Problema della Ricerca

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Problema della Ricerca"

Transcript

1 Problema della Rcerca Pag. /59 Problema della Rcerca U dzoaro rappreseta u seme d formazo suddvso per elemet ad oguo de qual è assocata ua chave. Esempo d dzoaro è l eleco telefoco dove la chave è costtuta dalla coppa cogome, ome e gl elemet dalle formazo qual umero telefoco ed drzzo. Altro esempo classco d dzoaro è rappresetato dal vocabolaro della lgua talaa dove ad og parola, chave del dzoaro, è assocato u sgfcato. L seme mmo d operazo attuabl su u dzoaro è costtuto dalle operazo d rcerca, sermeto e cacellazoe dove, la rcerca resttusce u elemeto assocato ad ua chave, l sermeto sersce all tero del dzoaro ua uova coppa, chave ed elemeto, e la cacellazoe cacella la coppa, chave ed elemeto. Tratteremo questa sezoe alcue possbl mplemetazo d u dzoaro che s dstguoo ell orgazzazoe delle formazo e qud ella complesstà delle tre operazo. Vedremo ad esempo che ua possble soluzoe d mplemetazoe d u dzoaro è la lsta ordata e che tal caso l operazoe d rcerca ha ua complesstà Olog ) metre le operazo d sermeto e cacellazoe hao ua complesstà O). Così come vedremo che gl alber AVL costtuscoo ach ess ua valda alteratva d mplemetazoe d u dzoaro e che tal caso, vece, le tre operazo hao tutte complesstà Olog ). E bee evdezare, s da ora, che o esste assoluto la mglore soluzoe per l mplemetazoe d u dzoaro. La scelta della struttura dat dpede fatt da molteplc fattor ed emerge solo a seguto d u aals volta ad dvduare sa le operazo maggormete rcorret che l grado d complesstà che s vuol affrotare fase d realzzazoe. Ad esempo, se a seguto d u aals emergesse che durate l propro cclo d vta l dzoaro o sarà partcolarmete damco elle sue compoet, potrebbe rsultare preferble pealzzare le operazo d cacellazoe ed Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

2 Problema della Rcerca Pag. /59 sermeto a scapto d ua maggore semplctà d realzzazoe e qud magar rcorrere alla mplemetazoe tramte lsta ordata. Caso opposto, vece, è quello cu rcerca, cacellazoe ed sermeto hao smle grado d rcorreza. Potrebbe tal caso rsultare opportuo rcorrere ad ua mplemetazoe medate alber AVL, affrotado qud ua fase d realzzazoe pù laborosa ma asscurados el cotempo per tutte e tre le operazo ua complesstà logartmca el umero degl elemet. Prma d trodurre le possbl mplemetazo descrvamo l ADT Dzoaro. Tpo d dat: Dzoaro Iseme d coppe Chave, Elemeto) Operazo: Isersc Chave k, Elemeto e ) Agguge ua coppa Chave, Elemeto) al dzoaro Cacella Chave k ) Cacella dal dzoaro la coppa Chave, Elemeto) dvduata dalla chave k Cerca Chave k ) Elemeto Resttusce l elemeto del dzoaro al quale è assocata la chave k Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

3 Problema della Rcerca Pag. 3/59. Lste e Bt Vector Le lste ed bt vector rappresetao due soluzo faclmete attuabl per l mplemetazoe dell ADT Dzoaro. Come vedremo, bt vector soo applcabl solo u cotesto be defto.. Lste Possamo mplemetare u dzoaro medate l utlzzo dell ADT lsta ordata o dell ADT lsta o ordata. I ambedue cas, l record rappresetate u elemeto della lsta sarà formato da u campo chave, da u campo elemeto ed fe dal campo rappresetate l putatore all elemeto successvo. Nel seguete prospetto soo rportat temp d esecuzoe delle operazo d rcerca, sermeto e cacellazoe. Rcerca Isermeto Cacellazoe Lsta Ordata Logartmca el umero d elemet Olog ) Leare el umero d elemet O) Leare el umero d elemet O) Lsta o ordata Leare el umero d elemet O) Costate O) Leare el umero d elemet O). Bt Vector I bt vector rappresetao ua soluzoe applcable per l mplemetazoe d u dzoaro quado le chav assumoo valor apparteet ad u sottoseme lmtato dell tero seme uverso ed oltre tal valor soo rappresetabl medate umer ter. L mplemetazoe medate bt vector rchede l utlzzo d u array d boolea, bt vector, dove lo -esmo bt è posto a true se lo -esmo elemeto è presete el dzoaro altrmet è posto a false. L operazoe d sermeto può avvere seredo og uova coppa come ultmo elemeto della lsta Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

4 Problema della Rcerca Pag. 4/59 Avremo qud che per: - rcercare l elemeto, valutamo semplcemete se lo -esmo elemeto del bt vector è true o false; - serre l elemeto : poamo lo -esmo elemeto del bt vector uguale a true; - cacellare l elemeto, poamo lo -esmo elemeto del bt vector uguale a false. Cosderado che l accesso allo -esmo elemeto d u array ha tempo costate rspetto al umero d elemet esso coteut, abbamo che le operazo d rcerca, sermeto e cacellazoe hao tutte complesstà costate. Esempo S pred cosderazoe la gestoe delle preotazo delle camere d u albergo. Ad og camera è assocato u valore tero rappresetate l umero d staza. E possble creare, qud, u vettore d bt avete dmesoe par al umero d staze dell albergo e: - quado seramo ua preotazoe per la staza poamo lo -esmo elemeto del vettore uguale a true; - quado cacellamo ua preotazoe per la staza poamo lo -esmo elemeto del vettore uguale a false; - quado s deve verfcare se la staza è preotata valutamo l valore assuto dallo -esmo elemeto del vettore booleo. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

5 Problema della Rcerca Pag. 5/59. Alber Bar d Rcerca BST) Vedremo questo paragrafo come orgazzare le formazoe del dzoaro medate la struttura dat Albero Baro d Rcerca. Credamo opportuo sottoleare che, ache se all tero del corso tratteremo gl alber bar d rcerca solamete ello studo dell ADT Dzoaro, o bsoga ad og modo commettere l errore d cofare l loro utlzzo esclusvamete all tero d tale ambto. Gl alber bar d rcerca soo strutture dat valde oltre che per la realzzazoe degl operator base dell ADT Dzoaro, rcerca, sermeto e cacellazoe, ache per l mplemetazoe d altr operator qual la rcerca del successvo, la rcerca del predecessore, la rcerca del massmo o la rcerca del mmo, operator applcabl ad ADT d altro tpo qual ad esempo l ADT Coda a Prortà. Defzoe: u albero baro d rcerca è u albero baro che soddsfa le seguet propretà:. og odo dell albero è coteuta la coppa chave, elemeto);. le chav soo estratte da u seme totalmete ordato; 3. og chave del sottoalbero sstro del odo v è more o al massmo uguale alla chave coteuta el odo v; 4. og chave del sottoalbero destro del odo v è maggore o al massmo uguale alla chave coteuta el odo v. Esempo Solo la prma raffgurazoe rappreseta u albero baro d rcerca Volazoe della terza propretà Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

6 Problema della Rcerca Pag. 6/59 Nota Ua caratterstca dell albero d rcerca è che l path della vsta order è rappresetato dalle chav dell albero rportate orde crescete. Ad esempo s cosder l albero baro d rcerca dell esempo sopra s ha che l path della vsta order è: 5, 0, 5, 0, 30, 40, 55, 60, 80. Rcerca Facedo leva sulle propretà 3 e 4, apputo chamate propretà d rcerca, rcerchamo ua chave all tero d u albero baro d rcerca seguedo ua metodologa che rchama l algortmo d rcerca bara. Sa v u odo dell albero e k l valore della chave da rcercare, damo luogo a seguet pass:. se la chave d v è uguale a k allora stop: chave trovata!. se la chave d v è maggore d k allora cotuamo la rcerca sottoalbero sstro 3. se la chave d v è more d k allora cotuamo la rcerca sottoalbero destro Alber bar d Rcerca- Algortmo d rcerca chave Cerca Chave k, Nodo v ) Nodo { Nodo r _ se v NULL ) allora rtora NULL se v.chave k ) allora rtora v se v.chave > k ) allora r v.sstro altrmet r v.destro } rtora Cerca k, r ) Aalzzamo la complesstà dell algortmo. Esso scorre d lvello lvello l albero baro d rcerca. Il peggore de cas è rappresetato dalla dscesa lugo u tero verso dell albero, fo ad arrvare ad ua fogla. Tale caso occorre quado l elemeto o è trovato ed al suo verfcars l algortmo esegue qud u umero d pass drettamete proporzoal co l altezza dell albero. Pertato se dchamo co h l altezza dell albero baro d rcerca, possamo dre che l algortmo el caso pessmo, elemeto o trovato, ha ua complesstà leare rspetto ad h: Oh). Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

7 Problema della Rcerca Pag. 7/59 Isermeto I u albero baro, seramo u uovo odo sempre come fogla. Damo luogo ad u sermeto cosderazoe de seguet macro pass: Rcerca del gusto padre, dvduamo l odo v che possede le propretà adatte per essere getore del uovo odo. La rcerca del gusto padre avvee scededo lugo l albero, co la stessa metodologa utlzzata per l operazoe d rcerca, f quado o s cotra u odo v che o ha fglo sstro ed ha la chave maggore d quella dell elemeto da serre oppure u odo v che o ha fglo destro ed ha la chave more d quella dell elemeto da serre. Isermeto odo: trovato l gusto padre seramo l uovo odo come fglo destro o sstro el rspetto delle propretà d rcerca Aalzzamo la complesstà. Poché l algortmo scorre lugo u tero verso l albero baro d rcerca, s ha che la complesstà ache questo caso è leare rspetto all altezza dell albero: Oh). Esempo Isermeto elemeto co chave 4. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

8 Problema della Rcerca Pag. 8/59 Cacellazoe Prma d procedere ella cacellazoe d u odo all tero d u albero baro d rcerca vedamo le seguet due procedure poste al servzo dell operazoe d cacellazoe. Rcerca del massmo Le propretà d rcerca garatscoo che per l dvduazoe della chave pù grade presete u albero baro d rcerca dobbamo scedere, quato pù possble, lugo l verso destro dell albero. Alber bar d Rcerca- Rcerca del massmo max Nodo u ) Nodo { Nodo v _ v u whle v.destro! NULL ) v v.destro } rtora v L algortmo d rcerca del massmo ha, el caso pessmo, ua complesstà leare rspetto all altezza dell albero. Rcerca del predecessore Idchamo co l terme d predecessore d u odo v quel odo coteete come chave l massmo dell seme delle chav pù pccole d quella coteuta v. I u albero baro d rcerca l predecessore d u odo v è:. l massmo del sottoalbero sstro, se v ha u fglo sstro;. l pù basso ateato d u l cu fglo destro è ach esso ateato d u rsal l albero f quado o cotr ua svolta a sstra ), altrmet; Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

9 Problema della Rcerca Pag. 9/59 Alber bar d Rcerca- Rcerca del predecessore predecessore Nodo u ) Nodo { se u ha fglo sstro ) allora rtora max u ) _ whle padreu)! NULL e u e fglo sstro del padre ) u padre u } rtora l padre u L algortmo d rcerca del predecessore rsale l albero e pertato esso, el caso pessmo, ha complesstà leare rspetto all altezza dell albero. Esempo Rcerca del predecessore Samo prot per aalzzare l operazoe d cacellazoe. Sa u l odo dell albero d rcerca da cacellare, s possoo verfcare seguet tre cas:. u è ua fogla: tal caso dstacchamo semplcemete la fogla dall albero;. u ha u uco fglo fgura.) e sa v l uco fglo d u a. se u è radce allora v dvee la uova radce dell albero; b. se u o è radce allora sa w l padre d u, sosttuamo l arco w,u) co l arco w,v); Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

10 Problema della Rcerca Pag. 0/59 3. u ha due fgl fgura.): tal caso sa v l predecessore d u. Poché u ha due fgl l predecessore sarà l massmo del sottoalbero sstro d u e pertato v sarà ua fogla oppure u odo tero avete al max u solo fglo: quello sstro. La cacellazoe d u pertato può avvere copado la chave d v u ed elmado v cadedo per quest ultma operazoe e due cas precedet. La cacellazoe al par delle altre due operazo, rcerca ed sermeto, ha ua complesstà proporzoale all altezza dell albero poché el caso pessmo potremmo muoverc su l tera altezza dell albero alla rcerca del predecessore. Fgura. Elmazoe odo co u solo fglo Se v avesse ua fglo destro essterebbe ua chave pù grade d v e qud v o rappreseterebbe l massmo del sottoalbero sstro d u. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

11 Problema della Rcerca Pag. /59 u v Passo Copa delle t t v v w w v Passo Elmazoe d v t v w Fgura. Elmazoe odo co due fgl Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

12 Problema della Rcerca Pag. /59 Esempo Raffguramo d seguto la cacellazoe d u odo co u fglo Uco fglo del odo da cacellare 54 Nodo da cacellare Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

13 Problema della Rcerca Pag. 3/59 Vedamo fe la cacellazoe d u odo co due fgl 80 Nodo da cacellare Uco fglo del predecessore 54 Predecessore d Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

14 Problema della Rcerca Pag. 4/59. Aals dell altezza d u albero baro d rcerca Come vsto precedetemete, medate la struttura dat alber bar d rcerca samo grado d mplemetare algortm d sermeto, cacellazoe e rcerca avet complesstà leare co l altezza dell albero. L aals che c accgamo a svolgere all tero del presete paragrafo ha come obettvo quello d esprmere tale complesstà term d umero d od del grafo ovvero term d umero d elemet preset el dzoaro. Vedamo prma alcue ozo propedeutche all aals. Defzoe: u albero baro s defsce completo se og odo tero ha due fgl e tutte le fogle appartegoo allo stesso lvello. Esempo Albero baro completo Albero baro o completo, v o ha due fgl v Albero baro o completo, tutt od ter hao due fgl ma le fogle o appartegoo allo stesso lvello Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

15 Problema della Rcerca Pag. 5/59 S dmostra l seguete teorema valdo per gl alber bar complet. Teorema... Sa T u albero baro completo. S dch co fogle T) l umero d fogle dell albero T e co h l altezza dell albero, allora s ha che: fogle T) h. Dmostrazoe. Il teorema s dmostra per duzoe. Sa h0, allora T è formato dalla sola radce che è pertato ache l uca fogla per cu: fogle T) 0. Poamo qud vero l teorema per u albero completo, che dchamo co T, avete altezza h-. Allora fogle T ) h-. Costruamo qud, a partre da T, u albero completo d altezza h che dchamo co T. Affché T sa completo ad og fogla d T dobbamo aggugere due fgl. Tal fgl rappreseterao le fogle d T. Pertato le fogle d T sarao: fogle T) * fogle T ) * h- h. Estededo l rsultato del teorema a tutt od dell albero abbamo che: Teorema... Sa T u albero baro completo. Sa l umero d od d T e h l altezza d T allora h coè h log. Aals della complesstà - Caso : albero d altezza mma La defzoe d albero baro completo c auta ella ostra aals quado l albero baro d rcerca ha altezza mma. Sao l umero d elemet del dzoaro, l albero baro d rcerca coteete le coppe ed avete altezza mma è dato da u albero baro d rcerca d altezza h completo almeo fo a lvello h-. I tal caso abbamo, dal teorema.. che: h h-) log-). Pertato, avedo le operazo d rcerca, sermeto e cacellazoe tutte complesstà Oh) possamo affermare che tale complesstà espressa term d umero d od è Olog ) el caso cu l albero ha altezza mma. Aals della complesstà - Caso : albero d altezza massma Caso opposto a quello appea esamato è dato da u albero completamete sblacato, u albero avete altezza uguale al umero d od meo uo 3. I tal caso la complesstà degl algortm d rcerca, cacellazoe ed sermeto è baalmete proporzoale al umero d elemet del dzoaro: O). 3 S cade tale potes quado l sermeto degl elemet all tero dell albero è ordato. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

16 Problema della Rcerca Pag. 6/59 Aals della complesstà - Caso : altezza meda Presupposto dell aals dell altezza meda d u albero baro d rcerca è l sermeto orde puramete casuale de od all tero dell albero. Tutt gl elemet del dzoaro hao uguale probabltà d essere scelt e qud sert. Sulla base d tale potes dmostreremo che l altezza dell albero è Olog ) e pertato el caso medo le tre operazo del dzoaro hao tutte complesstà Olog ). Teorema..3. sa T u albero baro d rcerca otteuto medate ua sere d sermet d coppe chave, elemeto). Sa oltre l orde d sermeto degl elemet puramete casuale. S dch fe co P) l altezza meda dell albero T, allora s ha che: P) O log ) Dm: dchamo co {a,..., a } l seme degl elemet da serre all tero dell albero. Affchè l orde d sermeto sa rteuto puramete casuale dobbamo avere che la probabltà d scelta degl elemet sa equdstrbuta, ovvero che essa sa uguale ad / per og elemeto. Idchamo co a l prmo elemeto che vee prelevato dalla lsta per essere serto all tero dell albero. Essedo la probabltà d scelta equ dstrbuta abbamo che la probabltà che a sa uguale ad u qualuque a è par ad / per og,...,. Al terme dell sermeto d tutt gl elemet è lecto raffgurare l albero baro d rcerca el seguete modo: a chav mor d a -- chav maggor d a dove el sottoalbero sstro soo coteut gl elemet assocat alle chav pù pccole d a e el sottoalbero destro gl elemet assocat alle chav pù grad d a. Idchamo qud co l umero d chav pù pccole d a e co -- quelle pù grad d a. Idchamo oltre co P) e co P--) rspettvamete le altezze mede del sottoalbero sstro e destro quado l elemeto a è radce dell albero. Abbamo che l altezza meda dell tero albero, P), sarà calcolable a partre dalla seguete formula: P ) P ) ) P ) ) dove: Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

17 Problema della Rcerca Pag. 7/59 Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI P ): è l altezza meda dell tero albero coteete elemet ed avete la radce a a. /: è la probabltà d aver pescato elemet pù pccol d a dopo l sermeto d a; P): è l altezza meda del sottoalbero sstro pù l odo a; --)/: è la probabltà d aver pescato -- elemet pù grad d a dopo l sermeto d a; P--): è l altezza meda del sottoalbero destro pù l odo a; /: è la probabltà d aver pescato a come prmo elemeto. Pertato cosderado che la probabltà che u elemeto sa radce dell albero è par ad / abbamo: P P P P o ) ) ) ) ) ) 0 P P o ) ) P P o ) ) ) ) P P o ) ) P P o ) ) ) P P o ) ) ) P P o ) P o ) P o ) P Quest ultma uguaglaza è gustfcata dal fatto che per uguale a zero P)0. Rcaptolado abbamo che: ) ) P P Ora, procededo per duzoe su, dmostramo che: P log 4 ) )

18 Problema della Rcerca Pag. 8/59 Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI Poamo. I tal caso l altezza meda d u albero formato da u odo è obblgatoramete uguale ad uo e pertato P) 4 log. Poamo vera l potes per tutt valor mor d, avremo qud che: ) ) P P ) 4log log 4 log 4 Ora essedo ) s ha che: log 4 ) P log 4 log 8 Aalzzamo ora gl dc della sommatora, dvdamol due rage:,..., / -) e /,..., -) e rscrvamo la dsuguaglaza. P log log 8 ) Essedo ora due logartm calcolat sul valore cremetale d possamo affermare che: ) log log pochè l valore d è sempre more d / ) log log pochè l valore d è sempre more d

19 Problema della Rcerca Pag. 9/59 Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI e pertato rscrvere la dsuguaglaza come: P log log 8 ) Aalzzamo ora separatamete le due sommatore cosderado due dvers cas: è par ed è dspar. par 8 ) ) dspar ) ) ) 8 ) ) ) ) ) ) ) ) 4

20 Problema della Rcerca Pag. 0/59 Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI Dall aals fatta sopra sulle sommatore e derva che: P log 8 3 log 8 8 log log 8 ) 4log 3log log 3log log log 3log log

21 Problema della Rcerca Pag. /59 3. Alber AVL Nel precedete captolo abbamo vsto come l blacameto d u albero fluez le operazo d rcerca, cacellazoe e sermeto. U albero perfettamete blacato garatsce per ogua d queste operazo ua complesstà logartmca el umero d elemet del dzoaro. Sulla base d questa cosderazoe, Adel so, Velsk e Lads A.V.L.) hao deato ua famgla d alber, gl Alber AVL. Caratterstca d tal alber è quella d mateere u perfetto blacameto ache dopo aver dato luogo ad operazo d sermeto e cacellazoe, ovvero dopo aver apportato modfche alla struttura dell albero. Vedremo come l esecuzoe d opportue operazo, che chameremo rotazo d rblacameto, rappreseterà la chave d volta per l matemeto del blacameto dell albero. Defzoe: u albero baro è blacato altezza se le altezze del sottoalbero sstro e destro dfferscoo al pù d ua utà. Esempo Alber blacat Albero baro blacato Albero baro o blacato h- h- h - h h Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

22 Problema della Rcerca Pag. /59 Defzoe: sa v u odo, defamo fattore d blacameto, β v ), del odo v la dffereza tra l altezza de sottoalber sstro e destro radcat v: β v ) h s v )) h des v )). Notamo che u albero baro d rcerca, pù l fattore d blacameto de od è basso è maggormete effcet soo le operazo d rcerca, sermeto e cacellazoe. Defzoe. U Albero AVL è u albero baro d rcerca cu:. og odo dell albero cotee oltre alla coppa chave, elemeto) formazo sul blacameto del odo;. per og odo v s ha che: β v ) ; U Albero AVL è pertato u albero baro che matee le propretà d rcerca ed oltre è blacato. S dmostra l seguete: Teorema fodametale degl alber AVL: sa T u Albero AVL. Idchamo co l umero d od dell albero T e co h l altezza dell albero T. S ha che: h Olog ). Dm: omessa. 3. Rotazo per l rblacameto dell albero Le rotazo d rblacameto rappresetao u seme d tecche applcabl agl Alber AVL og qual volta, dopo aver dato luogo ad operazo che apportao modfche alla struttura dell albero, l fattore d blacameto d u odo rsult o essere pù more o uguale ad uo. Le rotazo d rblacameto mrao a rprstare l fattore d blacameto de od dell Albero AVL. Vedamo come. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

23 Problema della Rcerca Pag. 3/59 Sa v u odo sblacato, ovvero u odo tale che βv) è maggore o uguale a due. Sa u l odo fglo d v cu è radcato l albero avete altezza maggore. Sao fe Tu) s e Tu) des rspettvamete l sottoalbero sstro e destro d u. S possoo verfcare seguet quattro cas:. u è fglo sstro d v e Tu) s ha altezza maggore o uguale a Tu) des.. u è fglo sstro d v e Tu) des ha altezza maggore d Tu) s. 3. u è fglo destro d v e Tu) des ha altezza maggore o uguale a Tu) s. 4. u è fglo destro d v e Tu) s ha altezza maggore Tu) des. Per facltà d esposzoe, cosdereremo ella ostra aals solo prm due cas, poché rmaet cas soo smmetrc rspetto ad ess. Caso Osservamo la fgura basso. Idchamo co v l odo avete fattore d blacameto maggore d uo, co u l fglo sstro d v ed oltre co T 3 l albero destro radcato v. Sao fe T e T rspettvamete l sottoalbero sstro e destro d u. Assumamo qud che l altezza dell albero radcato u è maggore d due utà rspetto all altezza del sottoalbero T 3. Ioltre che l altezza d T è maggore o uguale all altezza d T. Tale dffereza o può superare l valore uo, altrmet l odo u sarebbe u odo sblacato. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

24 Problema della Rcerca Pag. 4/59 I tal caso possamo rblacare l albero sul odo v dado luogo ad ua rotazoe destra su v, ovvero poamo u padre d v e spostamo l sottoalbero T come sottoalbero sstro radcato v. Esempo 3.. Cosderamo l seguete Albero AVL dove tra paretes rportamo l fattore d blacameto d og odo. La radce dell albero rappreseta u odo sblacato. Operamo qud la rotazoe come descrtto el caso. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

25 Problema della Rcerca Pag. 5/59 Esempo 3.. Cosderamo l seguete Albero AVL. v 60 ) u 40 ) 90 ) 0 ) 44 0) 88 0) 00 0) 8 ) 8 ) 43 0) 50 0) 95 0) 8 0) 0 ) 9 0) 30 0) 5 0) Ache questo caso rcorramo alla rotazoe verso destra per rstablre gl equlbr d blacameto. Notamo come l operazoe d blacameto applcata al odo v rstablsce ache l fattore d blacameto della radce dell albero. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

26 Problema della Rcerca Pag. 6/59 Caso Smlmete a quato fatto sopra, osservamo la fgura basso dove dchamo co v l odo avete fattore d blacameto maggore d uo, co u l fglo sstro d v ed oltre co T 5 l albero destro radcato v. Sao fe T l sottoalbero sstro radcato u, w l fglo destro d u e T 3, T 4 rspettvamete sottoalber sstro e destro radcat w. Assumamo qud che l altezza dell albero radcato u sa maggore d due utà rspetto all altezza del sottoalbero T 5. Ioltre che l altezza d T è more dell altezza del sottoalbero radcato w. Notamo, smlmete al caso sopra affrotato che tale dffereza o può superare l valore uo, altrmet l odo u sarebbe u odo sblacato. v Nodo sblacato u Altezza h w T 5 Altezza h Altezza h T Altezza h Altezza h oppure Altezza h- Altezza h oppure Altezza h- T 3 T 4 I tal caso rblacamo l albero sul odo v eseguedo cosecutvamete le seguet due rotazo: Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

27 Problema della Rcerca Pag. 7/59 Rotazoe : rotazoe verso sstra su u, poamo w padre d u ed l sottoalbero T 3 come sottoalbero destro radcato u Rotazoe : rotazoe verso destra su v, poamo w padre d v ed l sottoalbero T4 come sottoalbero sstro radcato v. w u v Altezza h Altezza h Altezza h Altezza h oppure Altezza h- Altezza h oppure Altezza h- Altezza h T T 4 T 3 T 5 Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

28 Problema della Rcerca Pag. 8/59 Esempo 3..3 Cosderamo l seguete Albero AVL. Rcadamo el caso e pertato per rstablre gl equlbr d blacameto eseguamo la doppa rotazoe: Prma rotazoe Secoda rotazoe Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

29 Problema della Rcerca Pag. 9/59 3. Gl operator del dzoaro Prma d focalzzare la ostra attezoe sugl operator del dzoaro, osservamo dapprma che le sgole tecche d rblacameto descrtte el Paragrafo 3. hao ua complesstà dpedete dal umero d elemet preset el dzoaro. La loro complesstà è pertato costate: O). Rcerca Pochè u Albero AVL soo comuque rspettate le propretà d rcerca trodotte per BST, l algortmo d rcerca d u elemeto all tero d u Albero AVL è detco all algortmo CercaChave vsto per BST. La complesstà dell algortmo rmae pertato par a Oh) e sulla base del teorema fodametale degl alber AVL possamo affermare che tale complesstà term d od è par a Olog ). Isermeto L sermeto u albero AVL prevede l esecuzoe d tre macro pass dstt:. sermeto del odo come fogla, modaltà detca a quella gà descrtta ell albero baro d rcerca;. aggorameto de fattor d blacameto d tutt od preset el cammo che collega l odo appea serto co la radce dell albero, cammo crtco; 3. rblacameto dell albero, medate le tecche d rotazoe sopra descrtte. Tecche da applcare solo qualora almeo u odo dell albero presetasse u fattore d blacameto maggore d uo. Aalzzamo l ultmo passo. Sa l prmo odo d lvello pù basso che cotramo lugo l cammo crtco e avete u fattore d blacameto maggore d uo. Chamamo tale odo odo crtco. Come abbamo gà vsto ell esempo 3.. s ha che: Lemma: ua rotazoe semplce o doppa sul odo crtco è suffcete a rblacare altezza u albero AVL dopo l sermeto d u uovo elemeto. Pertato dopo aver applcata l opportua tecca d blacameto al odo crtco o occorre pù rsalre l albero ed effettuare ulteror blacamet. I fattor d blacameto de od pù alto vegoo d cosegueza rstablt. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

30 Problema della Rcerca Pag. 30/59 Il costo dell operazoe d sermeto è pertato proporzoale all altezza dell albero, Oh), e sulla base del teorema fodametale degl alber AVL possamo affermare che tale complesstà term d od è par a Olog ). Cacellazoe Smlmete all sermeto la cacellazoe d u odo avvee tre pass dstt:. cacellazoe del odo come descrtto per gl alber bar d rcerca. aggorameto de fattor d blacameto de od preset lugo l cammo crtco, rappresetato questa volta dal cammo che collega l padre del odo cacellato e la radce dell albero; 3. rblacameto dell albero, medate le tecche d rotazoe sopra descrtte. Tecche da applcare solo qualora almeo u odo dell albero presetasse u fattore d blacameto maggore d uo. Dversamete dall sermeto, ella cacellazoe d u elemeto l algortmo d rblacameto potrebbe essere applcato pù d ua volta. Possamo correre uo sblacameto a cascata che el caso pessmo obblgherebbe l esecuzoe d Oh) rblacamet. Ad og modo tale coveete rede partcolarmete laboroso la procedura d cacellazoe, ma term d complesstà possamo comuque affermare che la cacellazoe d u odo ha complesstà par a Oh) e qud dal teorema fodametale par a Olog ). Esempo 3.. Cosderamo l seguete albero AVL. 30 ) 5 0) 40 0) 0 0) 8 0) Rappresetamo tutte le modfche apportate all albero seguto all applcazoe della seguete sequeza d operazo: sert9), sert4), sert53), sert4). Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

31 Problema della Rcerca Pag. 3/59 Isert 9 Rblacameto sulla radce Isert 4 Isert 53 Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

32 Problema della Rcerca Pag. 3/59 Rblacameto Isert 4 8 ) Nodo crtco 5 ) 30 ) 0 0) 9 0) 4 ) 40 ) 53 0) 4 0) Rblacameto Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

33 Problema della Rcerca Pag. 33/59 4. Realzzazoe medate Alber -3 Studeremo questo captolo ua orgazzazoe dat che forsce maggore lbertà sul grado uscete de od: l Albero -3. Dmostreremo che, smlmete agl Alber AVL, u Albero -3 possede tra le sue peculartà ache quella d avere ua altezza lmtata superormete, a meo d ua costate, dal logartmo del umero de od: Olog ). Vedremo come tale caratterstca rappreset ua garaza per ua effcete mplemetazoe degl operator d sermeto, rcerca e cacellazoe, che cotuerao ad avere ache questo caso complesstà par a Olog ). Vedremo oltre come tale garaza potrebbe ver meo a seguto d ua operazoe d sermeto o cacellazoe e, tal caso, a qual operazo dovremo ecessaramete dar luogo al fe d rstablre u equlbro sulla dstrbuzoe altezza de od. Chameremo tal operazo splt e fuse. Defzoe. U Albero -3 è u albero cu:. og odo tero ha due o tre fgl;. tutte le fogle appartegoo allo stesso lvello; 3. le chav e gl elemet del dzoaro soo coteute esclusvamete all tero de od fogla: 4. le chav, preset e od fogla, appaoo orde crescete da sstra verso destra; 5. og odo tero v matee la chave massma del sottoalbero sstro e la chave massma del sottoalbero cetrale se ha tre fgl. Altrmet matee solamete la chave massma del sottoalbero sstro. Esempo I basso ua raffgurazoe de u Albero -3. Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

34 Problema della Rcerca Pag. 34/59 Il seguete teorema troduce ua mportate propretà d u albero così strutturato: l altezza, a meo d ua costate, è lmtata superormete dal umero d od preset ell albero. Teorema Fodametale Alber -3. Sa T u Albero -3. Idchamo co l umero de od, co f l umero delle fogle ed fe co h l altezza. S ha che: h h 3 a) b) h f 3 h Dm. Procedamo per duzoe sull altezza dell Albero -3. Per h uguale a zero abbamo che esso è composto dalla sola radce. Tale odo è ache fogla e qud le due asserzo a) e b) soo baalmete verfcate. Poamo vere le due asserzo ache per u altezza h-. Idchamo co T l Albero -3 d altezza h-, co od dell albero T e co f l umero delle fogle d T. Avremo che: h h 3 ) ) h- f 3 h- Costruamo ora u Albero -3 d altezza h, che chameremo T, sulla base dell Albero -3 T. Aggugamo qud u ulterore lvello a T seredo ad og fogla d T mmo due o massmo tre fgl. Otteamo gà u prmo rsultato. Dalla ) abbamo che l umero d fogle d T, che dchamo co f, sarà el caso mmo maggore o uguale * h- h o el caso massmo more o uguale a 3*3 h- 3 h, coè: ) h f 3 h. Idchamo ora co l umero d od d T. Abbamo che f. Coè l umero d od d T è par al umero d od dell albero T pù l umero d fogle che ad esso abbamo agguto per aumetare l altezza. Pertato dalla ) e dalla ) abbamo prma che: f h h h ) - h - e qud che: h h h h h 3 h 3 *3 ) f 3 Apput Laboratoro d Algortm e Strutture Dat Prof. Maurzo GIACCI

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

l = 0, 1, 2, 3,,, n-1n m = 0, ±1,

l = 0, 1, 2, 3,,, n-1n m = 0, ±1, NUMERI QUANTICI Le autofuzioi soo caratterizzate da tre parametri chiamati NUMERI QUANTICI e soo completamete defiite dai loro valori: : umero quatico pricipale l : umero quatico secodario m : umero quatico

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

CAPITOLO 18 STABILITÀ DEI PENDII

CAPITOLO 18 STABILITÀ DEI PENDII Captolo 8 CAPITOLO 8 8. Frae 8.. Fattor e cause de movmet fraos Per fraa s tede u rapdo spostameto d ua massa d rocca o d terra l cu cetro d gravtà s muove verso l basso e verso l estero. I prcpal fattor

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

L OFFERTA DI LAVORO 1

L OFFERTA DI LAVORO 1 L OFFERTA DI LAVORO 1 La famiglia come foritrice di risorse OFFERTA DI LAVORO Notazioe utile: T : dotazioe di tempo (ore totali) : ore dedicate al tempo libero l=t- : ore dedicate al lavoro : cosumo di

Dettagli

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo ESERCIZI DI CALCOLO DELLE PROBABILITÁ ) Qual e la probabilita che laciado dadi a facce o esca essu? Studiare il comportameto asitotico di tale probabilita per grade. ) I u sacchetto vi soo 0 pallie biache;

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

La sicurezza sul lavoro: obblighi e responsabilità

La sicurezza sul lavoro: obblighi e responsabilità La sicurezza sul lavoro: obblighi e resposabilità Il Testo uico sulla sicurezza, Dlgs 81/08 è il pilastro della ormativa sulla sicurezza sul lavoro. I sostaza il Dlgs disciplia tutte le attività di tutti

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

Motori maxon DC e maxon EC Le cose più importanti

Motori maxon DC e maxon EC Le cose più importanti Motori maxo DC e maxo EC Il motore come trasformatore di eergia Il motore elettrico trasforma la poteza elettrica P el (tesioe U e correte I) i poteza meccaica P mech (velocità e coppia M). Le perdite

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario USUFRUTTO 1) Che cos è l sfrtto e come si pò costitire? L sfrtto è il diritto di godimeto ( ovvero di possesso) di bee altri a titolo gratito ; viee chiamato sfrttario chi esercita tale diritto, metre

Dettagli

Esercizi Le leggi dei gas. Lo stato gassoso

Esercizi Le leggi dei gas. Lo stato gassoso Esercizi Le lei dei as Lo stato assoso Ua certa quatità di as cloro, alla pressioe di,5 atm, occupa il volume di 0,58 litri. Calcola il volume occupato dal as se la pressioe viee portata a,0 atm e se la

Dettagli

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard)

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard) Sistemi LTI descrivibile mediate SDE (Equazioi alle Differeze Stadard) Nella classe dei sistemi LTI ua sottoclasse è quella dei sistemi defiiti da Equazioi Stadard alle Differeze Fiite (SDE), dette così

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari . MODELLO DINAMICO AD UN GRADO DI LIBERTÀ Alcue defiizioi prelimiari I sistemi vibrati possoo essere lieari o o lieari: el primo caso vale il pricipio di sovrapposizioe degli effetti el secodo o. I geerale

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

._~zio/ei,o, ck//jg~~e~ Y~ CIRCOLARE N. 21. MEF - RGS - Prot. 47613 del 09/06/2015 ID: 382320. Roma.

._~zio/ei,o, ck//jg~~e~ Y~ CIRCOLARE N. 21. MEF - RGS - Prot. 47613 del 09/06/2015 ID: 382320. Roma. D: 382320 MEF - RGS - Prot. 47613 del 09/06/2015 CRCOLARE N. 21 Roma.._~zio/ei,o, ck//jg~~e~ Y~ DPARTMENTO DELLA RAGONERA GENERALE DELLO STATO SPETTORATO GENERALE PER GL ORDNAMENT DEL PERSONALE UFFCO V

Dettagli

4. RISPOSTA SISMICA DI SISTEMI MDOF

4. RISPOSTA SISMICA DI SISTEMI MDOF Corso Igegera Ssca - a.a. 9/ ott. g. Isaa Cleete ott. g. Chara Beo 4. RISPOSA SISICA DI SISEI DO Ottobre 9 v.. - Pag. 4. - Rsposta ssca sste DO 4. attore strttra Secoo le NC8 l fattore strttra q che tee

Dettagli

Capitolo 3 Il trattamento statistico dei dati

Capitolo 3 Il trattamento statistico dei dati Capolo 3 Il raameo sasco de da 3. - Geeralà Nel descrere feome, occorre da u lao elaborare de modell (coè delle relazo maemache fra le gradezze, che coseao d descrere e preedere l feomeo) e dall alro dars

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Nadia Garbellini. L A TEX facile. Guida all uso

Nadia Garbellini. L A TEX facile. Guida all uso Nada Garbelln L A TEX facle Guda all uso 2010 Nada Garbelln L A TEX facle Guda all uso seconda edzone rveduta e corretta 2010 PRESENTAZIONE L amca e brava Nada Garbelln, autrce d questa bella e semplce

Dettagli

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15 Apputi di Statistica Matematica Ifereza Statistica Multivariata Ao Accademico 014/15 November 19, 014 1 Campioi e modelli statistici Siao Ω, A, P uo spazio di probabilità e X = X 1,..., X u vettore aleatorio

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI Mirta Debbia LS A. F. Formiggii di Sassuolo (MO) - debbia.m@libero.it Maria Cecilia Zoboli - LS A. F. Formiggii di Sassuolo (MO) - cherubii8@libero.it

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Dall atomo di Bohr alla costante di struttura fine

Dall atomo di Bohr alla costante di struttura fine Dall atomo di Bohr alla ostate di struttura fie. INFORMAZIONI SPETTROSCOPICHE SUGLI ATOMI E be oto he ogi sostaza opportuamete eitata emette radiazioi elettromagetihe. Co uo spettrosopio, o strumeti aaloghi,

Dettagli

MATEMATICA. I numeri relativi. I numeri relativi. il testo:

MATEMATICA. I numeri relativi. I numeri relativi. il testo: 01 sono i numeri che hanno davanti il segno + o il segno -. li usano quando devi far capire se un numero sta sopra o sotto dello zero. Se dico che la temperatura è di 30 gradi per te è sicuramente difficile

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile Agenza Nazonale per le Nuove Tecnologe, l Energa e lo Svluppo Economco Sostenble RICERCA DI SISTEMA ELETTRICO Ottmzzazone termofludodnamca e dmensonamento d uno scambatore d calore n controcorrente con

Dettagli

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario Valutazioe delle prestazioi termiche di sistemi co solai termoattivi i regime o stazioario MICHELE DE CARLI, Ph.D., Ricercatore, Dipartimeto di Fisica Tecica, Uiversità degli Studi di Padova, Padova, Italia.

Dettagli

ESERCITAZIONE L adsorbimento su carbone attivo

ESERCITAZIONE L adsorbimento su carbone attivo ESERCITAZIONE adsorbimeto su carboe attivo ezioi di riferimeto: Processi basati sul trasferimeto di materia Adsorbimeto su carboi attivi Testi di riferimeto: Water treatmet priciples ad desi, WH Pricipi

Dettagli

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice Metodologa d controllo AUTORIMESSE (III edzone) Codce attvtà: 63.21.0 Indce 1. PREMESSA... 2 2. ATTIVITÀ PREPARATORIA AL CONTROLLO... 3 2.1 Interrogazon dell Anagrafe Trbutara... 3 2.2 Altre nterrogazon

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

I file di dati. Unità didattica D1 1

I file di dati. Unità didattica D1 1 I file di dati Unità didattica D1 1 1) I file sequenziali Utili per la memorizzazione di informazioni testuali Si tratta di strutture organizzate per righe e non per record Non sono adatte per grandi quantità

Dettagli

Abstract Data Type (ADT)

Abstract Data Type (ADT) Abstract Data Type Pag. 1/10 Abstract Data Type (ADT) Iniziamo la nostra trattazione presentando una nozione che ci accompagnerà lungo l intero corso di Laboratorio Algoritmi e Strutture Dati: il Tipo

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/9/2) ECONOMIA E POLITICA DEL SETTORE ITTICO 1.INTRODUZIONE. LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE (una applcazone ad un contesto

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Valutazioe e riduzioe della vulerailità sismia di ediii esisteti i.a. Roma, 9-0 maggio 00 DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Di Ludovio

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli