Compito sugli integrali definiti e impropri (1)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Compito sugli integrali definiti e impropri (1)"

Transcript

1 Compito sugli intgrli dfiniti impropri () Esrcizio Clcolr i sgunti intgrli dfiniti: () () d d ; Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio Stilir s il sgunt intgrl dfinito è improprio oppur no Succssivmnt clcolrlo π sin( ) cos( ) (5) d sin( ) cos( ) Spcificr, pr ogni srcizio, l rgol d intgrzion ust Ciscun srcizio è vlutto, l mssimo, punti

2 Esrcizio Clcolr i sgunti intgrli dfiniti: () d ; () ln( ) d Compito sugli intgrli dfiniti impropri () Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio Stilir s il sgunt intgrl dfinito è improprio oppur no Succssivmnt clcolrlo d (5) Spcificr, pr ogni srcizio, l rgol d intgrzion ust Ciscun srcizio è vlutto, l mssimo, punti

3 Soluzioni Compito () () Moltiplicndo dividndo pr, sfruttndo l linrità dll intgrl, succssivmnt, ossrvndo ch il numrtor è l drivt dll rgomnto dll rdic, si h: d d ( 7) In ltrntiv si può procdr d un intgrzion pr sostituzion ponndo t () Risult d [ ] d [ ] d [ ] vndo procduto du intgrzioni pr prti succssiv prndndo smpr l funzion sponnzil com fttor diffrnzil l potnz di com fttor finito () L intgrl in qustion è un intgrl improprio di prim spci (ovvro su un intrvllo ilitto) Prtnto, posto 7 / I ( ) d d, risult d I( ) sponnzil com fttor diffrnzil (un cui primitiv è com fttor finito g ( ) N sgu Clcolimo I() procdndo d un intgrzion pr prti prndndo l funzion / ) l funzion g() / / / / / / [ ] d [ ] I ( ) Adsso, pr l linrità dl it, si h: I ( ) / / / / / ssndo vn- / / ( / ) do pplicto l rgol di D L Hôspitl pr il suo clcolo, Dunqu, l intgrl è convrgnt () L funzion prsnt un discontinuità pr cosicché l intgrl è improprio di scond spci Prtnto, / d d d d d d 5 / 5 / [ ] ( ) ( ) 5 / vndo sfruttto l linrità dll intgrl dl it l rgol d intgrzion di funzioni lmntri N sgu ch l intgrl è convrgnt /5

4 sin( ) cos( ) (5) Indichimo con f() l funzion intgrnd ovvro ponimo f ( ) Tl sin( ) cos( ) funzion prsnt un discontinuità pr ssndo sin( ) cos( ) d è l unic ch si h pr [, π / ] Quindi, l intgrl considrto è improprio di scond spci, si h: π / ( ) d π / f f ( ) d Un primitiv di f() è l funzion F ( ) ln sin( ) cos( ) com è fcil vrificr Ciò si ricv ossrvndo ch il numrtor di f è proprio l drivt dl dnomintor o, in ltrntiv, procdndo d un dll sostituzioni: t ln sin( ) cos( ), u sin( ) cos( ) N sgu π / f ( ) d ( F(π / ) F( )) ln() ln sin( ) cos( ) cosicché l intgrl è divrgnt ( ln() ln sin( ) cos( ) ) Soluzioni Compito () () Moltiplicndo dividndo pr, sfruttndo l linrità dll intgrl, succssivmnt, notndo ch il numrtor è l drivt dl dnomintor, si h: d d ln (ln() ln(5)) ln ln 5 In ltrntiv si può procdr d un intgrzion pr sostituzion ponndo t () Procdimo d un intgrzion pr prti prndndo smpr l funzion logritmic com fttor finito (l su drivt è l funzion /) l potnz di com fttor diffrnzil (un su primitiv è / ) Si h, llor, 5 ln( ) d ln( ) d ln( ) 9 9 ( 9 9 ) () L intgrl in qustion è un intgrl improprio di prim spci (ovvro su un intrvllo ilitto) Prtnto, posto I( ) d d, risult d I( ) Clcolimo I() procdndo d un intgrzion pr prti prndndo l funzion sponnzil com fttor diffrnzil (un cui primitiv è com fttor finito g ( ) N sgu ) l funzion g()

5 I( ) [ ] d [ ] Adsso, pr l linrità dl it, si h: I ( ) ssndo vndo pplicto l rgol di D () L Hôspitl pr il suo clcolo com è immdito clcolr Dunqu, l intgrl è convrgnt () L funzion prsnt un discontinuità pr cosicché l intgrl è improprio di scond spci Prtnto, / d d d d d d [ ] [ ln ] ( ) ( ln ) vndo sfruttto l linrità dll intgrl dl it l rgol d intgrzion di funzioni lmntri N sgu ch l intgrl è divrgnt (5) Ossrvimo prinrmnt ch l funzion intgrnd, ch prsnt un discontinuità pr (vlor ch nnull il dnomintor), può ssr scritt com vidnz l dnomintor Quindi, l intgrl è improprio di scond spci, pr qunto ossrvto, si h: d d d mttndo in [ ln ] ( ln ln ) dov nllo scrivr l trz uguglinz si è tnuto conto dl ftto ch il numrtor dll funzion intgrndo è proprio l drivt dl numrtor (in ltrntiv, pr il clcolo dll intgrl sotto il it, si può procdr ll sostituzion t ) L intgrl è, dunqu, divrgnt

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

Note di Matematica Generale

Note di Matematica Generale This is pg i Printr: Opqu this Not di Mtmtic Gnrl Robrto Mont Dcmbr 13, 2005 ii ABSTRACT Ths nots r still work in progrss nd r intndd to b for intrnl us. Pls, don t cit or quot. Contnts This is pg iii

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Svolgimento a cura di Nicola de Rosa. Punto 1 Consideriamo la figura sottostante rappresentante la geometyria del problema. M N t

Svolgimento a cura di Nicola de Rosa. Punto 1 Consideriamo la figura sottostante rappresentante la geometyria del problema. M N t Svolgimnto cur di Nicol d Ros PROBLMA Punto Considrimo l figur sottostnt rpprsntnt l gomtri dl prolm. M N t K P A H O B Q L suprfici ltrl dl solido ottnuto dll rotzion dl trpzio isoscl PQNM ttorno ll rtt

Dettagli

Analisi Matematica 1 per IM - 23/01/2019. Tema 1

Analisi Matematica 1 per IM - 23/01/2019. Tema 1 Analisi Matmatica 1 pr IM - 23/01/2019 Cognom Nom:....................................... Matricola:.................. Docnt:.................. Tmpo a disposizion: du or. Il candidato, a mno ch non si

Dettagli

PROBLEMA 1 In un sistema di assi cartesiani ortogonali O x y una curva γ ha per equazione

PROBLEMA 1 In un sistema di assi cartesiani ortogonali O x y una curva γ ha per equazione ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO LICEO DELLA COMUNICAZIONE SESSIONE SUPPLETIVA Tm di: MATEMATICA. s. 9- PROBLEMA In un sistm di ssi crtsini ortogonli O y un curv γ h pr quzion y.

Dettagli

Le derivate. = 5 si traccino due rette qualsiasi passanti entrambe per il corrispondente punto della funzione e per

Le derivate. = 5 si traccino due rette qualsiasi passanti entrambe per il corrispondente punto della funzione e per L drivt Il problm di introdurr il conctto di drivt consist nl trsmttr l id di ciò c si st rontndo, nl snso c s d un punto di vist orml è possibil introdurr l dinizion di qusto conctto in trmini rigorosi,

Dettagli

x ; sin x log 1 x ; 4 0 0,0.

x ; sin x log 1 x ; 4 0 0,0. .. Pr quli vlori dl prmtro l sri S (i uzio dl prmtro ). q ch covrg s solo s q. q Ricordimo ch pr q è q q q q q h soluzio pr tli vlori l sri covrg S E' u sri gomtric di rgio covrg? Pr tli vlori sprimi l

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

Analisi Matematica I Soluzioni del tutorato 3

Analisi Matematica I Soluzioni del tutorato 3 Corso di lur in Fisic - Anno Accdmico 07/08 Anlisi Mmic I Soluzioni dl uoro 3 A cur di Dvid Mcr Esrcizio ( i) Dominio di dfinizion: L funzion h un problm in, mnr d è dfini pr ogni lro. Quindi, il dominio

Dettagli

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1]

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1] Compio di Mamaica sul problma di Cauch sull quazioni diffrnziali ordinari dl º ordin [] Esrcizio Spigar la formulazion, il significao com si procd alla risoluzion dl problma di Cauch pr EDO dl º ordin

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Icrmtl α Δ Δy y m tα y. Il rpporto icrmtl dll uzio l puto rltivo d u icrmto è il coicit olr dll sct l rico dll uzio i puti di sciss d Not: Nll smpio rico è riportto > m, i rl, può ssr c tivo. rivt

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero )

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero ) ESERCITAZIONI 7-8- 9- STUDI DI FUNZIONI A) Esrcizi svolti. Studiar il dominio d il comportamnto agli strmi dl dominio dll sgunti funzioni. Calcolarn splicitamnt vntuali asintoti orizzontali o vrticali.

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione Educnica.i Calcolo di ii Calcola i sguni ii risolvndo l vnuali form di indrminazion Esrcizio no. Esrcizio no. Soluzion a pag.8 Soluzion a pag.8 [ ] Esrcizio no. Esrcizio no. Esrcizio no. lg Esrcizio no.6

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti Politcnico di ilno Fcoltà di Innri Industril Corso di Lur in Innri roszil Insnmnto di Proulsion roszil nno ccdmico / C. 4 Sz. d Ulli r sorttori ndorttori Esrcizi svolti rv. dicmbr ESERCIZIO 4d. Un ullo

Dettagli

Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica

Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica Sssion ordinri Estro Scuol Itlin llestro ESAMI DI STATO DI LICEO SCIENTIFICO Sssion SECONDA PROVA SCRITTA Tm di Mtmtic PROBLEMA E ssnto un cilindro quiltro Q il cui rio di bs misur. ) Si dtrmini il cono

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Analisi Matematica 1, Informatica Università di Cagliari, 2006/2007 Esercizi e domande relativi al secondo parziale.

Analisi Matematica 1, Informatica Università di Cagliari, 2006/2007 Esercizi e domande relativi al secondo parziale. Anlisi Mtemtic, Informtic Università di Cgliri, 006/007 Esercizi e domnde reltivi l secondo przile Formul di Tylor Richimi sull formul di Tylor: f e n volte derivbile in ], b[ e 0 ], b[ si h: n f (k) (

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO. Prova di Matematica

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO. Prova di Matematica Simulzion Prov Esm di Mturità di Mtmtic pr Lico Scintiico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO PROBLEMA Prov di Mtmtic Si dt l unzion. Studir l unzion dtrminndo l ntur vntuli punti

Dettagli

Pacchetto d onda. e (a2 k 2 ikx) dk (1)

Pacchetto d onda. e (a2 k 2 ikx) dk (1) Pcchetto d ond 1 Clcolo d integrli gussini Per clcolre un integrle del tipo ψ(x) = e ( k ikx) dk (1) l procedur stndrd e di scrivere l espressione che ppre nell esponenzile come il qudrto di un funzione

Dettagli

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto Grmmtich Rgol pr spcificr frsi corrtt in itlino Un frs un soggtto sguito d un vrbo sguito d un complmnto oggtto Un soggtto un nom o un rticolo sguito d un nom Uso dll rgol: pr gnrr frsi corrtt Esmpio:

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx Integrli impropri: esercizi AM: Esercizi Discutere l convergenz dei seguenti integrli ed eventulmente clcolrli. d. ( 3) 3 + + d 3. 3 + d 3. d 5. ( + ) 3 e sin d 6. e sin d 7. e cos d 8. d + log 3 9. d

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1)

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1) www.mtefili.it PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO Si clcoli il limite dell funzione y log(x+) log (2x+), qundo x tende 2. x 2 +x 6 Il limite si present nell form indetermint 0/0. log(x +

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

Liceo scientifico e opzione scienze applicate *

Liceo scientifico e opzione scienze applicate * PROVA D ESAME SESSIONE STRAORDINARIA 0 Lico scintifico opzion scinz pplict * Lo studnt dv svolgr uno di du problmi rispondr qusiti dl qustionrio Durt mssim dll prov: or È consntito l uso dll clcoltric

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Il metodo di esaustione

Il metodo di esaustione Clcolo integrle Il metodo di esustione Il metodo di esustione y= 2 =0 Il metodo di esustione y= 2 k =0= 0 k n n 1 2 = n Il metodo di esustione y= 2 k 0 k n n 1 2 f( ) k n k n 2 Il metodo di esustione y=

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario. LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIVA Il cndidto risolv uno di du problmi di qusiti sclti nl qustionrio. N. D Ros, L prov di mtmtic pr il lico PROBLEMA Si ABC un tringolo quiltro di

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Esercizi Federico Lastaria, Analisi e Geometria 1

Esercizi Federico Lastaria, Analisi e Geometria 1 Politecnico di Milno. Scuol di Ingegneri Industrile. Corso di Anlisi e Geometri (Docente: Federico Lstri) Settembre 08 Indice Esercizi sui iti e prti principli. Esercizi........................................

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Mamaica cla Danil Rilli anno accadmico 8/9 Lzion : Ingrali Esrcizi svoli. Provar, usando il cambio di variabil ch:. Dimosrar ch. Ingrando pr pari dimosrar ch + = + = 6 sin(π) = π Svolgimno.

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 1/A

Modelli e Metodi Matematici della Fisica. Scritto 1/A Modlli Mtodi Matmatici dlla Fisica. Scritto 1/A Csi/Prsilla A.A. 007 08 Nom Cognom Il voto dllo scritto sostituisc gli sonri 1 problma voto 1 4 5 6 7 total voto in trntsimi Rgolamnto: 1) Tutti gli srcizi,

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Esercizi 3 Geometria lineare nello spazio

Esercizi 3 Geometria lineare nello spazio Esrcizi 3 Gomtria linar nllo spazio Ngli srcizi ch sguono si suppon fissato un sistma di rifrimnto (SdR) nllo spazio. S la bas (dllo spazio vttorial di vttori libri) di tal SdR è indicata con (i, j, k),

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

Introduzione a Matlab per Ingegneria dell Energia Esercizi con risoluzione 1

Introduzione a Matlab per Ingegneria dell Energia Esercizi con risoluzione 1 Introduzion a Matlab pr Inggnria dll Enrgia Esrcizi con risoluzion A. Sommariva 2 Abstract Alcuni srcizi pr familiarizzar con Matlab loro corrzion. Rvision: 23 dicmbr 208 00 90 80 0 2 0 0 70 0-2. Esrcizio

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

Comune di Siena SERVIZIO GESTIONE FINANZIARIA E INVESTIMENT

Comune di Siena SERVIZIO GESTIONE FINANZIARIA E INVESTIMENT Comun di Sin SERVIZIO GESTIONE FINANZIARIA E INVESTIMENT ATTO DIRIGENZIALE N 1337 DEL09/09/2015 OGGETTO: ESTINZIONE ANTICIPATA DEL DEBITO DEL COMUNE DI SIENA -DELIBERA C.C. N. 44 DEL 10.03.2015-MUTUI BANCA

Dettagli