CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO"

Transcript

1 CMPI DI OZ CONSEVTIVI - ENEGI POTENZIE E POTENZIE EETTICO Camp Vettoal Defzoe: u campo vettoale è ua egoe dello spazo, cu og puto è defto u vettoe. Ta camp vettoal d patcolae teesse fsca v soo camp d foza gavtazoale, elettca e magetca. No tatteemo camp d foza geeale e fe, l campo elettco geeato da ua caca putfome. avoo Defzoe: data ua patcella che s muove lugo ua lea u campo d foza, da u puto zale veso u puto fale, s defsce lavoo svolto dalle foze del campo sulla patcella che s muove lugo la lea data, la gadezza umeca che s ottee co le seguet opeazo: ) muovedos lugo la lea a pate dal puto zale veso l puto fale s fssao su d essa abtaamete, ell ode cu s cotao, + put,,, + modo che ed +; 3 + ) s cosdeao gl spostamet S,,...,, e pe cascuo d ess s pede l vettoe del campo u puto scelto a pacee el tatto d lea ta due estem dello spostameto; 3) dcado co l vettoe del campo scelto abtaamete lugo lo spostameto, e co + S lo stesso spostameto, s svolge la somma d tutt podott scala ta vetto foza e vetto spostameto elatv, ovveo s calcola che s scve pù stetcamete così S ; ) s pocede oa alla scelta d ulteo put lugo la lea oetata e s pete l pocedmeto dal puto. Queste opeazo coducoo ad u pocesso seza fe pe la atua cotua della lea, peò, se esste u umeo a cu le somme d sopa s avvcao sempe pù co l pocedee delle scomposzo della lea tat spostamet sempe pù pccol, uesto umeo è l lavoo svolto dalla foze del campo sulla patcella che s muove lugo la lea data da veso e s dca co lm, dove S max è l valoe massmo de modul degl max spostamet u dato passo del pocedmeto d calcolo del lavoo. Possamo oa fae ua cosdeazoe tutva d caattee geeale: ualuue sa la scelta de put sulla lea, l pocesso d calcolo d cu sopa pota alla costuzoe d ua polgoale costtuta dalla successoe degl spostamet da u puto al successvo, ual sultao geealmete va va sempe pù pccol e tal da cofodes sempe pù co la lea data. Quest spostamet tedoo ad assumee la dezoe della etta tagete alla lea el puto zale dello spostameto. a cosdeazoe oa fatta c fa vee mete che pe l calcolo del lavoo s possa utlzzae ua successoe d spostamet così pccol da essee, cascuo d ess, dstguble da u pccolo tatto d lea avete la sua stessa oge. Quest spostamet elemeta, taget alla lea, l chameemo spostamet ftesm e l deoteemo co l smbolo ds.

2 Camp d osa Cosevatv - Eega Potezale e Potezale Elettco Ossevamo po che l lavoo svolto dalle foze del campo su ua patcella che pecoe ua lea u seso avà sego opposto a uello svolto dalle foze del campo uado la patcella pecoe la stessa lea ell alto seso ovveo. Ifatt la somma: () otteuta ad u ceto passo del pocedmeto d calcolo del lavoo, vetedo solo l veso d pecoeza della patcella, mateedo la stessa decomposzoe della lea e lo stesso vettoe foza pe og tatto d lea, dvee: co ' ' + ' ' ' ' () ', ', ' 3,..., ', e ', ', ' 3,..., ' cu s osseva che tem delle somme () e () soo a due a due oppost, pe cu la somma d ftesm tatta da () ds dvee esattamete opposta alla somma degl ftesm tatta da () ovveo ds ( ds) ds' '. Camp d foza cosevatv Defzoe: s dce che u campo d foza è u campo d foza cosevatvo se l lavoo svolto dalle foze aget su ua patcella che s muove da u puto veso u puto del campo, o dpede dalla taettoa seguta dalla patcella, ma solo dalla poszoe zale e da uella fale. I camp cosevatv elettostatco e gavtazoale, vestoo ua patcolae mpotaza fsca, olte pe ess esste ua elegate tattazoe matematca gaze alla possbltà d defe el loo teo ua fuzoe scalae de put P dello spazo, chamata spettvamete potezale elettco e potezale gavtazoale, dcata co V ( P), che cosete d effettuae ua otevole semplfcazoe de calcol eet l lavoo svolto dalle foze del campo sulle patcelle. Caattee cosevatvo de camp d foze cetal Defzoe: u campo d foze dove tutt vetto del campo appategoo a ette passat pe uo stesso puto dello spazo (detto ceto d foza), avet tutte l veso detto el ceto d foza o l veso opposto, e l cu modulo dpede dalla dstaza dal ceto d foza, è detto campo d foza cetale. Pe esempo l campo elettco podotto da ua caca putfome Q postva, è adale co ceto la caca, ed è detto el veso che s allotaa dalla caca. Questo campo agete su ua caca putfome è duue u campo d foza cetale. Dmostamo oa che è cosevatvo. Il agoameto seguto uesto caso può essee esteso ad og + Q + campo d foze cetal. Immagamo d pedee ua caca postva e d spostala da u puto ad u puto del campo elettco geeato da ua caca putfome Q pue postva, fema. Mosteemo oa che l lavoo svolto dalle

3 Camp d osa Cosevatv - Eega Potezale e Potezale Elettco foze del campo sulla caca o dpede dalla lea seguta da ma solo dalla poszoe zale e fale, o detto alt tem, mosteemo che uesto campo elettco è cosevatvo. Cosdeamo uo spostameto ftesmo; el podotto scalae ds, ds cotbusce solo co la sua compoete ds' detta come l campo elettco, ovveo adale, petato l lavoo ftesmale ds è uguale al lavoo svolto dalla foza del campo sulla caca uado uesta s sposta pe u tatto uguale alla compoete ds ' d ds. Quato abbamo appea asseto vale pe og lavoo ftesmale ds, petato, l lavoo sulla caca svolto dalle foze elettche del campo uado uesta s muove da a, essedo la somma (fta) d lavo ftesmal, dpedeà ach esso solo dalle compoet ftesmal degl spostamet lugo le dezo adal co ceto Q e dalle foze aget su cascu tatto ftesmale secodo ua legge oppotua della dstaza dal ceto d foza, deftva ud l lavoo dpedeà solo dallo spostameto adale complessvo ovveo da e ( aggo della sfea d ceto Q e passate pe, aggo della sfea d ceto Q e passate pe ) e ud dalla poszoe d e d e o dal cammo seguto da. Eega potezale Defzoe: fssato u puto, s defsce eega potezale d ua data patcella posta u puto P d u campo cosevatvo, l lavoo che le foze del campo compoo sulla patcella uado uesta s sposta lugo u cammo ualuue dal puto P al puto d femeto. Idcheemo l eega potezale d ua patcella co U ( P) oppue co ( P) U se dal cotesto s capsce a uale patcella è assocata l eega potezale. I smbol: ( P) P U a fuzoe eega potezale, è defble solo e camp cosevatv e la sua mpotaza sede el fatto che l lavoo svolto dalle foze del campo sulla patcella che s sposta dal puto la puto lugo u cammo ualuue è data semplcemete dalla dffeeza delle eege potezal che assume el puto zale e fale, ovveo: U ( ) a elazoe pecedete s cava mmedatamete se s cosdea pe l calcolo del lavoo svolto dalle foze del campo su, ua lea ta e passate pe l puto d femeto (fgua basso a ssta). U U - U + U - U a fuzoe eega potezale d ua patcella è defta a meo d ua costate addtva k. Mosteemo cò ossevado che uado s fssao put d femeto dves pe l eega potezale P), scelte dvese d compotao valo dves d P). Oa se azché cosdeae l puto d femeto e ud l eega potezale P), s cosdea l puto e la elatva eega potezale U (P) della patcella ello stesso puto P, U (P) e P) soo legat ta loo dalla semplce elazoe: U '( P) P) + k dove K è ua costate, uguale al lavoo svolto dalle foze del campo sulla patcella uado uesta s sposta da a fatt: U' ( P) + P) k + P ' P ' dove s è scelta pe l calcolo d U (P) ua lea passate pe che usce P co (fgua alto a desta). 3

4 Camp d osa Cosevatv - Eega Potezale e Potezale Elettco avoo del campo elettco geeato da ua caca putfome Q, su ua caca putfome Pe semplctà d calcolo cosdeamo oa solo l caso d Q + e d + co + che s muove lugo u tatto adale dal puto al puto, l caso geeale del calcolo del lavoo su ua lea ualsas cogugete due put ualsas saà cosdeato seguto. Calcolamo petato l lavoo svolto dalle foze elettche sulla caca che s muove dal puto la puto. Secodo la defzoe d lavoo a u ceto puto del pocesso d calcolo s ottee: dove + è u vettoe paallelo ed euveso a mete è l vettoe poszoe del puto spetto alla caca Q. Nel pocesso d calcolo del lavoo s cosdea come foza del campo el tatto -esmo ua foza temeda ta la foza e + e pecsamete la foza adale agete el puto temedo del tatto + la cu dstaza da Q è popo la meda geometca delle dstaze d e + d + da Q. Tale puto, el tatto -esmo dsta ( + meda geometca ta ed +) da Q e l modulo della foza agete sulla caca posta esso, pe la legge d Coulomb è uguale a: Q Pe l caattee adale sa della foza coulombaa che degl spostamet, vetto foza e elatv spostamet soo paallel ed euves (le cache Q e etambe postve ud s espgoo), petato la somma d sopa può essee sctta come somma de podott de modul delle foze pe l ampezza de elatv spostamet così come segue: Oa se sosttuamo valo d ueste foze e spostamet, la somma dvee: ( ) ( ) da cu, poedo evdeza l fattoe comue, s ha: svolgedo podott s ottee la somma: ( ) + ( ) + ( ) ( ) cu s osseva che l secodo teme d u addedo ta paetes è opposto al pmo teme dell addedo successvo ta paetes, e petato, cacellado tem oppost s ottee l valoe: + Queste semplfcazo s applcao ad oguo degl ft pass pe l calcolo del lavoo, petato ache la somma fta co gl spostamet ftesm ds assume l valoe: + ovveo: (3)

5 Camp d osa Cosevatv - Eega Potezale e Potezale Elettco Nel caso geeale del calcolo del lavoo su ua lea ualsas cogugete due put o appateet alla stessa etta adale, l lavoo, teedo coto del caattee cosevatvo de camp d foza cetal, può essee calcolato scegledo u patcolae pecoso modo da semplfcae calcol. Come pecoso sceglamo uello che va da a attaveso l tatto adale e l tatto ccolae co ceto la caca Q,, co sulla stessa supefce sfeca co ceto Q passate pe. Nel tatto l lavoo vale essedo '. ' Nel tatto sulla sfea pe e co ceto Q, l lavoo è ullo come faclmete s deduce ossevado che gl spostamet ftesm soo taget alla sfea e petato pepedcola alle cospodet foze elettche adal su, pe cu l podotto scalae ds pe og tatto ftesmo e duue, ache la loo somma (fta) ' è uguale a zeo. Oa, essedo, pe calcol pecedet s ha: + ' ' + ' '. Questa espessoe vale ache uado le cache Q e soo etambe egatve o hao sego opposto se s cosdeao ella fomula co l loo sego da tedes come sego algebco. I coclusoe, ualsas sao put e e ualsas sa l pecoso seguto dalla caca pe potas da a, le foze elettche del campo geeato da Q compoo u lavoo calcolable co la (3). Eega potezale elettca e potezale elettco Daemo oa la defzoe d potezale elettco. Pe fssae le dee cosdeamo u campo elettostatco geeato da ua caca putfome Q e ua caca elettca mmesa uel campo. ssato u puto d femeto ftamete lotao da Q ( patca così lotao che lì l campo elettco è patcamete ullo), s defsce eega potezale della caca posta el puto del campo l lavoo che le foze del campo compoo sulla caca uado uesta s sposta da veso l fto. Questo lavoo, ud l eega potezale d, pe uato abbamo detto pecedetemete è data da: ( pe ) Come s vede, l eega potezale della caca è dettamete popozoale a. Dvdedo l eega potezale Q d pe la caca stessa, uesta spasce e s ottee l cosddetto potezale elettco: V(. Estedamo oa l utle ozoe d potezale elettco a ualuue campo elettostatco. Defzoe: s chama potezale elettco u puto P l appoto ta l eega potezale d ua caca posta P e la caca stessa. I smbol U ( P) V( P) Questo appoto è dpedete dalla caca cosdeata, uato l eega potezale è dettamete popozoale alla caca, e petato defsce ua uova fuzoe dello spazo, l potezale elettco. Pe camp elettc s è solt fssae come puto d femeto pe l calcolo dell eega potezale d ua caca, u puto ftamete lotao dal campo oppue u puto sul teeo. Nel pmo caso possamo alloa de che: s chama potezale elettco u puto P l lavoo che le foze del campo compoo su ua caca uado uesta s sposta dal puto P veso u puto ftamete lotao, dvso l valoe della caca. Il potezale elettco s msua Volt (V), V J/C. Vale olte la seguete elazoe: ) ) V( V( ) Petato s dce che ta due put e v è la dffeeza d potezale d Volt (V) se le foze del campo compoo l lavoo d Joule su ua caca d Coulomb uado uesta s sposta da u puto all alto. 5

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

Allegato alla Circolare n 9 dell 1/8/2005

Allegato alla Circolare n 9 dell 1/8/2005 Allegato alla Ccolae 9 dell /8/2005 Nota tecca llustatva della pocedua Gestoe mcozoe Mcozoe 998, tegata co la uova fuzoaltà Gestoe 335, mata alla elaboazoe d epot comual dvduatv delle mcozoe aomale. PREMESSA

Dettagli

Il teorema di Gauss e sue applicazioni

Il teorema di Gauss e sue applicazioni Il teoema di Gauss e sue applicazioi Cocetto di flusso Cosideiamo u campo uifome ed ua supeficie piaa pepedicolae alle liee di campo. Defiiamo flusso del campo attaveso la supeficie la uatità : = (misuata

Dettagli

CIRCUITI EQUIVALENTI DELLE LINEE ELETTRICHE AEREE

CIRCUITI EQUIVALENTI DELLE LINEE ELETTRICHE AEREE Elettotecca : patmeto d Igegea dell Eega e de Sstem CIRCUITI EQUIVALENTI ELLE LINEE ELETTRICHE AEREE Coso d Lauea Igegea Elettca slde d 48 LE LINEE ELETTRICHE AEREE Sstem Tfase: lee elettche La peseza

Dettagli

Dstbuzo Bvaate d due Vaabl Cosdeamo ua dstbuzoe bvaata costtuta da due vaabl statstche. Possamo defe, spetto al solto schema, le seguet mede pazal (essedo e vaabl statstche, tutte le modaltà ad esse elatve

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

I Mercati Finanziari

I Mercati Finanziari I Mecat Faza Il Mecato Fazao è l luoo d scambo del tumet Faza (Azo, Obblazo, evat, Moeta, Be Real. Lo scambo pesuppoe la fssazoe d u ezzo pe cascu ttolo detemato dal meccasmo della omada e dell Offeta.

Dettagli

Lezione 22. Fattorizzazione di ideali.

Lezione 22. Fattorizzazione di ideali. Lezioe Peequisiti: Lezioi 0, Fattoizzazioe di ideali Teoema Sia A u domiio di Dedekid, e sia I u suo ideale popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson Appofondmento 7.4 - Alt tp d test d sgnfcatvtà del coeffcente d coelazone d Peason Una delle cause pncpal della cattva ntepetazone del test d sgnfcatvtà d è che s fonda su un potes nulla pe cu ρ 0. In

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA TETI FINNZIRI. Defiizioi 2. Iteesse semplice 3. Iteesse composto cotiuo 4. Iteesse composto discotiuo auo Spostameto dei valoi el tempo ualità Peiodicità 5. Iteesse composto discotiuo covetibile atematica

Dettagli

Economia del turismo. Prof.ssa Carla Massidda

Economia del turismo. Prof.ssa Carla Massidda Economa del tusmo Pof.ssa Cala Massdda Pate 2 Agoment Defnzone d domanda tustca Detemnant della domanda tustca L elastctà della domanda tustca La stma della domanda tustca Defnzone d domanda tustca Dato

Dettagli

Dinamica dei sistemi di punti Forze interne ed esterne

Dinamica dei sistemi di punti Forze interne ed esterne Daca de sste d put Foze tee ed estee Cosdeao put ateal d assa: teaget ta loo e co l ueso esteo,...,,..., La foza F agete sull -eso puto è data dalla sultate delle foze estee aget sul puto F e delle foze

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Lezione 18. Orbite e cicli di una permutazione.

Lezione 18. Orbite e cicli di una permutazione. Lezoe 8 Peequst: Lezo 4, 7. Obte e ccl d ua pemutazoe. I questa lezoe toducamo, pe u'abtaa pemutazoe, la cosddetta decomposzoe ccl dsgut, che e vela la stuttua, agevolado la detemazoe del suo peodo e della

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

ANALISI COSTI BENEFICI

ANALISI COSTI BENEFICI L aals cost-beefc (A) è ua tecca d valutazoe utlzzata pe pevedee gl effett d u pogetto, d u pogamma o d u vestmeto, vefcado se, co la ealzzazoe dell'teveto, la socetà ottega u beefco o u costo etto. E'

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

2 PROPAGAZIONE DELLA LUCE

2 PROPAGAZIONE DELLA LUCE POPGZIONE DELL LUE Voglamo aalzzae che a succede quado u foe d oda coa sul suo cammo ua supefce esesa. Dobbamo dsguee caso cu la supefce sa ua supefce deleca o coduce. alzzamo azuo l caso cu la supefce

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Ulteriori considerazioni sui Sistemi di Particelle.

Ulteriori considerazioni sui Sistemi di Particelle. Ulteo cosdeazo su Sstem d Patcelle. Eega cetca d u sstema d patcelle. Teoema d Kög. Ache l eega cetca d u sstema d put mateal s ottee sommado l eega cetca de sgol put. Suppoamo qud d avee u sstema composto

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Lezione 14. Polinomi a coefficienti interi

Lezione 14. Polinomi a coefficienti interi Peequt: Nume m Lezo - Lezoe 4 Polom a coeffcet te I queta lezoe tudamo le fattozzazo d olom a coeffcet azoal Cacuo d quet uò eee tafomato u olomo a coeffcet te tamte la moltlcazoe e u umeo teo o ullo Qud

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Matematica finanziaria avanzata III: la valutazione dei gestori

Matematica finanziaria avanzata III: la valutazione dei gestori Maemaca azaa aazaa III: la aluazoe de geso L dusa del spamo geso La aluazoe della peomace Redme Msue sk-adjused Msue basae su modell ecoomec Le gadezze lea I bechmak e le commsso La lodzzazoe de edme L

Dettagli

Analisi di fattibilita. AdF: elemento base della progettazione.

Analisi di fattibilita. AdF: elemento base della progettazione. Uivesità degli Studi di Cagliai D.I.M.C.M. Aalisi di fattibilita AdF: elemeto base della pogettazioe. La aalisi di fattibilità è u elemeto fodametale che deve sussistee a mote della fase di pogettazioe.

Dettagli

LEZIONI SU MAGNETISMO

LEZIONI SU MAGNETISMO Matematca e sca CHEMA LEZIOI U MAGETIMO ntoduce l vettoe nduzone dalla ossevazone del compotamento de magnet. va da nod a sud fuo dal magnete. od è l polo magnetco attatto dal polo nod teeste (che qund

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Approssimazioni di curve

Approssimazioni di curve Approssmazo d curve e superfc Approssmazo d curve Il terme Computer Grafca comprede ua larga varetà d applcazo che rguardao umerevol aspett della ostra vta. U eleco esemplfcatvo d alcu de camp cu essa

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Potenziale elettrico per una carica puntiforme isolata

Potenziale elettrico per una carica puntiforme isolata Potenziale elettico pe una caica puntifome isolata Consideiamo una caica puntifome positiva. Il campo elettico geneato da uesta caica è: Diffeenza di potenziale elettico ta il punto ed il punto B: B ds

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Interpolazione Interpolazione Analitica

Interpolazione Interpolazione Analitica Itepolazoe Dopo ave accolto ua ceta popolazoe d dat statstc elatv ad u ceto feoeo da aalzzae dopo avel appesetat gafcaete ed ave stetzzato tate oppotu dc d poszoe d dspesoe d foa dat d u caattee uattatvo

Dettagli

CAPITOLO 2. Grandezze fondamentali e metodo di simulazione

CAPITOLO 2. Grandezze fondamentali e metodo di simulazione CPITOLO Gadezze fodaetal e etodo d sulazoe tee fattal M. Cosso. Defzoe delle gadezze... Caattesthe d adazoe. U atea è u dspostvo pe tasettee o evee ode ado e appeseta la stuttua d taszoe ta u ezzo gudate

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1 Matrc Matrce: tabella d m rghe ed coloe T matrce trasposta d (a j ) d elemet a jt a j Serea Morg Uverstà d Bologa Matrc Matrce quadrata m sottomatrc Matrce rettagolare m Serea Morg Uverstà d Bologa Matrc

Dettagli

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha:

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha: RENDITE. Pagamet rateal S defsce redta ua sere qualsas d somme rscuotbl (o pagabl a scadeze dverse, o, pù esattamete, u seme d captal co dspobltà scagloata el tempo. Tal captal soo dett rate della redta

Dettagli

Il campo magnetico cariche elettriche in moto magnete permanente due polarità nord sud non è monopolo magnetico

Il campo magnetico cariche elettriche in moto magnete permanente due polarità nord sud non è monopolo magnetico Il capo agnetco Un capo agnetco può essee ceato da cache elettche n oto, coè da una coente, oppue da un agnete peanente Speentalente s tova che esstono due polatà nel agnetso polo nod e polo sud: pol ugual

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari Tol obblgazoar Bod U obblgazoe è u olo d debo emesso da ua soceà da uo sao o da u ee pubblco che dà dro al suo possessore al rmborso del capale presao alla scadeza e al pagameo d eress cedole. La emssoe

Dettagli

Lezione 1. Operazioni tra ideali. Radicale di un ideale.

Lezione 1. Operazioni tra ideali. Radicale di un ideale. Lezoe Opeazo ta deal Radcale d u deale Rcodamo la seguete defzoe: Defzoe S dce aello u seme o vuoto A dotato d due opeazo, ua somma + ed u podotto, tal che: - (A, +) sa u guppo abelao (detto guppo addtvo

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

). Per i tre casi indicati sarà allora: 1: L L 2

). Per i tre casi indicati sarà allora: 1: L L 2 apitolo 0 Enegia potenziale elettica Domane. Il lavoo pe spostae una caica ta ue punti è: L 0(! ). Pe i te casi inicati saà alloa: L (50! 00 ) (50 ) : 0 0 : L 0! 0 3: L 0! 0 [5 ( 5 )] (50 ) [ 0 ( 60 )]

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue:

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue: Procedura aperta per l affdameto de servz tegrat, gestoal, operatv e d mautezoe multservzo tecologco da esegurs presso gl mmobl d propretà o uso alle Asl ed alle azede ospedalere della regoe Campaa ERRATA

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I Aldo Motesao PRINCIPI DI ANALISI ECONOMICA CAP. L ANALISI DELL'EQUILIBRIO GENERALE I L aals dell equlbro parzale, esaata el captolo precedete, è sa u utle troduzoe all aals dell equlbro geerale, sa uo

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 18 marzo 2015 Apput d ddattca della Matematca fazara Redte, costtuzoe d

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Lezione 3. Funzione di trasferimento

Lezione 3. Funzione di trasferimento Lezoe 3 Fuzoe d trasfermeto Calcolo della rsposta d u sstema damco leare Per l calcolo della rsposta (uscta) d u sstema damco leare soggetto ad gress assegat, s possoo segure due strade Calcolo el domo

Dettagli

08/04/2002 Lucidi-Spettroscopia Ottica, Ettore Vittone

08/04/2002 Lucidi-Spettroscopia Ottica, Ettore Vittone La uce etate ua ba ottca è tasessa ao spettoeto dove u po spetto seco ocazza a uce su u etcoo d dazoe. La uce datta cde qud su u secodo speccho seco. Lo spetto è qud poettato su ua atce eae d CCD ed dat

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

del corso di Elaborazione Numerica dei Segnali

del corso di Elaborazione Numerica dei Segnali G. Guta: corso d Elaborazoe Numerca de Segal (laurea specalstca) - lucdo. Corso d laurea Corso d laurea del corso d Elaborazoe Numerca de Segal (laurea specalstca) (docete: Prof. G. Guta) x() x () e x

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1 La caica elettica 8 H.C. Oested connessione ta eletticità e magnetismo M. Faday speimentale puo, non scive fomule 85 J.C. Maxwell fomalia le idee di Faaday I geci avevano ossevato che l amba (elekton)

Dettagli

Schemi a blocchi. Sistema in serie

Schemi a blocchi. Sistema in serie Scem a blocc Nel caso ssem semplc, ques possoo essere scemazza meae blocc, ce rappreseao vers compoe, collega ra loro sere o parallelo a secoa ella logca uzoameo. Vl Valvolal solvee Sesore Pompa Pompa

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Generalità sulle macchine rotanti

Generalità sulle macchine rotanti Macchie elettiche ate Geealità ulle macchie otati Foza di Loetz U filo coduttoe immeo i u camo magetico B (i figua B ha diezioe ucete dal foglio) e ecoo da ua coete i iega i ua o ell alta diezioe a ecodo

Dettagli