Prova scritta finale 16 giugno 2007

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prova scritta finale 16 giugno 2007"

Transcript

1 Prova scritta final 6 giugno 007 Istituzioni di Fisica dlla Matria Prof. Lornzo Marrucci anno accadmico Tmpo a disposizion: 3 or Uso dgli appunti o di libri: NON AMMESSO uso dlla calcolatric: AMMESSO Nota: pr lasciar un margin di rcupro, il total di punti a disposizion è fissato a 3 invc ch a 30. ) Un lttron viaggia lungo un filo quantico (com s si trattass di un binario, si vda la figura) ch è avvolto in forma di crchio. Gli fftti dlla curvatura dl crchio possono ssr trascurati, pr cui l lttron va considrato a tutti gli fftti com una nomal particlla D, la cui posizion è cioè fissata da una sola coordinata x (corrispondnt ad un arco dl crchio misurato a partir da un punto di rifrimnto dato sul crchio) con una normal quazion di Schrodingr D, cctto pr il fatto ch lo spazio D su cui ssa si muov è chiuso in modo ciclico anziché stso all infinito. Il potnzial lungo il filo può ssr considrato nullo, cioè U(x) 0. L lttron è inizialmnt frmo sul filo, con nrgia total nulla, ma ad un crto istant assorb un foton di lunghzza d onda F 3.5 mm. Calcolar (a) l nrgia dll lttron dopo l assorbimnto dl foton. Calcolar (b) la lunghzza d onda dll lttron dopo l assorbimnto dl foton. Assumndo ch la lunghzza d onda dl foton assorbito sia anch la massima lunghzza d onda pr la qual l lttron potva assorbir un foton, dtrminar (c) il raggio dl crchio formato dal filo quantico su cui l lttron si muov. Suppont infin di avr du lttroni sul filo quantico a forma di crchio con il mdsimo stato di spin (pr smpio pr l fftto di un fort campo magntico) ch il sistma complssivo si trovi nl suo stato fondamntal. Considrando gli lttroni com non intragnti supponndo di sguir una misura simultana dlla posizion di du lttroni, dtrminat (d) la probabilità ch la distanza tra i du lttroni misurata lungo il crchio sia infrior o ugual a π/ (ossia un quarto di crchio) confrontatla con la probabilità ch ci si aspttrbb s i du lttroni fossro statisticamnt indipndnti.[punti: a ; b ; c; d] x ) Considrat un sistma D dato da una buca di nrgia potnzial infinita di forma quadrata di lato L Å (un rcinto quantico ), com rapprsntato in figura. Al tmpo inizial t 0, un lttron occupa uno stato quantistico ψ 0 (x,y) non stazionario, dato dalla sgunt formula: y N pr 0 < x< L/ 0 < y< L/ U 0 ψ 0( xy, ) 0 pr x> L/ o y> L/, U 0 fuori dalla buca dov N è una costant il sistma di rifrimnto è qullo mostrato in figura. x L La rgion dlla buca dov la funzion d onda è divrsa da zro pr t 0 è anch mostrata in figura com un ara trattggiata. Dtrminat: (a) l probabilità di trovar l lttron nlla mtà sinistra dlla buca (cioè 0 < x < L/ 0 < y < L) (b) l coordinat mdi x y dll lttron, s la misura dlla posizion dll lttron avvin al mdsimo istant inizial, cioè t 0; (c) l sprssion dll nrgi possibili dll lttron dll corrispondnti probabilità in caso di misura dll nrgia; (d) la probabilità di trovar l lttron nlla mtà dstra dlla buca (cioè L/ < x < L 0 < y < L) s la misura di posizion è sguita nll istant di tmpo dato dalla sgunt sprssion: t ml /(πħ) [punti: a ; b ; c3; d] 3) In non più di una pagina trattat uno di sgunti du argomnti, a sclta (MA NON PIÙ DI UNO) [punti: 8]: a. Enunciat l intrprtazion probabilistica (o statistica) dlla funzion d onda, chiarndo anch il significato di conctti statistici utilizzati (com ad smpio la dnsità di probabilità o altro), discutt un sprimnto (anch idalizzato) ch n ha confrmato la validità. b. Dscrivt qualitativamnt l ida alla bas dl mtodo dl campo mdio auto-consistnt utilizzato nlla trattazion dgli atomi a più lttroni mnzionatn anch la principal consgunza in trmini di livlli nrgtici. Carica dll lttron, C Costant di Planck ridotta ħ, J s Massa dll lttron m 9, 0 3 kg ATTENZIONE: la prova continua alla pagina sgunt...

2 sconda pagina - Prova scritta final 6/6/007 - Istituzioni di Fisica dlla Matria - Prof. Lornzo Marrucci 4) TEST (val punto pr ogni domanda, 8 punti in total) COGNOME: NOME: MATICOLA: a) Qual fnomno fisico fu spigato da Planck con la sua prima ipotsi di quantizzazion? La radiazion trmica dl corpo nro. b) Qual lgg prdiss Einstin pr la dipndnza dl potnzial di arrsto V 0 dalla frqunza ν dll onda incidnt nll fftto fotolttrico? V h ν Φ c) S una particlla prsnta un indtrminazion sulla quantità di moto pari a p 0 5 kg m/s, qual è la minima possibil indtrminazion x sulla sua posizion? x ħ/( p) 0.5 nm d) Quali sono l condizioni di raccordo da utilizzar pr risolvr l quazion di Schrodingr indipndnt dal tmpo in un sistma quantistico D quando l nrgia potnzial U(x) prsnta una discontinuità nl punto x 0? dφ dφ φ( x0) φ( x0) dx dx x0 x0 ) In cosa consist l fftto tunnl? Attravrsamnto da part di una particlla di una barrira di nrgia potnzial più alta dll nrgia total dlla particlla, sfruttando il fnomno dll onda vanscnt f) Scrivt l sprssion dlla funzion d onda ψ ( x, yzt,, ) di un lttron libro ch si muov in 3D nlla dirzion parallla all ass y con una quantità di moto di modulo p: ( ) i py Et ψ N con E p /( m) g) Quanto val il momnto angolar di un lttron ch si trovi nllo stato quantistico dscritto dalla funzion ar d onda ψ (, r ϑϕ, ) N, dov N è una costant r, ϑ, ϕ sono coordinat polari sfrich? zro h) L ossigno è un atomo contnnt 8 lttroni. Qual è la configurazion lttronica dl suo stato fondamntal di un suo qualsiasi stato ccitato (a vostra sclta)? SF (s) (s) (p) 4 SE (s) (s) (p) 5 oppur un altro

3 Soluzioni dgli srcizi Esrcizio Domanda (a). L nrgia dll lttron dopo l assorbimnto dl foton è ugual a qulla inizial (nulla) più l nrgia dl foton, quindi è pari a risposta a: hc E hν F J 0.38 mv Domanda (b). La lunghzza d onda dll lttron può ssr ricavata dalla rlazion di disprsion valida pr l particll libr (prché l nrgia potnzial è nulla), ossia p k 4π h E m m m m (allo stsso risultato si arriva ovviamnt anch risolvndo l quazion di Schrodingr con U 0) da cui risposta b: h hf 63 nm me mc Domanda (c). Pr rispondr a qusta domanda è ncssario risolvr l quazion di Schrodingr indipndnt dal tmpo trovar i livlli di nrgia possibili nl sistma. L quazion D è la solita (pr U 0): d φ Eφ mdx () ch ammtt com soluzioni pr E > 0 l ond armonich ikx φ ( x) N () con k ± me (3) (ch poi corrispond alla risposta (b), in bas alla rlazion k π/ ). La diffrnza risptto al caso D normal sta nl fatto ch la coordinata x è ciclica. Qusto vuol dir ch il punto di coordinata x + π coincid con il punto di coordinata x. Qusto a sua volta implica ch la funzion d onda φ(x) dbba ssr priodica con priodo π, cioè l soluzioni dvono soddisfar alla condizion aggiuntiva (qusta è una condizion di validità fisica da imporr sull soluzioni matmatich): φ( x) φ( x+ π) (4) Sostitundo la soluzion () in qusta condizion, ottniamo facilmnt ch πk πn k con n 0, ±, ±, (5) ik π n

4 Va notato in particolar ch il numro quantico n in qusto caso può anch ssr nullo o ngativo l soluzioni ch si ottngono sono ffttivamnt soluzioni indipndnti. In particolar, pr n 0 si ottin la soluzion φ(x) N costant, ch è una soluzion lgittima (è anch normalizzabil, dato ch la normalizzazion si dv far intgrando la x tra 0 π). E intrssant notar ch la condizion (5) sui k pr n > 0 corrispond alla condizion n π, ossia al fatto ch un numro intro n di lunghzz d onda dll lttron ntra nlla circonfrnza, cioè la normal condizion dl risonator circolar (di cui il nostro problma è un smpio). Prò, notat ch sist anch una lgittima soluzion con n 0 ( lunghzza d onda infinita), ch invc non abbiamo considrato nl ragionamnto sul risonator circolar (pr smpio nll intrprtazion dlla condizion di quantizzazion di Bohr basata sull ipotsi di D Brogli). Pr inciso, l soluzioni dlla () con E < 0 (ch sono sponnziali rali) non possono soddisfar la condizion aggiuntiva (4), pr cui non sono fisicamnt valid vanno scartat. Dalla (5), sostitundo nlla (3) risolvndo pr trovar E ottniamo i valori possibili dll nrgia: E En n m Il minimo salto nrgtico possibil è qullo ch porta l lttron dall nrgia nulla (n 0), ch poi è anch l nrgia inizial dll lttron, a qulla con n ±, cioè E E E m min ± 0 Prciò la massima lunghzza d onda lttromagntica ch può ssr assorbita è fissata dall quazion hc F E m isolvndo pr sostitundo la lunghzza d onda data nl tsto dl problma, ottniamo il risultato final (ch poi, guarda caso, coincid con il raggio di un crchio la cui circonfrnza sia ugual alla lunghzza d onda lttronica calcolata prima, ch corrispond infatti alla condizion pr n ±): risposta c: F 0 nm 4πmc π Domanda (d) S ci sono du lttroni con lo stsso spin, lo stato fondamntal dl sistma complssivo risulta dall occupazion dll unico stato di singola particlla con n 0 di uno qualsiasi di du stati con n ±. L corrispondnti funzioni d onda di singola particlla sono φ ( x) N 0 π φ± ( x) Nxp ik± x π ± / [ ] ix dov la costant N ni du casi è stata trovata imponndo la condizion di normalizzazion sul crchio Notat com in qusto problma, pur ssndo l lttron confinato, l nrgia di punto zro è nulla. Com mai non sono violat l rlazioni di indtrminazion di Hisnbrg? [Nota: la risposta a qusta domanda non è facil]

5 π 0 φ ( x) dx Ora, la funzion d onda antisimmtrica dllo stato fondamntal è data dalla sgunt sprssion: ± ix [ ] ( / ± ix / ψ ( x, x) φ0( x) φ± ( x) φ0( x) φ± ( x) ) π La dnsità di probabilità congiunta è dp x x ψ ( x, x) cos dxdx 4π (6) (ch divnta indipndnt dal sgno sclto pr il ±). Pr trovar la probabilità ch gli lttroni si trovino in du posizioni ch distano non più di π/ (ossia un quarto di crchio), ossia ch pr ciascun valor di x, la x sia comprsa tra x π/ x +π/, bisogna far l intgral sgunt: π x + π / π + π/ d d (7) 0 x π/ 0 π/ P dx dx ψ( x, x ) dx dx ψ( x, x ) dov nlla sconda sprssion abbiamo introdotto pr comodità la variabil distanza tra gli lttroni xd x x (ma qusto passaggio non è indispnsabil pr svolgr l intgral). Sostitundo l sprssion (6) nlla (7), l intgral in x si può far immdiatamnt (prché dopo il cambio di variabili la ψ non dipnd da x ma solo da x d ) ottniamo risposta d: + π / xd P dxd cos 0.8 8% π π π / S l particll fossro indipndnti la dnsità di probabilità foss distribuita uniformmnt sul crchio (com è pr tutt du l funzioni d onda), è ovvio ch la probabilità sarbb invc ½ 50%, prché corrispond alla probabilità ch la sconda particlla si ritrovi nl smicrchio cntrato nlla posizion dlla prima particlla (qualsiasi sia qusta posizion). La diminuzion di probabilità è ovviamnt dovuta alla natura frmionica dgli lttroni. Esrcizio Domanda (a). Al tmpo t 0, la dnsità di probabilità pr unità di ara pr la posizion dll lttron è data da dp dxdy ψ (, ) 0 x y Qusta è pari a N nl quadrato trattggiato di ara L /4 mostrato in figura nulla al di fuori. Ovviamnt, pr la condizion di normalizzazion, si ha L/ L/ L ψ0 4 ( x, y) dxdy N dxdy N N L La probabilità ch la particlla sia nlla mtà sinistra dlla buca corrispond ad un intgral ch copr tutta la rgion trattggiata, oltr ad una rgion in cui la funzion d onda si annulla. Quindi è chiaro ch la probabilità è risposta a: L/ L L/ L/ ψ 0 P( x < L / ) dx ( x, y) dxdy N dxdy 00%

6 Domanda (b). Pr calcolar l coordinat mdi possiamo sfruttar la simmtria dlla distribuzion di probabilità, pr cui i valori mdi dvono trovarsi nl cntro di simmtria dlla distribuzion, ossia nl cntro dl quadrato trattggiato. Ovviamnt si può anch applicar dirttamnt la dfinizion, con il mdsimo risultato, ossia risposta b: L/ L/ L x xψ0( x, y) dxdy xn dxdy 0.5 Å 4 L/ L/ L y yψ0( x, y) dxdy yn dxdy 0.5 Å 4 Domanda (c). L nrgi possibili sono tutt qull dlla buca rttangolar quadrata, ch si ricavano con il mtodo usual dlla sparazion di variabili, ch riconduc l nrgia alla somma dll nrgi di du buch D ciascuna con il suo numro quantico. Prciò si ottin π E E E 0 n + n con E0 n, n,,3, (8) ml risposta c prima part: nn ( ) A ciascuna di qust nrgi corrispond l autofunzion φ n, n nπ x nπ y ( xy, ) sin sin L L L (9) Ora, pr trovar l probabilità di ciascun valor di nrgia, è ncssario calcolar il prodotto scalar tra la funzion d onda inizial l autofunzion corrispondnt all nrgia in qustion poi farn il modulo-quadro, ossia: P c n, n n, n con LL L/ L/ * 4 π n, n φ n, n, ψ 0 φ (, ) ψ, 0(, ) sin sin n n n x n πy c x y x y dxdy dxdy L L L 4 nπ nπ 6 nπ nπ cos cos sin sin π nn π nn 4 4 (0) Prciò, l probabilità di livlli di nrgia dati nlla (8) (o mglio dgli stati quantistici corrispondnti ai numri quantici n, n ; pr un dato livllo nrgtico si dovrbb poi far la somma su tutti gli stati ch hanno la stssa nrgia) sono dat da: risposta c sconda part: Domanda (d) P nn 56 nπ n π sin sin π nn 4 4 Pr dtrminar l probabilità rlativ ad un istant di tmpo divrso da qullo inizial è ncssario calcolar la funzion d onda pr istanti di tmpo succssivi. Qusto può ssr fatto agvolmnt scrivndo la funzion d onda com combinazion linar dgli autostati, ossia com sgu: n n ( ) ψ ( x, y, t) c φ ( x, y)xp ie t nn nn nn

7 dov i cofficinti sono dati dalla (0), l autofunzioni dalla (9) l nrgi dalla (8). Sostitundo in qusta sprssion il tmpo t dato nl tsto, vdiamo ch gli argomnti dgli sponnziali immaginari ch forniscono la dipndnza tmporal divntano i sgunti: E0( n + n)ml ienn t i i6 π ( n + n) π Qusti sono tutti multipli di πi, pr cui gli sponnziali sono tutti pari a quindi la funzion d onda ritorna ad ssr sattamnt idntica a qulla inizial. Prciò la probabilità di trovar la particlla nlla mtà dstra dlla buca in qusto particolar istant di tmpo si annulla (risposta d).

Interazione onde materia e configurazioni elettroniche. Interazione radiazione - materia. Spettro elettromagnetico. Onde elettromagnetiche

Interazione onde materia e configurazioni elettroniche. Interazione radiazione - materia. Spettro elettromagnetico. Onde elettromagnetiche Intrazion ond matria configurazioni lttronich Intrazion radiazion - matria N.B.: 00 nm 3.1 V / 700 nm 1.77 V Ond lttromagntich Spttro lttromagntico c λ / T λ ν Spttro lttromagntico Emissioni dl corpo nro

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI TORMA I RIUZION GLI INTGRALI IN U IMNSIONI S è misurabil f : è limitata continua, valgono l sgunti proprità: s A è un dominio normal risptto all ass, cioè,, con continu A a b pr ogni a, b, allora la funzion

Dettagli

Astronomia Lezione 21/10/2011

Astronomia Lezione 21/10/2011 Astronomia Lzion 1/10/011 Docnt: Alssandro Mlchiorri.mail:alssandro.mlchiorri@roma1.infn.it Slids: obron.roma1.infn.it/alssandro/ Libri di tsto: - An introduction to modrn astrophysics B. W. Carroll, D.

Dettagli

Enrico Borghi EFFETTO ZEEMAN

Enrico Borghi EFFETTO ZEEMAN Enrico Borghi EFFETTO ZEEMN È noto col nom di fftto Zman (Pitr Zman, 1896) il fnomno pr cui l righ dllo spttro di un atomo sottoposto a un campo magntico B si scindono in un crto numro di componnti la

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

Problemi unidimensionali

Problemi unidimensionali 1 Potnzial a gradino Problmi unidimnsionali Studiamo una particlla di nrgia E in prsnza dl potnzial unidimnsional V x discontinuo a x = 0 con V 0 > 0, Considriamo valori diffrnti di E V x = 0 x 0 V x =

Dettagli

Lezione 2 Cenni di meccanica quantistica

Lezione 2 Cenni di meccanica quantistica Lzion Cnni di mccanica quantistica Fisica dllo Stato Solido http://www.d.unifi.it/fisica/bruzzi/fss.html Lzion n. Cnni di mccanica quantistica- M. Bruzzi Sommario. Introduzion - Funzioni d onda dnsità

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

dove A è una costante caratteristica dello specifico metallo e k è la costante di Boltzmann.

dove A è una costante caratteristica dello specifico metallo e k è la costante di Boltzmann. ) Il riscaldamnto dl filo comporta la cssion di nrgia al rticolo cristallino quindi agli lttroni dgli orbitali più strni; s l nrgia acquisita dagli lttroni risulta suprior all nrgia di lgam (Vi, do Vi

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

Lezione 2 Cenni di meccanica quantistica

Lezione 2 Cenni di meccanica quantistica Lzion Cnni di mccanica quantistica Fisica dllo Stato Solido ttp://www.d.unifi.it/fisica/bruzzi/fss.tml Lzion n. Cnni di mccanica quantistica- M. Bruzzi Sommario. Introduzion - Funzioni d onda dnsità di

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Lezione 2 Cenni di meccanica quantistica

Lezione 2 Cenni di meccanica quantistica Lzion Cnni di mccanica quantistica Fisica dllo Stato Solido http://www.d.unifi.it/fisica/bruzzi/fss.html Lzion n. Cnni di mccanica quantistica- M. Bruzzi Sommario. Introduzion - Funzioni d onda dnsità

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

Prima prova intercorso lunedì 14 aprile 2005

Prima prova intercorso lunedì 14 aprile 2005 Prima prova intrcorso lundì 14 april 25 Laura in Scinza Inggnria di Matriali anno accadmico 24-25 Istituzioni di Fisica dlla Matria - Prof. Lornzo Marrucci Tmpo a disposizion: 2 or 15 minuti Uso dgli appunti

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Potenziale ed energia potenziale y

Potenziale ed energia potenziale y Potnzial d nrgia potnzial ) Siano dat du carich puntiformi positiv Q =Q Q =9Q, dispost sullo stsso ass rispttivamnt ad una distanza 3 dal punto (vdi figura). a) il lavoro ncssario pr portar una carica

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza Soluzioni dll Esrcitazioni XI 0-4//08 A. Funzioni di variabili Insimi di sistnza Si tratta di porr la (o l) condizioni pr cui risulta dfinita la funzion f.. La funzion è f(, ) = ln( +). L unica condizion

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

03. Le oscillazioni meccaniche. 03 d. Le onde stazionarie

03. Le oscillazioni meccaniche. 03 d. Le onde stazionarie 03. 03 d. L ond stazionari 03. Contnuti : la fnomnologia, il formalismo ral qullo complsso, il principio di sovrapposizion l analisi spttral. slid#3 Pitagora Samo 570-495 a.c. Jan Baptist Josph Fourir

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti PREMIO EQUO E PREMIO NETTO Prof. Crchiara Rocco Robrto Matrial Rifrimnti. Capitolo dl tsto Tcnica attuarial dll assicurazioni contro i Danni (Daboni 993) pagg. 5-6 6-65. Lucidi distribuiti in aula La toria

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Geometria per Fisica e Fisica e Astrofisica

Geometria per Fisica e Fisica e Astrofisica Gomtria pr Fisica Fisica Astrofisica {z } val la proprità associativa? (no) Soluzioni srcizi - Foglio 5 - Buon complanno, Eulro! (300 anni) Esrcizio 1. Nl piano, si considrino i punti A (0,0), B (, 0),

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Parte IV: Spin e fisica atomica

Parte IV: Spin e fisica atomica Part IV: Spin fisica atomica Atomo in un campo magntico Esprinza di Strn Grlach Spin dll lttron Intrazion spin orbita doppitti spttrali Spin statistica 68 Atomo in un campo magntico Efftto classico: prcssion

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

x ( sin x " ha una unica soluzione x " 0. 0,0

x ( sin x  ha una unica soluzione x  0. 0,0 PROBLEMA ESAME DI STATO CORSO DI ORDINAMENTO ANNO 8-9 ) L ara richista è la diffrnza dll ara dl sttor circolar qulla dl triangolo AOB, cioè S r ( r sin " r & ( sin ) Posto r= si ha S$ % " & ( sin$ % '.

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/rchitttura Corrzion prova scritta 9 sttmbr 011 1. Dati i tnsori: { L = 3x y +3 y z +4 z x M = 3 x x + x z +5 y y d il vttor v =

Dettagli

ESERCIZI AGGIUNTIVI - MODELLO OA - DA

ESERCIZI AGGIUNTIVI - MODELLO OA - DA ESERCIZIO n. 1 ESERCIZI AGGIUNTIVI - MODELLO OA - DA Considrat un conomia carattrizzata dall sgunti quazioni: DA: OA: 15 M 2 ˆ.5( ) Suppont ch l conomia si trovi, al tmpo, in una situazion di quilibrio

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

Laboratorio di Calcolo B 79

Laboratorio di Calcolo B 79 Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 1/A

Modelli e Metodi Matematici della Fisica. Scritto 1/A Modlli Mtodi Matmatici dlla Fisica. Scritto 1/A Csi/Prsilla A.A. 007 08 Nom Cognom Il voto dllo scritto sostituisc gli sonri 1 problma voto 1 4 5 6 7 total voto in trntsimi Rgolamnto: 1) Tutti gli srcizi,

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali:

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali: Fisica Gnral VI Schda n. 1 srcizi di ripilogo di contnuti di bas ncssari 1.) Dimostrar l sgunti idntità vttoriali:. A (B C) = B (A C) C (A B) (A B) = ( A) B ( B) A ( A) = ( A) 2 A. suggrimnto: è important

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

II Prova - Matematica Classe V Sez. Unica

II Prova - Matematica Classe V Sez. Unica Lico Scintifico Paritario R Bruni Padova, loc Pont di Brnta, /9/7 II Prova - Matmatica Class V Sz Unica Soluzion Problmi Risolvi uno di du problmi: Problma L azinda pr cui lavori vuol aprir in città una

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Dispense del corso di. Elementi di Struttura della Materia

Dispense del corso di. Elementi di Struttura della Materia Dispns dl corso di Elmnti di Struttura dlla Matria -Fisica Molcolar M. D Sta Fisica Molcolar Una molcola è un arrangiamnto stabil di un gruppo di nucli lttroni. E bn chiarir subito ch non smpr avvicinando

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

I Compitino di Fisica Generale II di Ingegneria CIVILE 7 MAGGIO 2011.

I Compitino di Fisica Generale II di Ingegneria CIVILE 7 MAGGIO 2011. I ompitino di Fisica Gnral II di Inggnria IVILE 7 MAGGIO. Esrcizio : Una carica lttrica = µ è distribuita uniformmnt su un arco di circonfrnza di raggio = cm ch sottnd un angolo = 6 risptto al cntro dlla

Dettagli

1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x

1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/Architttura Corrzion prova scritta Esam di Mccanica Razional 30 gnnaio 01 1. Dati i tnsori: { L = 3x y + y z + 3 z x M = x x y y

Dettagli

Prova scritta finale 9 giugno 2005

Prova scritta finale 9 giugno 2005 Prova scritta finale 9 giugno 5 Istituzioni di Fisica della Materia Prof. orenzo Marrucci anno accademico 4-5 Tempo a disposizione: 3 ore Uso degli appunti o di libri: NON AMMESSO uso della calcolatrice:

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof)

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof) Critri dirttamnt basati sullo stato di tnsion!massima tnsion normal (Ranin-Lamé-Navir)!Massima tnsion tangnzial (Trsca-Gust)!Curva dlla rsistnza intrinsca (Coulomb-Mohr)!Massima tnsion tangnzial ottadral

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2)

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2) # LUOHI E CARTE NELLA SINTESI PER TENTATIVI IN ω # Rifrimnto: A.Frrant, A.Lpschy, U.Viaro Introduzion ai Controlli Automatici. Editric UTET, Cap. 9. Prima dll ra di PC la sintsi pr tntativi nl dominio

Dettagli

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d)

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d) Esmpi domand A) S il cofficint di risrva obbligatoria è dl 5% allora il moltiplicator montario a) è pari a b) è pari a 3 c) è pari a 4 d) è pari a 5 ) nssuna l prcdnti RISOSTA: nlla formulazion più smplic

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

Interazione di orbitali di atomi individuali (orbitali molecolari )

Interazione di orbitali di atomi individuali (orbitali molecolari ) Struttura di lgami ni solidi A diffrnza di smplici molcol, il lgam ni solidi vin dscritto utilizzando il modllo lttronico a band, ch ovviamnt è stato sviluppato pr intrprtar l proprità fisich di solidi,

Dettagli

ELETTROSTATICA. NB: in tutti gli esercizi che seguono, anziché la. costante k 0 si utilizza. 1 4πε

ELETTROSTATICA. NB: in tutti gli esercizi che seguono, anziché la. costante k 0 si utilizza. 1 4πε ELETTOSTATICA NB: in tutti gli srcizi ch sguono, anziché la costant k si utilizza 4πε ) In ciascun vrtic di un triangolo quilatro il cui lato è lungo 5 cm, è posta una carica puntiform q +,7 µc. Dtrminar

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli