Sviluppi di Taylor e applicazioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sviluppi di Taylor e applicazioni"

Transcript

1 Sviluppi di Taylor e applicazioni Somma di sviluppi Prodotto di sviluppi Quoziente di sviluppi Sviluppo di una funzione composta Calcolo di ordini di infinitesimo e di parti principali Comportamento locale Studio della natura di un punto critico Ricerca dei punti di flesso Politecnico di Torino 1

2 Somma algebrica di sviluppi Per semplicità, supporremo Siano e x 0 =0 f(x) =a 0 + a 1 x a n x n + o(x n ) = p n (x)+o(x n ), g(x) =b 0 + b 1 x b n x n + o(x n ) = q n (x)+o(x n ), x 0 x 0 gli sviluppi di Maclaurin di due funzioni f e g in Politecnico di Torino 2

3 Somma algebrica di sviluppi f(x) =p n (x)+o(x n ), g(x) =q n (x)+o(x n ), x 0 Allora f(x) ± g(x) = p n (x)+o(x n ) ± q n (x)+o(x n ) = p n (x) ± q n (x) + o(x n ) ± o(x n ) = p n (x) ± q n (x)+o(x n ), x 0 5 Somma algebrica di sviluppi f(x) =p n (x)+o(x n ), Allora g(x) =q n (x)+o(x n ), x 0 f(x) ± g(x) =p n (x) ± q n (x)+o(x n ), x 0 Dunque lo sviluppo di una somma algebrica di funzioni è la somma algebrica degli sviluppi Politecnico di Torino 3

4 Esempio 1 Calcoliamo gli sviluppi di Maclaurin delle funzioni seno e coseno iperbolico Abbiamo e x =1+x + x2 2 x e, cambiando in x2n (2n +2)! + o(x2n+2 ) x, e x =1 x + x x2n+2 (2n +2)! + o(x2n+2 ) 7 Esempio 1 Dunque sinh x = 1 2 (ex e x ) = x + x3 3! + x5 5! x2n+1 (2n +1)! + o(x2n+2 ) Politecnico di Torino 4

5 Esempio 1 Dunque cosh x = 1 2 (ex +e x ) =1+ x2 2 + x4 4! x2n (2n)! + o(x2n+1 ) 9 Esempio 2 Determinare l ordine di infinitesimo e la parte principale per x 0 della funzione f(x) =e 3x 3 1+9x Politecnico di Torino 5

6 Esempio 2 e 3x =1+3x + o(x) =1+3x x2 + o(x 2 ), 3 1+9x = =1+3x + 9x + o(x) 1 3 ( 1 3 1) 2 x 0 81x 2 + o(x 2 ) =1+3x 9x 2 + o(x 2 ), x 0 11 Esempio 2 quindi f(x) =1+3x + o(x) 1 3x + o(x) =o(x) =1+3x x2 + o(x 2 ) 1 3x +9x 2 + o(x 2 ) = 27 2 x2 + o(x 2 ), x Politecnico di Torino 6

7 Esempio 2 e dunque α =2 e p(x) = 27 2 x Politecnico di Torino 7

8 Prodotto di sviluppi Siano, per x 0 f(x) =p n (x)+o(x n ) e g(x) =q n (x)+o(x n ) 15 Prodotto di sviluppi f(x)g(x) = p n (x)+o(x n ) q n (x)+o(x n ) = p n (x)q n (x)+p n (x)o(x n ) + q n (x)o(x n )+o(x n )o(x n ) = p n (x)q n (x)+o(x n )+o(x n )+o(x 2n ) = p n (x)q n (x)+o(x n ) = r n (x)+o(x n ), x Politecnico di Torino 8

9 Prodotto di sviluppi f(x)g(x) = r n (x)+o(x n ), x 0 dove di x r n (x) di esponente contiene tutte e sole le potenze n 17 Esempio Determinare lo sviluppo di Maclaurin al secondo ordine della funzione f(x) =e 3x 3 1+9x e 3x =1+3x x2 + o(x 2 ), x x =1+3x 9x 2 + o(x 2 ), x Politecnico di Torino 9

10 Esempio Quindi f(x) =e 3x 3 1+9x = 1+3x x2 + o(x 2 ) 1+3x 9x 2 + o(x 2 ) =1+3x 9x 2 +3x +9x 2 27x x x x4 + o(x 2 ) =1+6x x2 + o(x 2 ), x Politecnico di Torino 10

11 Posto cerchiamo lo sviluppo di Quoziente di sviluppi Siano, per x 0 f(x) =p n (x)+o(x n ) e g(x) =q n (x)+o(x n ), con g(0) 6= 0 con r n (x) = h(x) = f(x) g(x) h(x) =r n (x)+o(x n ), nx c k x k k=0 21 Quoziente di sviluppi Siano, per x 0 f(x) =p n (x)+o(x n ) e g(x) =q n (x)+o(x n ), con g(0) 6= 0 Dovrà essere e dunque h(x)g(x) =f(x) r n (x)q n (x)+o(x n )=p n (x)+o(x n ) Politecnico di Torino 11

12 Esempio Calcoliamo lo sviluppo di Maclaurin al quarto ordine di Nota: la funzione è dispari, quindi il polinomio di grado 4 h(x) =tanx coincide con quello di grado 3 23 Esempio dividendo x x3 6 + o(x3 ) x x3 2 + o(x3 ) x o(x3 ) x o(x3 ) o(x 3 ) 1 x2 2 + o(x3 ) x + x3 3 + o(x3 ) Politecnico di Torino 12

13 Esempio Dunque tan x = x + x3 3 + o(x3 )=x + x3 3 + o(x4 ) Politecnico di Torino 13

14 Sviluppo di una funzione composta Siano f(x) =a 1 x a n x n + o(x n ), x 0 e g(y) =b 0 + b 1 y b n y n + o(y n ), y 0 Osserviamo che o(y n )=y n o(1) con lim y 0 o(1) = 0 27 Dunque, per Sviluppo di una funzione composta x 0, 2 h(x) =g(f(x)) = b 0 + b 1 f(x)+b 2 f(x) +... n no(1)... + b n f(x) + f(x) Ma f(x) n = a n 1 x n + o(x n ), e dunque f(x) no(1) = o(x n ), x Politecnico di Torino 14

15 Sviluppo di una funzione composta Sviluppando le potenze rispetto ad fino all ordine si perviene allo sviluppo di x n, g(f(x)) f(x) k (1 k n) 29 Esempio 1 Calcoliamo lo sviluppo di Maclaurin al terzo ordine di cos x 1 h(x) =e f(x) =cosx 1 = 1 2 x2 + o(x 3 ), x 0 g(y) =e y =1+y y y3 + o(y 3 ), y Politecnico di Torino 15

16 Esempio 1 Calcoliamo lo sviluppo di Maclaurin al terzo ordine di cos x 1 h(x) =e h(x) = x2 + o(x 3 ) x2 + o(x 3 ) 2 2 x2 + o(x 3 ) o(x 3 ) =1 1 2 x x x6 + o(x 3 ) 31 Esempio 1 Calcoliamo lo sviluppo di Maclaurin al terzo ordine di cos x 1 h(x) =e h(x) =1 1 2 x x x6 + o(x 3 ) =1 1 2 x2 + o(x 3 ), x Politecnico di Torino 16

17 Esempio 2 Calcoliamo lo sviluppo di Maclaurin al secondo ordine di Osserviamo che h(x) =e 1+x x =1+ 2 x + 2 ( 1 2 1) 2 = x 1 8 x2 + o(x 2 ) x 2 + o(x 2 ) non è infinitesima per x 0 33 Esempio 2 Calcoliamo lo sviluppo di Maclaurin al secondo ordine di h(x) =e 1+x h(x) =e x 1 8 x2 +o(x 2) =e e 1 2 x 1 8 x2 +o(x 2 ) con f(x) = 1 2 x 1 8 x2 + o(x 2 ) infinitesima per x Politecnico di Torino 17

18 Esempio 2 Calcoliamo lo sviluppo di Maclaurin al secondo ordine di Quindi h(x) =e 1+x h(x) =e e 1 2 x 1 8 x2 +o(x 2 ) =e x 1 8 x2 + o(x 2 ) x 1 8 x2 + o(x 2 ) 2 + o(x 2 ) 35 Esempio 2 Calcoliamo lo sviluppo di Maclaurin al secondo ordine di Quindi h(x) =e 1+x h(x) =e e 1 2 x 1 8 x2 +o(x 2 ) =e x 1 8 x x2 + o(x 2 ) =e+ e 2 x + o(x2 ), x Politecnico di Torino 18

19 Ordini di infinitesimo e parti principali Sia f(x) =a 0 + a 1 (x x 0 ) a n (x x 0 ) n + o((x x 0 ) n ) lo sviluppo di Taylor di ordine di in un punto x 0 Se per un intero m tale che 1 m n si ha a 0 = a 1 =... = a m 1 =0, ma a m 6=0 allora f(x) =a m (x x 0 ) m + o((x x 0 ) m ), x x 0 n f Politecnico di Torino 19

20 Ordini di infinitesimo e parti principali f(x), x 0, Dunque in un intorno di si comporterà come p(x) =a m (x x 0 ) m che è la sua parte principale rispetto all infinitesimo campione f(x) e è un infinitesimo di ordine rispetto a tale infinitesimo campione ϕ(x) =x x 0 m 39 Esempio Calcoliamo l ordine di infinitesimo e la parte principale per x 0 della funzione f(x) =sinx x cos x 1 3 x Politecnico di Torino 20

21 Esempio f(x) =sinx x cos x 1 3 x3 Si ha f(x) =x 1 6 x ! x5 + o(x 5 ) x x ! x4 + o(x 5 ) 1 3 x3 = x 1 6 x x5 x x x5 1 3 x3 + o(x 5 ) 41 Esempio f(x) =sinx x cos x 1 3 x3 Si ha f(x) = x 1 6 x x5 x x x5 1 3 x3 + o(x 5 ) = x 5 + o(x 5 ) = 1 30 x5 + o(x 5 ) Politecnico di Torino 21

22 Esempio Dunque α =5 e p(x) = 1 30 x Politecnico di Torino 22

23 Comportamento locale Sia f(x) =a 0 + a 1 (x x 0 )+a 2 (x x 0 ) 2 +o((x x 0 ) 2 ), x x 0 45 Comportamento locale Sia, per x x 0, f(x) =a 0 + a 1 (x x 0 )+a 2 (x x 0 ) 2 +o((x x 0 ) 2 ) allora f(x 0 )=a 0 f 0 (x 0 )=a 1 f 00 (x 0 )=2a Politecnico di Torino 23

24 Comportamento locale Se f, f 0,f 00 sono continue in un intorno di x 0 e a 0, a 1,a 2 sono 6=0allora, per il Teorema di permanenza del segno, i segni di a 0, a 1 e a 2 coincidono con i segni di in tutto un intorno di x 0 f(x), f 0 (x), f 00 (x) Ciò permette di conoscere la monotonia e la convessità di f in tale intorno 47 Esempio Supponiamo di sapere che una funzione f(x) soddisfa, per x 2, f(x) =2 3(x 2) + (x 2) 2 + o((x 2) 2 ) Allora f(2) = 2, f 0 (2) = 3, f 00 (2) 2 =1 e quindi f(2) = 2, f 0 (2) = 3, f 00 (2) = Politecnico di Torino 24

25 Esempio Supponiamo di sapere che una funzione f(x) soddisfa, per x 2, f(x) =2 3(x 2) + (x 2) 2 + o((x 2) 2 ) Abbiamo f(2) > 0, f 0 (2) < 0 Dunque, in un intorno di e x 0 =2, f f 00 (2) > 0 sarà strettamente positiva, strettamente decrescente e strettamente convessa Politecnico di Torino 25

26 Teorema f n (n 2) x 0 Sia derivabile volte in con f 0 (x 0 )= = f (m 1) (x 0 )=0, f (m) (x 0 ) 6= 0 per un certo m tale che 2 m n 51 Teorema Se m è pari e f (m) (x 0 ) < 0 x 0 è un punto di massimo locale f (m) (x 0 ) > 0 x 0 è un punto di minimo locale Politecnico di Torino 26

27 Teorema Se x 0 m è dispari è un punto di flesso a tangente orizzontale 53 Dimostrazione Confrontiamo f(x) e f(x 0 ) in un intorno di x Politecnico di Torino 27

28 Dimostrazione f(x) f(x 0 )=f 0 (x 0 )(x x 0 )+ + f (m) (x 0 ) (x x 0 ) m + o((x x 0 ) m ) m! = f (m) (x 0 ) (x x 0 ) m + o((x x 0 ) m ) m! =(x x 0 ) m f (m) (x 0 ) m! + o(1), x x 0 55 Dimostrazione In un intorno di x 0 il termine racchiuso tra parentesi quadre avrà lo stesso segno di Dunque il segno di determinato dai segni di f (m) (x 0 ) f(x) f(x 0 ) sarà f (m) (x 0 )e(x x 0 ) m Esaminando i vari casi possibili, si giunge alla tesi Politecnico di Torino 28

29 Supponiamo che in un intorno di Deduciamo che mentre x 0 =2 Pertanto, x 0 è un punto massimo relativo di Esempio 1 si abbia f(x) =2 25(x 2) 4 +20(x 2) 5 + o (x 2) 5 f 0 (2) = f 00 (2) = f 000 (2) = 0, f (4) (2) = 25 4! < 0 f 57 Supponiamo che in un intorno di Esempio 2 abbia f(x) = (x +1) 5 35(x +1) 7 + o (x +1) 7 Deduciamo che mentre x 0 = 1 f 0 ( 1) = f 00 ( 1) = f 000 ( 1) = f (4) ( 1) = 0, f (5) ( 1) = 20 5! > 0 Pertanto, x 0 è un punto di flesso a tangente orizzontale per f si Politecnico di Torino 29

30 Teorema Sia f derivabile n volte (n 3) in x 0 con f 00 (x f (m) 0 )= = f (m 1) (x 0 )=0, (x 0 ) 6= 0 per un certo m tale che 3 m n Politecnico di Torino 30

31 Teorema Se m è dispari x 0 è un punto di flesso m x 0 f Se è pari non è un punto di flesso per 61 Dimostrazione Come nel teorema precedente, posto t(x) =f(x 0 )+f 0 (x 0 )(x x 0 ), f(x) t(x) =(x x 0 ) m f (m) (x 0 ) m! si ha + o(1) Il risultato segue allora dalla discussione dei segni dei termini a secondo membro Politecnico di Torino 31

32 Esempio Supponiamo che in un intorno di x 0 =4si abbia f(x) = 1+4(x 4) 70(x 4) 5 + o (x 4) 5 Deduciamo che mentre Concludiamo che per f f 00 (4) = f 000 (4) = f (4) (4) = 0, f (5) (4) = 70 5! < 0 x 0 =4 è un punto di flesso Politecnico di Torino 32

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

I - LA FORMULA DI TAYLOR

I - LA FORMULA DI TAYLOR I - LA FORMULA DI TAYLOR Data una funzione, ci si chiede se è possibile approssimarla con una funzione più semplice, per esempio con un polinomio, in un intorno di un punto assegnato. Vedremo che questa

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 Il simbolo o piccolo Siano f (x) e g(x) funzioni infinitesime per x x 0 e consideriamo f (x) il lim

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 2004

Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 2004 1 Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 004 Formula di Taylor Generalizziamo la formula che abbiamo introdotto nella sezione 11 del capitolo 5, cercando d approssimare

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30 Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 830 A ESERCIZIO 1 (8 punti) Data la funzione = 1 + sin x 2 2 x (a) determinare lo sviluppo di MacLaurin al terzo ordine della funzione ; (b) determinare

Dettagli

24 IL RAPPORTO INCREMENTALE - DERIVATE

24 IL RAPPORTO INCREMENTALE - DERIVATE 24 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y 2 domf con x 6= y, sidefinisceilrapporto incrementale di f tra x e y come P f (x, y) =

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Funzioni (parte II).

Funzioni (parte II). Funzioni (parte II). Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 21 ottobre 214 Paola Mannucci e Alvise Sommariva Introduzione. 1/ 55 Funzioni trigonometriche.

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Confronto locale di funzioni

Confronto locale di funzioni Confronto locale di funzioni Equivalenza di funzioni in un punto Sia A R ed f, g due funzioni definite in A a valori in R. Sia x 0 R un punto di accumulazione per A. Definizione. Si dice che f è equivalente

Dettagli

1 Il Teorema della funzione implicita o del Dini

1 Il Teorema della funzione implicita o del Dini 1 Il Teorema della funzione implicita o del Dini Ricordiamo che dato un punto x R n, un aperto A R n che contiene x si dice intorno (aperto) di x. Teorema 1.1. (I Teorema del Dini) Sia f : A (aperto) R

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di TEOREMI DEL CALCOLO DIFFERENZIALE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Teorema di Estremi locali Richiamiamo la

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

Massimi e minimi relativi in R n

Massimi e minimi relativi in R n Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2.

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. 1 Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. Esercizio 2. Sia f(x) = sin(log x ). Questa funzione è Esercizio 3.

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Derivate. Capitolo Cos è la derivata?

Derivate. Capitolo Cos è la derivata? Capitolo 8 Derivate 8.1 Cos è la derivata? Consideriamo una funzione y f(x) e disegnamo il suo grafico. Sia x 0 nel dominio di f e consideriamo il punto (x 0, f(x 0 )) del grafico. Vogliamo determinare

Dettagli

Soluzioni degli esercizi sulle Formule di Taylor

Soluzioni degli esercizi sulle Formule di Taylor Soluzioni degli esercizi sulle Formule di Taylor Formule di MacLaurin più usate (h, n numeri interi non negativi; a numero reale): e t =+t + t! + t3 tn +... + 3! n! + o(tn ) ln( + t) =t t + t3 3 t4 4 +...

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-4 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

Sviluppi di Taylor Esercizi risolti

Sviluppi di Taylor Esercizi risolti Esercizio 1 Sviluppi di Taylor Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx ln1

Dettagli

Esercizi proposti 4 (capitolo 8)

Esercizi proposti 4 (capitolo 8) Esercizi proposti 4 capitolo 8). [8., #5 p. 9] Calcolare i possibili punti di estremo di gx) = x ln x, per x 0, + ). Soluzione. Ricordiamo che un punto di estremo è un punto del dominio della funzione

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati ora.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati ora. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-5 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Esercizio L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11. L equazione log 116 x = 1 4. ha soluzione [1] [5] 2 [4] 1 2 [2] 4 [3] Risposta

Esercizio L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11. L equazione log 116 x = 1 4. ha soluzione [1] [5] 2 [4] 1 2 [2] 4 [3] Risposta L equazione log 116 x = 1 4 ha soluzione [1] 1 4 [2] 4 [3] 1 2 [4] 1 2 [5] 2 Per la definizione di logaritmo, abbiamo «1 «1 1 4 1 4 1 4 1 x = = = 16 2 4 4 2 14 = 1 2. Si considerino le seguenti tre espressioni

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

= x2 x +1 1. t +1 t 1 ( 1) t. = t +1+t 1 t(t 1)

= x2 x +1 1. t +1 t 1 ( 1) t. = t +1+t 1 t(t 1) Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN 88-08-01169-0 Capitolo 4 DERIVATE Soluzione dei problemi posti al termine di alcuni paragrafi 4.1 Nozione di derivata

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

1. Al variare del parametro reale x, studiare la convergenza delle due serie. sen n. x n ; sen n. (7 punti) 2. Calcolare gli integrali indefiniti:

1. Al variare del parametro reale x, studiare la convergenza delle due serie. sen n. x n ; sen n. (7 punti) 2. Calcolare gli integrali indefiniti: ANALISI MATEMATICA - Ingegneria Aerospaziale PROVA PRATICA 17/1/004) Cognome e nome............................................................................... Se ammesso, desidererei sostenere la prova

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4 A Politecnico di Torino II Facoltà di Architettura - 5 Luglio 20 Esercizio. Sono date le matrici A = ( ) 2, B = 4 ( ). 2 a) Calcolare la matrice A. b) Enunciare ed applicare la regola di Cramer per determinare

Dettagli

Polinomi di Taylor e convessità

Polinomi di Taylor e convessità CAPITOLO 1 Polinomi di Taylor e convessità In questo capitolo completiamo lo studio del grafico di una funzione aggiungendo le informazioni su convessità e concavità. Rimandiamo al corso di Analisi 1 per

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Esercizi sulle Funzioni

Esercizi sulle Funzioni AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La

Dettagli

LIMITI. 1. Definizione di limite.

LIMITI. 1. Definizione di limite. LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Calcolo differenziale per funzioni in più variabili.

Calcolo differenziale per funzioni in più variabili. Calcolo differenziale per funzioni in più variabili. Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 14 dicembre 2014 Paola Mannucci e Alvise Sommariva Calcolo

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Esercizi di Analisi Matematica 1 Corso Ingegneria Civile. L. Pandolfi

Esercizi di Analisi Matematica 1 Corso Ingegneria Civile. L. Pandolfi Esercizi di Analisi Matematica 1 Corso Ingegneria Civile L. Pandolfi Esercizi 1/A 1. calcolare (3 2 ) 2, (3 2 ) 3, (3 3 ) 2, log 10 ( 102 10 3), 10 log 10 3+log 10 2. 2. Scrivere la definizione di monomio

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 8 Gennaio 06 Soluzioni Esercizio Siano z e z due numeri complessi con modulo e argomento rispettivamente (ρ, θ ) e (ρ, θ ) tali

Dettagli

Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22

Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22 Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Calcolo differenziale e approssimazioni, formula di Taylor Docente: Anna Valeria Germinario Università di Bari

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

A grande richiesta, esercizi di matematica.!

A grande richiesta, esercizi di matematica.! A grande richiesta, esercizi di matematica.! A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) =sin(x+π/4); g(x) = sin(x-π/3) g(x) =sin(2x); g(x) = sin(x/3)

Dettagli

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni.

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Università di Pisa. Prima prova scritta di Analisi Matematica I. Soluzioni. Esercizio. Si consideri la successione c n ) n N definita dalla

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Simboli di Landau. Equivalenza. Esempi (limiti notevoli).

Simboli di Landau. Equivalenza. Esempi (limiti notevoli). Simboli di Landau Conducono ad un algebra snella e significativa per il calcolo di iti Procurano un linguaggio tecnico per confrontare il comportamento di due funzioni nell intorno bucato di c (comportamento

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Elementi di Analisi Matematica. Prova in itinere del 19 dicembre 2011

Elementi di Analisi Matematica. Prova in itinere del 19 dicembre 2011 Elementi di Analisi Matematica Prove in itinere dal 211 Prova in itinere del 19 dicembre 211 Esercizio 1 Si consideri la serie n= (2n)! (n!) 2 xn, x R. (i) Stabilire per quali x R la serie è assolutamente

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1 www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

34 LO STUDIO DI FUNZIONE

34 LO STUDIO DI FUNZIONE 4 LO STUDIO DI FUNZIONE Possiamo riassumere parte di quello che abbiamo visto nelle ultime lezioni come un algoritmo per studiare le proprietà (ed eventualmente tracciare un grafico approssimato) di una

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Equazioni algebriche di terzo grado: ricerca delle soluzioni

Equazioni algebriche di terzo grado: ricerca delle soluzioni Equazioni algebriche di terzo grado: ricerca delle soluzioni 1 Caso particolare: x 3 + px + q = 0....................... Caso generale: x 3 + bx + cx + d = 0..................... 4 3 Esercizi.....................................

Dettagli

Esercitazioni di Analisi Matematica I

Esercitazioni di Analisi Matematica I Esercitazioni di Analisi Matematica I Andrea Corli 3 agosto 6 ii Indice Introduzione v Nozioni preliminari. Sommatorie.......................................... Fattoriali...........................................3

Dettagli