Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti"

Transcript

1 Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da cu s poteva rcavare u test d prmaltà. Tutto cò era basato su ua "sere quozete", defta el seguete modo:, dove detfcava la parte tera della dvsoe. Ad esempo, quest soo gl svlupp delle prme 0 sere quozet: 0 0

2 e dchamo co formula: D. D l umero d dvsor d, l umero d dvsor è calcolable medate la Il test d prmaltà dscede da questa formula, quato u umero che possede solo due dvsor (che soo e sè stesso) è ovvamete prmo (se D allora è prmo). Ad esempo, provamo l test d prmaltà sul umero : D ; percò è u umero prmo. Ife, Amtrao cocludeva l'artcolo dcedo che la valdtà della formula era ua cogettura, quato o era stata formulata ua dmostrazoe. Questa che segue è duque la ma dmostrazoe (Gorgo Lambert): Per og valore d, l umero d term delle sere aumeta sempre co uo scarto d, per esempo, partedo da essere dvsore per =, procededo a dvsor per =, po dvsor per = (qud, lo scarto, ad esempo, d quest'ultm due è, apputo, -= ): d cosegueza, l umero d term d ua sere per u qualsas valore d è dato dal valore d stesso. Il prmo terme d cascua sere è sempre l valore d. Il umero d d cascua sere è dato dalla dffereza fra l prmo terme della sere e l secodo ; per esempo: elle sere l umero d (che s trovao coda alla sere) è dato da -, dove è l prmo terme della sere e è l secodo terme della sere: effett, ella sere compaoo complessvamete due ; ella sere l umero d (che s trovao coda alla sere) è dato da -, dove è l prmo terme della sere e è l secodo terme della sere. Nella sere l umero d (che s trovao sempre coda alla sere) è dato da -0, dove è l prmo terme della sere e 0 è l secodo terme della sere ( quato o c'è u secodo terme, e qud lo s assume come uguale a 0 ); effett, coda alla sere c'è u solo, che altro o è se o propro l'uco che compare ella sere. Nella sere l umero d (che s trovao sempre coda alla sere) è dato da -, dove è l prmo terme della sere e è l secodo terme della sere: effett, fra umer della sere compare complessvamete u solo. Gorgo Lambert Pag.

3 Guardado le cose da u altro puto d vsta, tutto cò appea detto sgfca che, cosderado sol valor d par, l umero d che compaoo coda a cascua sere soo dat dalla formula : se questo è l totale degl che compaoo coda a cascua sere, a questo valore adrà agguto l valore d ; l quale valore d è ua volta par e ua volta dspar (quado sarà par varrà apputo, quado sarà dspar varrà d cosegueza - ): l umero d coda alle sere e è uguale; og volta che camba l valore par d, che aumeta d utà, l umero d che compaoo coda alle uove sere va aumetato d utà: qud l umero d che compaoo coda alle sere e dffersce d utà, che, sommata all'altra utà per la quale dfferscoo sempre queste due sere cosecutve per va del loro prmo terme, determa ua dffereza sulla sommatora de term che mmo è utà. Per esempo: cosdero la sere, co valore d = e qud par; l umero d che compaoo coda alla sere è dato da (c soo qud ++ coda alla sere ); l valore d dspar assocato a = è +=+= : fatt, la sere preseta u umero d coda alla sere uguale a quattro ( +++ ). Qud, la coppa d sere ( ; ) è ua delle coppe caratterzzate dal dfferre, per l rsultato della somma de loro term, d almeo utà. La prma coppa d sere da costrure secodo questo metodo appea llustrato è la coppa ( ; ); la secoda è la coppa ( ; ); e così va. e la dffereza tra le sere della coppa ( ; ) è sempre uguale o al pù maggore d, allora la dffereza stessa s materrà uguale a (cofermado percò la prmaltà del umero + ) solo se umer della sere che o soo è l prmo terme della sere è gl ultm term della sere, coè quell ugual a, s mategoo ugual sa questa sere che ella sere. Ad esempo, cosderado le sere e, queste due sere hao, rspettvamete, e come prmo terme e ++ e +++ come ultm term: qud, dato che gl altr term che o ho acora cosderato (s potrebbero chamare term "cetral") soo ugual sa ua che ell'altra sere, essedo etrambe +, allora la dffereza tra la somma de term d e la somma d quell d s materrà sul valore, essedo determata dal prmo e dagl ultm term d etrambe. Qud += è u umero prmo. Ora, cosderamo l umero += : questo è l prmo umero dspar che s cotra che o è prmo; rflettamo: perchè ma o è prmo? Perchè, come s è gà detto, o ha term "cetral" d cu parlavo pù sopra ugual a term cetral d = ; ma perchè ma è vero questo? Questo fatto dpede da dvsor che dvdoo esattamete += resttuedo almeo ua parte de term "cetral" d. Ifatt, sccome per calcolare term "cetral" s dvde l valore d + o d, rspettvamete, per umer Natural compres tra e l trocameto del rsultato d e, e del rsultato della dvsoe d e + per quest umer Natural s cosdera solo la parte tera, se così facedo ottee d rsultat, e d soo l umero de dvsor (esatt) d, allora + o sarà dvsble per essuo d que umer Natural, ma comuque otterrà gl stess d rsultat. Per esempo: se =, per calcolare term "cetral" d s dvde per e po per ; così facedo ottee d= rsultat, e soo propro dvsor (esatt) d : che soo propro e. Allora, += o sarà ma Gorgo Lambert Pag.

4 dvsble esattamete è per è per ; ma comuque, dvdedo prma per e po per e cosderado del rsultato solo la parte tera (trocameto), + ottee ach'esso d= rsultat, che soo e. chema: dv ={, } dv ={}. Qud, dvsor (esatt) d o possoo essere dvsor esatt ache d + : vceversa, vale che dvsor esatt d + o potrao ma essere dvsor esatt ache d. Percò, se + o ha alcu dvsore esatto che resttusca term "cetral", + avrà comuque gl stess d rsultat che ottee medate suo dvsor esatt: perchè d tutte le dvso s cosdera sempre solo la parte tera. Accade percò che quado + ha propr dvsor esatt, sccome + è maggore d, allora l terme "cetrale" che derva dalla dvsoe d + per l suo dvsore esatto sarà maggore d utà rspetto al terme "cetrale" che derva dalla dvsoe dal rsultato trocato d per lo stesso dvsore. chema: dv ={, } dv ={} l terme "cetrale" che derva dalla dvsoe esatta è sempre maggore d utà rspetto al terme cetrale che derva dalla dvsoe trocata. Percò, sccome è more d +, quado s dvde sa = che += prma per e po per, s ottegoo gl stess rsultat. D cosegueza, l rsultato che "sballa", rededo coè dversa la somma de term "cetral" d e è propro l dvsore esatto d +, coè. Da cu, s deduce l Teorema geerale: "e esste almeo u dvsore esatto d + tra umer Natural che s utlzzao per dvdere sa che + per calcolare term "cetral", allora sarà maggore d ". (I umer Natural che s utlzzao per dvdere sa che + per calcolare term "cetral", soo umer Natural compres tra e, rspettvamete, la parte tera del rsultato delle dvso e ). U umero prmo è u umero che ha per dvsor solo sè stesso e l'utà: dato che quest dvsor soo qud gà, o è ammesso u terzo dvsore, coè o è ammessa ua quattà maggore d dvsor. Percò, u umero prmo è rcooscble dal fatto che o ha pù d dvsor, ma e ha propro sempre e solo. Ma è duque ovvo, che se s dvdesse e + etramb per, vuol dre che s sta dvdedo u umero caddato prmo per l'utà; metre quado s dvdesse sa che + per u umero Naturale maggore della loro metà (arrotodata sempre per dfetto), sccome del rsultato della dvsoe s cosdera solo la parte tera, allora questo rsultato sarebbe per oguo d que valor sempre l'equvalete della dvsoe d e +, rspettvamete, per e +, l che vuol dre che s sta dvdedo l umero caddato prmo per sè stesso. Ifatt, se è vero che possamo assumere che Gorgo Lambert Pag.

5 u umero è dvso per sè stesso quado dà per rsultato, allora, sccome delle ostre dvso cosderamo solo la parte tera, umer e +, dvs per qualsas umero Naturale maggore della loro metà (arrotodata sempre per dfetto), è come se fossero dvs, rspettvamete, propro per e +. A questo puto, s è gà dvso l umero caddato prmo per due tp d dvsor: l'utà e sè stesso. Predamo ora ad esempo l umero += : la sommatora de term della sere è: Cosa vogloo dre term d questa sommatora? Vogloo dre che, term ugual a, è come se fossero (sempre) l rsultato d dvso sè stesso, metre l terme uguale a è come se fosse l rsultato d dvso l'utà: percò, se tra gl altr term rmaet (che soo term che ho chamato "cetral") o c soo dvsor esatt d +=, allora avrà soltato, come dvsor esatt, ovvamete sè stesso e l'utà (coè dvsor): e la cosegueza d cò, per l Teorema geerale che ho dedotto pù sopra, è che la somma de term "cetral" sarà uguale a alla somma de term "cetral" della sere. e quest'ultma cosa è vera, la dffereza tra le sere della coppa ( ; ) è, perchè, s è detto molto pù sopra el documeto, "l umero d che compaoo coda alle sere e, co che è par, dffersce d utà, che, sommata all'altra utà per la quale dfferscoo sempre queste due sere cosecutve per va del loro prmo terme, determa ua dffereza sulla sommatora de term che mmo è utà". U umero ache o prmo ha sempre almeo due dvsor, che soo sè stesso e l'utà: qud, gl altr suo dvsor vao rcercat aalzzado rsultat de term "cetral" delle sere, coè cotado quat d quest term scaturscoo da ua dvsoe seza resto. Ovvamete, l valore += o determa qud che è u umero prmo. E così s dmostra sa la valdtà della formula per calcolare l umero d dvsor che la valdtà del test d prmaltà ad essa assocato. Gorgo Lambert, 0/0/0 Gorgo Lambert Pag.

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo ESERCIZI DI CALCOLO DELLE PROBABILITÁ ) Qual e la probabilita che laciado dadi a facce o esca essu? Studiare il comportameto asitotico di tale probabilita per grade. ) I u sacchetto vi soo 0 pallie biache;

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

L OFFERTA DI LAVORO 1

L OFFERTA DI LAVORO 1 L OFFERTA DI LAVORO 1 La famiglia come foritrice di risorse OFFERTA DI LAVORO Notazioe utile: T : dotazioe di tempo (ore totali) : ore dedicate al tempo libero l=t- : ore dedicate al lavoro : cosumo di

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard)

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard) Sistemi LTI descrivibile mediate SDE (Equazioi alle Differeze Stadard) Nella classe dei sistemi LTI ua sottoclasse è quella dei sistemi defiiti da Equazioi Stadard alle Differeze Fiite (SDE), dette così

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

La sicurezza sul lavoro: obblighi e responsabilità

La sicurezza sul lavoro: obblighi e responsabilità La sicurezza sul lavoro: obblighi e resposabilità Il Testo uico sulla sicurezza, Dlgs 81/08 è il pilastro della ormativa sulla sicurezza sul lavoro. I sostaza il Dlgs disciplia tutte le attività di tutti

Dettagli

l = 0, 1, 2, 3,,, n-1n m = 0, ±1,

l = 0, 1, 2, 3,,, n-1n m = 0, ±1, NUMERI QUANTICI Le autofuzioi soo caratterizzate da tre parametri chiamati NUMERI QUANTICI e soo completamete defiite dai loro valori: : umero quatico pricipale l : umero quatico secodario m : umero quatico

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Motori maxon DC e maxon EC Le cose più importanti

Motori maxon DC e maxon EC Le cose più importanti Motori maxo DC e maxo EC Il motore come trasformatore di eergia Il motore elettrico trasforma la poteza elettrica P el (tesioe U e correte I) i poteza meccaica P mech (velocità e coppia M). Le perdite

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

ESERCITAZIONE L adsorbimento su carbone attivo

ESERCITAZIONE L adsorbimento su carbone attivo ESERCITAZIONE adsorbimeto su carboe attivo ezioi di riferimeto: Processi basati sul trasferimeto di materia Adsorbimeto su carboi attivi Testi di riferimeto: Water treatmet priciples ad desi, WH Pricipi

Dettagli

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari . MODELLO DINAMICO AD UN GRADO DI LIBERTÀ Alcue defiizioi prelimiari I sistemi vibrati possoo essere lieari o o lieari: el primo caso vale il pricipio di sovrapposizioe degli effetti el secodo o. I geerale

Dettagli

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI Mirta Debbia LS A. F. Formiggii di Sassuolo (MO) - debbia.m@libero.it Maria Cecilia Zoboli - LS A. F. Formiggii di Sassuolo (MO) - cherubii8@libero.it

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15 Apputi di Statistica Matematica Ifereza Statistica Multivariata Ao Accademico 014/15 November 19, 014 1 Campioi e modelli statistici Siao Ω, A, P uo spazio di probabilità e X = X 1,..., X u vettore aleatorio

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Dall atomo di Bohr alla costante di struttura fine

Dall atomo di Bohr alla costante di struttura fine Dall atomo di Bohr alla ostate di struttura fie. INFORMAZIONI SPETTROSCOPICHE SUGLI ATOMI E be oto he ogi sostaza opportuamete eitata emette radiazioi elettromagetihe. Co uo spettrosopio, o strumeti aaloghi,

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Esercizi Le leggi dei gas. Lo stato gassoso

Esercizi Le leggi dei gas. Lo stato gassoso Esercizi Le lei dei as Lo stato assoso Ua certa quatità di as cloro, alla pressioe di,5 atm, occupa il volume di 0,58 litri. Calcola il volume occupato dal as se la pressioe viee portata a,0 atm e se la

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario Valutazioe delle prestazioi termiche di sistemi co solai termoattivi i regime o stazioario MICHELE DE CARLI, Ph.D., Ricercatore, Dipartimeto di Fisica Tecica, Uiversità degli Studi di Padova, Padova, Italia.

Dettagli

CAPITOLO 18 STABILITÀ DEI PENDII

CAPITOLO 18 STABILITÀ DEI PENDII Captolo 8 CAPITOLO 8 8. Frae 8.. Fattor e cause de movmet fraos Per fraa s tede u rapdo spostameto d ua massa d rocca o d terra l cu cetro d gravtà s muove verso l basso e verso l estero. I prcpal fattor

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario USUFRUTTO 1) Che cos è l sfrtto e come si pò costitire? L sfrtto è il diritto di godimeto ( ovvero di possesso) di bee altri a titolo gratito ; viee chiamato sfrttario chi esercita tale diritto, metre

Dettagli

Capitolo 3 Il trattamento statistico dei dati

Capitolo 3 Il trattamento statistico dei dati Capolo 3 Il raameo sasco de da 3. - Geeralà Nel descrere feome, occorre da u lao elaborare de modell (coè delle relazo maemache fra le gradezze, che coseao d descrere e preedere l feomeo) e dall alro dars

Dettagli

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \ 3,6 56 3,6 TEOR I A SPETTRALE La teoria spettrale degli operatori lieari- eo spazio di Hilbert é f odata, coe per gi spazi f i-ito-dimes ioal j-, sula defiizioe di- risolvete di u operatole' Sia (A,DA)

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Valutazioe e riduzioe della vulerailità sismia di ediii esisteti i.a. Roma, 9-0 maggio 00 DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Di Ludovio

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

AcidSoft. Le nostre soluzioni. Innovazione

AcidSoft. Le nostre soluzioni. Innovazione AiSoft AiSoft ase alla passioe per l'iformatio teology e si oretizza i ua realtà impreitoriale, ua perfetta reazioe imia tra ooseza teia e reatività per realizzare progetti i grae iovazioe. Le ostre soluzioi

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi. Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE DISPENSE DI: FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE Testo di riferieto E. Fuaioli ed altri Meccaica applicata alle acchie vol. e - Ed. Patro BOZZA Idice. INTRODUZIONE ALLA MECCANICA APPLICATA

Dettagli

Benvenuti in Ontario. Guida ai programmi e ai servizi per i nuovi arrivati in Ontario

Benvenuti in Ontario. Guida ai programmi e ai servizi per i nuovi arrivati in Ontario Beveuti i Otario Guida ai programmi e ai servizi per i uovi arrivati i Otario Idice Vivere i Otario........................................... 2 Come otteere l aiuto di cui avete bisogo.....................................

Dettagli

Interpolazione. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano

Interpolazione. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano L4 Iterpolazioe L4 Prologo Co iterpolazioe si itede il processo di idividuare ua fuzioe, spesso u poliomio, che passi per u isieme dato di puti: (x,y). y x L4 2 Fii dell iterpolazioe 1. Sostituire u isieme

Dettagli

ISTITUTO COMPRENSIVO UGO FOSCOLO VESCOVATO SCUOLA SECONDARIA DI 1 GRADO PIANO ANNUALE DELLE ATTIVITA' A.S. 2013/14

ISTITUTO COMPRENSIVO UGO FOSCOLO VESCOVATO SCUOLA SECONDARIA DI 1 GRADO PIANO ANNUALE DELLE ATTIVITA' A.S. 2013/14 STTUTO COMPRENSVO UGO FOSCOLO SCUOLA SECONDARA D 1 GRADO PANO ANNUALE DELLE ATTVTA' A.S. 2013/14 PROT. N. 5991 /A-19 Vescovato, 19/09/2013 Data Giorno Sedi scolastiche Classi Orario Durata ATTVTA' COLLEGO

Dettagli

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità)

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità) 4 Quai eravamo, quai siamo, quai saremo Che cosa si impara el capiolo 4 er cooscere le caraerisiche e l evoluzioe della popolazioe ialiaa araverso u lugo arco di empo uilizziamo il asso di icremeo medio

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO DIREZIONE DIDATTICA DEL 4 CIRCOLO DI FORLI' Va Gorgna Saff, n.12 Tel 0543/33345 fax 0543/458861 C.F. 80004560407 CM FOEE00400B e-mal foee00400b@struzone.t - posta cert.: foee00400b@pec.struzone.t sto web:

Dettagli

La necessità di trasmettere potenza tra organi in moto rotatorio è un problema frequentissimo e di grande importanza nell ingegneria.

La necessità di trasmettere potenza tra organi in moto rotatorio è un problema frequentissimo e di grande importanza nell ingegneria. La ecessità di tasmettee poteza ta ogai i moto otatoio è u poblema fequetissimo e di gade impotaza ell igegeia. Gli assi di otazioe ta i quali deve essee tasmesso il moto possoo essee paalleli I questo

Dettagli

INDICAZIONI SULLA COMPILAZIONE DEI QUADRI DEL MOD. 730/2015 IN BASE ALLA CERTIFICAZIONE UNICA 2015

INDICAZIONI SULLA COMPILAZIONE DEI QUADRI DEL MOD. 730/2015 IN BASE ALLA CERTIFICAZIONE UNICA 2015 INDICAZIONI SULLA COMPILAZIONE DEI QUADRI DEL MOD. 730/2015 IN BASE ALLA CERTIFICAZIONE UNICA 2015 Di seguito, riepiloghiamo i principali campi della Certificazione Unica (CU) che DEVONO essere inseriti

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/9/2) ECONOMIA E POLITICA DEL SETTORE ITTICO 1.INTRODUZIONE. LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE (una applcazone ad un contesto

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

\ l o n g a r e \ RE5 INDICE - TITOLO PRIMO - NORME GENERALI

\ l o n g a r e \ RE5 INDICE - TITOLO PRIMO - NORME GENERALI \ l o n g a r e \ RE5 INDICE - TITOLO PRIMO - NORME GENERALI ART. 1 - OGGETTO DEL REGOL AMENTO EDI L I ZI O E RI CHI AMO AL L E DI SPOSI ZI ONI DI L EGGE E REGOL AMENTI - TITOLO SECONDO - DISCIPLINA DEGLI

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Analisi dei segnali nel dominio del tempo

Analisi dei segnali nel dominio del tempo Appui di Teoria dei Segali a.a. / Aalisi dei segali el domiio del empo L.Verdoliva I quesa prima pare del corso sudieremo come rappreseare i segali empo coiuo e discreo el domiio del empo e defiiremo le

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

Tabelle retributive CASE DI CURA TABELLE RETRIBUTIVE DI ALCUNI CCNL

Tabelle retributive CASE DI CURA TABELLE RETRIBUTIVE DI ALCUNI CCNL TABELLE RETRIBUTIVE DI ALCUNI CCNL Tabelle retributive Una volta trovato il salario lordo, per calcolare il netto vedere IN FONDO Casa di cura Commercio Edilizia Metalmeccanica Pulizie Telecomunicazioni

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Comportamento delle strutture in C.A. in Zona Sismica

Comportamento delle strutture in C.A. in Zona Sismica Comportameto delle strutture i c.a. i zoa sismica Pagia i/161 Comportameto delle strutture i C.A. i Zoa Sismica Prof. Paolo Riva Dipartimeto di Progettazioe e ecologie Facoltà di Igegeria Uiversità di

Dettagli

Screening I elementare La scuola fa bene a tutti anno scol. 2010-2011 Marialuisa Antoniotti Claudio Turello

Screening I elementare La scuola fa bene a tutti anno scol. 2010-2011 Marialuisa Antoniotti Claudio Turello Screening I elementare La scuola fa bene a tutti anno scol. 2010-2011 Marialuisa Antoniotti Claudio Turello "La scuola fa bene a tutti" 1 La trasparenza di una lingua L U P O /l/ /u/ /p/ /o/ C H I E S

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE Pof. Agelo Ageletti -.s. 006/007 1) COME SI SCRIVE IL RISULTATO DI UNA MISURA Il modo miglioe pe espimee il isultto di u misu è quello di de,

Dettagli