Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica"

Transcript

1 Sssion ordinri Estro Scuol Itlin llestro ESAMI DI STATO DI LICEO SCIENTIFICO Sssion SECONDA PROVA SCRITTA Tm di Mtmtic PROBLEMA E ssnto un cilindro quiltro Q il cui rio di bs misur. ) Si dtrmini il cono C di volum minimo circoscritto l cilindro ( C Q nno bsi complnri); b) Si dtrmini il vlor di pr il qul il volum di C, pprossimto ll prim cir dciml, è, dm ; c) Si dtrmini il volum dll sr S circoscritt C. PROBLEMA Nl pino ririto d un sistm di ririmnto ortoonl monomtrico è dt l curv G di quzion: ) Si studi si rpprsnti G; b) considrt l rtt r di coicint nolr m pssnt pr il punto A(, ), si dtrmini, l vrir di m, il numro dll intrszioni di r con G; c) si clcoli l r dll rion init di pino R, dl primo qudrnt, ditt d G dll ss ; d) si dtrmini il volum dl solido nrto d R in un iro complto intorno ll ss.

2 Sssion ordinri Estro QUESTIONARIO. Enuncir il torm di d L Hôpitl pplicrlo pr dimostrr c:. Mostrr, vntulmnt nc con smpi, c l drivt dl prodotto di du o più unzioni non è il prodotto dll drivt.. Dimostrr c s un polinomio p() è divisibil pr ( ) m llor ( ) m p è divisibil pr. Clcolr l drivt dll unzion: rcsin rctn Dl risultto quli consunz s n possono trrr pr l ()? E un costnt? 5. Si ricvi l ormul c dà il numro dll combinzioni smplici di n lmnti k k. 6. Vriicr c: lo d ( ). Sino b du numri positivi divrsi d. Dimostrr c: lo b lo 8. L somm di du numri non ntivi è 6. Qul è il vlor più bsso c ssum l somm di loro qudrti? Qul il vlor più lto? b L prov ricid lo svonto di uno di du problmi proposti l rispost quttro domnd sclt ll intrno dl qustionrio. Durt mssim dll prov : 6 or E consntito l uso dll clcoltric tscbil non prormmbil l consultzion dl vocbolrio d Itlino.

3 Sssion ordinri Estro PROBLEMA E ssnto un cilindro quiltro Q il cui rio di bs misur. Punto Si dtrmini il cono C di volum minimo circoscritto l cilindro ( C Q nno bsi complnri); Si considri l iur sottostnt riurnt in szion il cono circoscritto l cilindro. C G K F A D H E B Ponimo CH con >. Il cilindro è quiltro pr cui FE DE. I trinoli CHB CKF sono simili pr cui CH HB CK : KF volum dl cono è V Cono ( π HB ) : cioè : HB ( ) : π CH ( ) ttuimo trmit drivzion. L drivt prim dl volum è: V Cono V V V Cono Cono Cono ( ) ( ) π 6 ( ) ( ) d cui HB. Il. L minimizzzion dl volum l ( 6) ( ) π π π π π ( 6) ( ) ( 6) ( ) ( 6) ( ) > > 6 V 6 Quindi il volum minimo lo si pr Punto Cono < < < 6 V 6 strttmnt crscnt in ( 6, ) Cono pr cui strttmnt dcrscnt in (,6) sciss di minimo rltivo proprio vl ( 6) V Cono π ( 6) 9π ( 6 ) Si dtrmini il vlor di pr il qul il volum di C, pprossimto ll prim cir dciml, è, dm ; Il volum di C è dm s π dm, dm π 9π

4 Sssion ordinri Estro Punto Si dtrmini il volum dll sr S circoscritt C. Considrimo l iur sunt: C O A H B L Il trinolo CLB è rttnolo pr cui CB CB CH CL CL. Or CH CB CH HB dov HB pr cui 9 5 CB CH HB 6 pr cui 5 CB 5 CL CH 6 8 pr cui il rio dll sr è CL 5 R d il volum è 6 V Sr 5 π π πr π π 9 56 dm

5 Sssion ordinri Estro 5 PROBLEMA Nl pino ririto d un sistm di ririmnto ortoonl monomtrico è dt l curv G di quzion: Punto Si studi si rpprsnti G; Dominio: l unzion è dinit in tutto R; Intrszioni ss sciss:, ± ; Intrszioni ss ordint: ; Simmtri: l unzion è dispri in qunto Positività:,, > > ; Asintoti: l unzion non né sintoti vrticli, né orizzontli né obliqui; Comportmnto li strmi dl dominio: ± m ; Crscnz dcrscnz: L drivt prim è pr cui,, è strttmnt crscnt in, è strttmnt crscnt in ± > < < < < > Concvità convssità: l drivt scond è pr cui, è un lsso tnnt obliqu con tnnt. Inoltr, < >, pr cui 9 8, è un minimo rltivo 9 8, è un mssimo rltivo. Il rico è di suito prsntto:

6 Sssion ordinri Estro Punto Considrt l rtt r di coicint nolr m pssnt pr il punto A(, ), si dtrmini, l vrir di m, il numro dll intrszioni di r con G; L rtt di coicint nolr m pssnt pr il punto A(,) quzion m( ). Sicurmnt l rtt l cubic nno in comun l soluzion. L soluzion può ssr sinol o doppi: è doppi nl momnto in cui l rtt di quzion m( ) è tnnt ll cubic. In prticolr l rtt m( ) è tnnt ll cubic qundo m. Crcimo llor qunt soluzioni dirnti d nno in comun l rtt l cubic. Intrscndo l rtt r con l cubic si m( ) d cui, dividndo pr il ttor ( ) m ( ) ( m ) in qunto si stnno crcndo soluzioni dirnti d, si. Si trtt quindi di risolvr il sistm m m ( ). L curv ( ) è un prbol con concvità vrso il bsso vrtic in, c intrsc l ss dll sciss in 6

7 Sssion ordinri Estro (,), (,) ; l rtt di quzion m è prlll ll ss dll sciss. Il rico sunt mostr nllo stsso ririmnto crtsino l prbol l rtt di quzion si notno il numro dll soluzioni :. nssun soluzion pr m > ;. du soluzioni coincidnti pri pr m ;. du soluzioni distint, pr m < m.,. D sso In conclusion tnndo in conto nc l soluzion, sinol o doppi c si, si :. un soluzion,, pr m > ;. tr soluzioni di cui du coincidnti un s un s m ;. tr soluzioni distint pr m < m. m o du coincidnti

8 Sssion ordinri Estro Nll immin sottostnt vin rpprsntt l cubic con l rtt tnnt in di quzion, l rtt tnnt in di quzion ( ) l rtt di quzion Punto Si clcoli l r dll rion init di pino R, dl primo qudrnt, ditt d G dll ss ; L r d clcolr è riurt in vrd nll iur sottostnt: 8

9 Sssion ordinri Estro 9 L r vl 8 d S Punto Si dtrmini il volum dl solido nrto d R in un iro complto intorno ll ss. Il volum vl π π π π π d d V

10 Sssion ordinri Estro QUESTIONARIO Qusito Enuncir il torm di d L Hôpitl pplicrlo pr dimostrr c: Enuncimo l rol di d L Hôpitl: S du unzioni dinit in un intorno di, sono drivbili in tl intorno, con ; s l du unzioni, pr tndono ntrmb o s sist il it dl rpporto dll drivt dll unzioni dt, unzioni vl., llor sist nc il it dl rpporto dll Nl cso in sm è possibil pplicr tl torm, dopo vrlo pplicto volt si 6 5 6! L ln ( ln ) ( ln ) n n n Si ossrvi nc c D [ ] n! s n, D [ ] ( ln ). n In ltrntiv, poicé, clcolndo il it si : Qusito D L Hopitl ln. Mostrr, vntulmnt nc con smpi, c l drivt dl prodotto di du o più unzioni non è il prodotto dll drivt. Dimostrimo c l drivt dl prodotto di du unzioni è. L drivt pr dinizion è il it dl rpporto incrmntl pr cui in du prti ottnimo: ( ) ( ) riscrivibil com ( ) iunndo sottrndo l stss quntità 6 8 ( ) ( ) ( ) ( ). Spzzimo il it

11 Sssion ordinri Estro [ ] [ ] [ ] [ ] Un primo smpio è l prbol di quzion : il prodotto dll drivt dll unzioni componnti è mntr l drivt è ; nlomnt pr l cubic il prodotto dll drivt dll tr unzioni componnti è mntr l drivt è. Qusito Dimostrr c s un polinomio p() è divisibil pr ( ) m llor p è divisibil pr m S il polinomio p() è divisibil pr ( ) m sso può ssr scritto com p m l cui drivt è [ ] m m p m m m d cui dducimo l divisibilità di p pr m. Qusito Clcolr l drivt dll unzion: rctn rcsin Dl risultto quli consunz s n possono trrr pr l ()? E un costnt? L unzion rctn rcsin è dinit pr. In rltà ssndo R >, dducimo c il dominio di rctn rcsin è R. L drivt prim è:

12 Sssion ordinri Estro Quindi l drivt è null, d ssndo rcsin rctn dinit in tutto R, dducimo c l unzion è costnt in tutto R il vlor dll costnt può ssr trovto vlutndo l unzion in un punto dl dominio, d smpio ( ). Qusito 5 Si ricvi l ormul c dà il numro dll combinzioni smplici di n lmnti k k. Si dicono combinzioni smplici di n lmnti divrsi prsi k (con n>k) k (o di clss k) tutti i possibili ruppi c si possono ormr prndndo k dli n lmnti in modo d considrr distinti soltnto qui ruppi c diriscono pr l ntur di lmno un lmnto. Si dicono, invc, disposizioni smplici di n lmnti divrsi prsi k k (o di clss k) (con n>k) tutti i possibili ruppi c si possono ormr prndndo k dli n lmnti in modo d considrr distinti qui ruppi c diriscono, o pr l ntur dli lmnti, o pr il loro ordin. Conrontndo l dinizion di combinzioni smplici con qull dll disposizioni smplici, potrmo dir c pr smpio, i du ruppi { bc, cb} sono du disposizioni divrs (diriscono pr l ordin dli lmnti) m ormno l stss combinzion. Dl prcdnt smpio risult vidnt c oni combinzion può nrr tnt disposizioni qunt sono l prmutzioni di suoi k lmnti. Il numro disposizioni smplici di n lmnti divrsi prsi k k (o di clss k) (con n>k) è dto mtmticmnt dl prodotto di k numri intri conscutivi dcrscnti prtir d n: D n, k ( n ) ( n ) L ( n k ) n L n! ( n k)! Il numro di prmutzioni smplici di k lmnti è dto mtmticmnt dl numro disposizioni smplici di k lmnti prsi k k: P ( k ) ( k ) L! k Dk, k k L k Il numro di combinzioni smplici di n lmnti divrsi prsi k (con n>k) k (o di clss k) è dto dl rpporto tr disposizioni smplici di n lmnti divrsi prsi k k (o di clss k) (con n>k) prmutzioni smplici di k lmnti: dov k not com l di tr ttorili. C n, k D n, k P k n! n ( n k) k!! k n n, k n! n è conosciuto com coicint binomil l ormul D Cn, k è Pk n k k!! k

13 Sssion ordinri Estro Qusito 6 Vriicr c: Intrndo pr prti si : lo d ( ) lo Qusito d lo ( ) Sino b du numri positivi divrsi d. Dimostrr c: lo b lo Pr l proprità dl cmbimnto di bs di loritmi si lo b lob lob lo Qusito 8 b b lob b lo b pr cui lo lo L somm di du numri non ntivi è 6. Qul è il vlor più bsso c ssum l somm di loro qudrti? Qul il vlor più lto? Sino 6, 6 pr cui 6. L somm di qudrti è S (, ) b b c può ssr ricondott unzion di un sol dll du vribili: ( 6 ) 56 L unzion 56 S. S è un prbol con concvità rivolt vrso l lto c riun il suo minimo nll sciss dl vrtic, pr cui l summ di qudrti è minim pr 8 vl S MIN S( 8 ) 8. Il mssimo dll somm di qudrti può ssr riunto solo li strmi dll intrvllo [,6]. In tl cso, vist l simmtri dl problm, il vlor mssimo è uul li strmi dll intrvllo [,6] vl S S( 6) ( 6) 56 S MAX.

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

x BP, controllando che risulta :

x BP, controllando che risulta : Corso sprimntl - Sssion suppltiv -.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- PROBLEMA E dt un circonrnz di cntro O dimtro AB. Sul prolungmnto

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario. LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIVA Il cndidto risolv uno di du problmi di qusiti sclti nl qustionrio. N. D Ros, L prov di mtmtic pr il lico PROBLEMA Si ABC un tringolo quiltro di

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO. Prova di Matematica

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO. Prova di Matematica Simulzion Prov Esm di Mturità di Mtmtic pr Lico Scintiico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO PROBLEMA Prov di Mtmtic Si dt l unzion. Studir l unzion dtrminndo l ntur vntuli punti

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Da cartesiano geocentrico a cartesiano locale

Da cartesiano geocentrico a cartesiano locale Trsformzion tr sistmi di rifrimnto D crtsino gocntrico crtsino locl Si considri un punto l cui posizion è not risptto d un llissoid di rifrimnto. Si ssoci tl punto un sistm crtsino locl, ch h: origin nl

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Soluzione. Si consideri la figura sottostante che raffigura la geometria del problema: = =

Soluzione. Si consideri la figura sottostante che raffigura la geometria del problema: = = Sessione suppletiv LS_ORD 00 di De Ros Nicol PROBLEMA Del tringolo ABC si nno le seguenti informzioni: ABcm; ACcm; CAB 60. Si trcci l isettrice di CAB e se ne indici con D lintersezione con il lto BC.

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Nicola De Rosa, Liceo scientifico PNI sessione straordinaria 2010, matematicamente.it. e se ne tracci il grafico nell intervallo 0 x 2

Nicola De Rosa, Liceo scientifico PNI sessione straordinaria 2010, matematicamente.it. e se ne tracci il grafico nell intervallo 0 x 2 Nicol De Ros, Liceo scientifico PNI sessione strordinri, mtemticmente.it PROBLEMA Sono dti: un circonferenz di centro O e dimetro AB e tngente t prllel l dimetro. Si prolungno i rggi OA ed OB di due segmenti

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford.

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford. CORSO DI OOGRAFIA A - A.A. 006-007 ESERCIAZIOI - 09.05.06 ESERCIZI DI GEODESIA ESERCIZIO 1 Clcolr i rggi di curvtur dll szioni normli principli nl olo ord dll' llissoid di Hyford. 1) Szioni ormli rincipli

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti Politcnico di ilno Fcoltà di Innri Industril Corso di Lur in Innri roszil Insnmnto di Proulsion roszil nno ccdmico / C. 4 Sz. d Ulli r sorttori ndorttori Esrcizi svolti rv. dicmbr ESERCIZIO 4d. Un ullo

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1)

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1) Nome.Conome clsse 5D Febbrio Veriic di mtemtic Dt l unzione: ke k k per < per punti.5 Dimostr che k R è continu e derivbile R b Trov il vlore di k tle che l tnente l rico dell unzione nel suo punto di

Dettagli

ELABORAZIONE di DATI SPERIMENTALI

ELABORAZIONE di DATI SPERIMENTALI ELABORAZIONE DATI SPERIMENTALI Prof. Giovnn CATANIA Prof. Rit DONATI Dr. Tibrio T DI CORCIA L stribuzion norml o gusn com modlità borzion dti sprimntli qtittivmnt numro I N T R O D U Z I O N E Un Un dll

Dettagli

Teoremi sulle funzioni derivabili

Teoremi sulle funzioni derivabili Teoremi sulle unzioni derivili Inizimo con l deinizione di punto di mssimo o minimo reltivo di un unzione. Deinizione: D è un punto di mssimo reltivo se esiste un intorno I tle che : I Deinizione: D è

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE ALGEBRA LINEARE Operzioni tr mtrici Sino A = { ij } e B = {b ij } venti l stess imensione. L loro somm è l mtrice C i cui elementi sono {c ij

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

9 Simulazione di prova d Esame di Stato

9 Simulazione di prova d Esame di Stato 9 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si f l funzione rele di equzione y =( )e.. Studire e trccire il grfico di f.

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE L funzioni iprbolich sono funzioni spcili dott di proprità formlmnt simili qull di cui sono dott l funzioni goniomtrich ordinri. Anch l loro dfinizion in trmini gomtrici è molto simil

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli