I Compito A Prova intermedia di Analisi Matematica I L Aquila, 5 novembre 2005 Docente: B. Rubino Cognome e nome: Matricola: Esercizio 1 Applicando il principio di induzione, dimostrare la seguente proprietà:

Dettagli

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli