ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI"

Transcript

1 ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI L astrisco contrassgna gli srcizi più difficili.. Calcolar la drivata dll sgunti funzioni (drivabili in tutti i punti dl loro dominio): a) f (x) =4x 8 x/ +4x +5, g(x) = x x +, h(x) =x sin x x + b) f (x) = +x, g(x) = ( + x ), h(x) =logx c) f (x) = arctan + x, g(x) = tan 5x, h(x) =x sin x d) f (x) =log x + x, g(x) =cos log x 4. Sia f una funzion dfinita in un intorno di π talchf (π) = f (π) =. Considrata la funzion g (x) =x arctan f (x), calcolarg (π)....[5π/4]. Sia f una funzion dfinita in un intorno di talchf () =. Considrata la funzion g (x) =f ( sin x cos x), calcolarg (π)....[ 4] 4. Dat l funzioni f (x) =x log x g (x) =(logx) x, calcolar l drivat di g f d f g nl punto x 0 =...[, 0] 5. Ricavar l sgunti formul di drivazion dll funzioni iprbolich: D sinh x =coshx, D cosh x =sinhx pr ogni x R calcolardtanh x... D tanh x = tanh x = pr ogni x R cosh x 6. Provar ch la funzion f (x) = x non è drivabil in x 0 =0,mntrrisulta Ddurr poi ch D x =signx = x x pr ogni x = 0. D log x = x pr ogni x = Sia f : R R una funzion strttamnt monotona drivabil ovunqu. Sapndo ch f (0) = 0, f () =, f () = 5 d f (0) =, calcolar f () d f (0)... 5, 8. Si considri la funzion f (x) = x+log x. Provar ch f è invrtibil su dom f scrivrl quazion dlla rtta tangnt al grafico a) y = f (x) nl punto in cui x =... y = + x b) y = f (x) nl punto in cui y =...[y =x ] c) y = f (x) nl punto in cui y =... y = + x d) y = f (x) nl punto in cui x =... y = x +

2 M.GUIDA, S.ROLANDO 9. Sia f :domf R R drivabil in tutti i punti di dom f siaf :domf R la sua funzion drivata. Dimostrar ch: a) s f è pari, allora f èdispari b) s f è dispari, allora f èpari. 0. Ricavar l sgunti formul di drivazion pr l invrs dll funzioni trigonomtrich: D arcsin x =, Darccos x = x x pr ogni x (, ).. Studiar continuità drivabilità dll sgunti funzioni sul proprio dominio: x log x s x>0 a) f (x) = 0 s x =0, g(x) = x s x = 0 0 s x =0 x s x 0 sin (log x)+x s 0 <x b) f (x) = (x ) s x>0, g(x) = x x s x> c) f (x) = log x, g(x) = x 9 x d) f (x) = 7 x 6 x 7, g(x) = x log + x. Vrificar ch l sgunti funzioni sono prolungabili pr continuità in x 0 =0 stabilir s il loro prolungamnto continuo risulta drivabil in x 0 : a) f (x) =x cos x... f (0) = 0, f (0) non sist b) f (x) = +6x... f (0) = 0, f (0) = x. Dtrminar α R tal ch la funzion f (x) = 4x s x 0 α sin (x) s x>0 risulti ovunqu drivabil in R....[α =] 4. Dtrminar a, b R tal ch la funzion sin (sin (x )) s x f (x) = x (b log x a ) s x> risulti ovunqu drivabil in R....[b =0, a = ] 5. Calcolar i sgunti iti utilizzando la rgola di d L Hôpital: x sin x a) x 0 sin x, x x x 0 sin x, tan x x x 0 x... [0,, 0] x 4 b) x x +5x +6, c) x sin x, x 0 + log (x), x 0 + /x x 0 x log (x), x 0 + sin x π d) x x + arctan 5x π/ arctan x, x + log ( + /x) log (x π/) ) x (π/) + tan x, x (π/) + x... [ 4, 0, 0] x log (sin x)...[+, 0, 0] x 0 + tan x x π... 5,...[0, ] 6. Utilizzando la rgola di d L Hôpital, dimostrar i sgunti iti notvoli: α > 0 x + x x α =+, x + xα x =0, x + log x =0, log x =0. xα x 0 +xα

3 CALCOLO DIFFERENZIALE 7. Utilizzando la rgola di d L Hôpital, ricavar l sgunti quivalnz: arctan x x pr x 0, arcsin x x pr x 0. Calcolar poi i iti x 0 + (x +arctanx) arcsin ( x + x ) x, x 0 + x +4sin x...., 8. Stabilir quali fra l sgunti funzioni soddisfano l ipotsi dl torma di Roll sull intrvallo [, ]: f (x) =x,g(x) = x x, x 0, x<,h(x) = 0, x (0, ], k (x) = 0, x= (x ).,x>, x>...[f,g,k non soddisfano, h soddisfa] 9. Disgnar il grafico dlla funzion x x s x 0 f (x) = x s 0 <x x s x> studiarn continuità drivabilità....[f C (R) ; f non drivabil in 0 (punti angolosi)] Stabilir poi s: a) il torma di Roll è applicabil sugli intrvalli [, 0] [0, 5]... [sì, no] b) il torma di Lagrang è applicabil sull intrvallo [, 5]...[sì] c) f èinittiva...[no] d) f è surittiva (su R)...[no] ) il valor è assunto nll intrvallo [ /, 0]... [sì] 0. Disgnar il grafico dlla funzion arctan x s x 0 arcsin x s 0 <x f (x) = (x ), s <x log (x ) s x> dtrminarn l immagin studiarn continuità drivabilità. im f = π..., + ; f non continua in (salto) ( a spci); f non drivabil in, (punti di discontinuità) (punto angoloso) Stabilir poi s: a) il torma di Lagrang è applicabil sugli intrvalli [, ] [, ]... [no, sì] b) il torma di Roll è applicabil sull intrvallo [ + /, +]... [no] c) f èinittiva...[no]. Dimostrar l sgunti idntità: a) arccos x = π arcsin x pr ogni x [, ] b) arctan x = π arctan x pr ogni x>0 c) arctan x = π arcsin x pr ogni x 0.

4 4 M.GUIDA, S.ROLANDO. Sia f (x) = x + x. a) Dtrminar massimo minimo assoluti di f sull intrvallo [, ]... max f (x) =f () =, max f (x) =f x [,] x [,] = b) Vrificar ch il torma di Lagrang è applicabil sull intrvallo [0, ] dtrminarun punto c (0, ) ch soddisfi la tsi dl torma.... c =. Dtrminar i punti di massimo minimo assoluti dll sgunti funzioni sugli intrvalli I indicati: a) f (x) =x x +,I=[, ]... f () = f () = max I f, f =mini f b) f (x) =x x + x +,I=[, ]... f =maxi f, f ( ) = min I f 4. Dtrminar il numro di zri dlla funzion f (x) =x x. 5*. Sia f : R R una funzion ovunqu drivabil strttamnt positiva. Sapndo ch f () = f () = 0, provar ch la funzion g (x) =x log f (x) ha almno tr punti critici. 6*. Sia f : R R una funzion drivabil con drivata continua su R talchf (0) = f () =, f () = d f () =. Provarchf ha almno du punti critici nll intrvallo (0, ). 7. Dimostrar ch x cos x pr ogni x R. 8. Sia y : R R una funzion strttamnt positiva, drivabil ovunqu tal ch y (0) = y (x) =y (x) x x + pr ogni x R. a) Calcolar y (0), y (0) d y (0). b) Dtrminar gli intrvalli di monotonia di y (x). c) Calcolar la drivata prima in x 0 =0dll funzioni f (x) = y(x)sinx, g (x) =cosy (x) d h (x) =y (cos x).

5 CALCOLO DIFFERENZIALE 5 ALTRE SOLUZIONI. Non sono riportati i risultati ch sono impliciti nll richist dl tsto o ch si possono facilmnt controllar tramit un qualsiasi softwar matmatico (ad smpio qullo disponibil sul sito a) f (x) =x 4 x +4, g (x) = x +x 4 (x +), h (x) =sinx + x cos x b) f (x) = x, g (x) = ( + x ) x +x, h (x) = x c) f x (x) = 4x + x +, sin 5x g (x) =0 5x cos 5x tan, d) f (x) = x x x + x, g (x) = x x sin log x 9. a) f ècontinuaovunqunondrivabilin0. g è continua drivabil ovunqu. b) f è continua ovunqu non drivabil in 0 (punto angoloso). g è continua drivabil ovunqu. c) f è continua ovunqu non drivabil in (punto angoloso). g è continua ovunqu non drivabil in 0 (punto angoloso). d) f è continua ovunqu non drivabil in 0 d in. g è continua ovunqu non drivabil in 0 (punto angoloso). h (x) =x sin x cos x log x + sin x x 9. a) Posto f (x) = arccos x +arcsinx, siha f (x) = + x x =0 pr ogni x (, ) quindi f (x) ècostantsu(, ). Tal costant val il valor dlla funzion in un punto qualsiasi dll intrvallo, ad smpio f (0) = arccos 0 + arcsin 0 = π. Dunqu f (x) = π pr ogni x (, ), cioè arccos x +arcsinx = π pr ogni x (, ). Sostitundo x = ±, sivrifica poi ch tal idntità val su tutto l intrvallo [, ]. b), c) Analoghi al prcdnt. 4. Poiché f (x) =x è ngativa in (, ) positiva altrov, gli intrvalli di monotonia strtta di f sono (, ], [, ] [, + ), sucuif è continua. Allora, pr il torma di sistnza dgli zri, f ha un unico zro in ciascuno di tr intrvalli, in quanto: f (x) = f ( ) = > 0; x f ( ) > 0 f () = < 0; f () < 0 f (x) =+. x + Dunqu f ha sattamnt zri su R. 5. Si ha g (x) =x log f (x)+x f (x) f (x) = x logf (x)+x f (x) f (x) quindi g (0) = 0 g () = log f () + f () f() pr ogni x R =0. Inoltr risulta g (0) = g () (prché g (0) = 0 g () = log f () = 0), pr cui sist x 0 (0, ) tal ch g (x 0 )=0pr il torma di Roll. Dunqu g (x) si annulla almno ni tr punti x =0, x = x 0 d x =(tutti divrsi prché x 0 (0, )).

6 6 M.GUIDA, S.ROLANDO 6. Poiché f (0) = f (), sist x (0, ) tal ch f (x )=0pr il torma di Roll. D altra part, pr il torma di Lagrang, sist c (, ) tal ch f f () f () (c) = = = quindi, siccom f è continua pr ipotsi soddisfa f (c) > 0 d f () = < 0, pr il torma di sistnza dgli zri sist x (c, ) tal ch f (x )=0. Dunqu f (x) si annulla almno in x d x, ch appartngono ntrambi all intrvallo (0, ) prché x (0, ) d x (c, ) con c (, ). 7. Posto f (x) = x cos x, dvo provar ch f (x) 0 pr ogni x R. Poiché f èpari,èsufficint dimostrar ch f (x) 0 pr ogni x 0. Pr ogni x 0, sihaf (x) = x +sinx 0 (ssndo sin x x) quindi f (x) f (0) = 0 (ssndo f dcrscnt su [0, + )). 8. a) Valutando y (x) =y (x) x x + con x =0,sihasubitoy (0) = y (0) =. Drivando ultriormnt y (x) =y (x) x x +,siottin y (x) =y (x) x x + + y (x)(x ) y (x) =y (x) x x + + y (x)(x ) + y (x)(x ) + y (x) = y (x) x x + +y (x)(x ) + y (x), da cui sgu y (0) = y (0) +y (0) ( ) = 4 = y (0) = y (0) +y (0) ( ) + y (0) = + = 8. b) Essndo y (x) =y (x) x x + con y (x) > 0 pr ogni x R, ladrivatay (x) ha lo stsso sgno di x x+, cioè è positiva pr x (, ) (, + ) ngativa pr x (, ). Dunqu y (x) è strttamnt crscnt su (, ] su[, + ) d è strttamnt dcrscnt su [, ]. c) Pr ogni x R si ha f (x) = y(x)sinx D (y (x)sinx) = y(x)sinx (y (x)sinx + y (x)cosx), g (x) = sin y (x) Dy (x) = y (x)siny (x), h (x) =y (cos x) D cos x = y (cos x)sinx. Allora, sapndo ch y (0) = d y (0) =, siottin f (0) = y(0) sin 0 (y (0) sin 0 + y (0) cos 0) =, g (0) = y (0) sin y (0) = sin, h (0) = y (cos 0) sin 0 = 0.

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero )

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero ) ESERCITAZIONI 7-8- 9- STUDI DI FUNZIONI A) Esrcizi svolti. Studiar il dominio d il comportamnto agli strmi dl dominio dll sgunti funzioni. Calcolarn splicitamnt vntuali asintoti orizzontali o vrticali.

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 7/8 GENNAIO 8 CORREZIONE SE AVETE FATTO IL COMPITO A SOSTITUITE a ; COMPITO B a ; COMPITO C a 5; COMPITO D a 4; Esrcizio,

Dettagli

LIMITI DI FUNZIONI / ESERCIZI PROPOSTI

LIMITI DI FUNZIONI / ESERCIZI PROPOSTI ANALISI MATEMATICA I LIMITI DI FUNZIONI / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili. Definizioni di ite e di continuità. Verificare i seguenti iti usando la definizione: a)

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

Analisi Matematica 1 per IM - 23/01/2019. Tema 1

Analisi Matematica 1 per IM - 23/01/2019. Tema 1 Analisi Matmatica 1 pr IM - 23/01/2019 Cognom Nom:....................................... Matricola:.................. Docnt:.................. Tmpo a disposizion: du or. Il candidato, a mno ch non si

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25].

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25]. Politcnico di Bari L3 in Inggnria Elttronica Esam di Analisi Matmatica I A.A. 008/009-0 fbbraio 009. Dtrminar i numri complssi z ch soddisfano l quazion ( z 9) (z iz 0 i ) = 0. I numri conplssi ch soddisfano

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 novembre 2016 (prof. Bisceglia) traccia A

Matematica per l Economia (A-K) e Matematica Generale 10 novembre 2016 (prof. Bisceglia) traccia A Matmatica pr l Economia (A-K) Matmatica Gnral novmbr (pro. Biscglia) traccia A. Calcolar una primitiva P dlla unzion p scrivr l quazion dlla rtta tangnt a P in calcolar la distanza dlla rtta tangnt dall

Dettagli

Compito di Analisi Matematica 1 per Ingegneria dell Energia Prima parte, Tema A COGNOME: NOME: MATR.:

Compito di Analisi Matematica 1 per Ingegneria dell Energia Prima parte, Tema A COGNOME: NOME: MATR.: Prima part, Tma A ) L quazion diffrnzial y y = sin(x), con condizion inizial y(0) =, A: ha infinit soluzioni; B: non ha soluzion; C: ha un unica soluzion; D: ha sattamnt du soluzioni; E: N.A. 2) La funzion

Dettagli

LIMITI E CONTINUITÀ 2 / ESERCIZI PROPOSTI

LIMITI E CONTINUITÀ 2 / ESERCIZI PROPOSTI ANALISI MATEMATICA I - AA 03/04 LIMITI E CONTINUITÀ / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili Simboli di Landau Provare che: a) cos = o (sin ) b) 3 = o + 3 e + 3 = o 3 c)

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

f x è pari, simmetrica rispetto all asse y, come da

f x è pari, simmetrica rispetto all asse y, come da Esam di Stato 7 Problma Confrontiamo alcun proprità dlla funzion con l informazioni dducibili dal grafico: f f quindi figura f, compatibil con il grafico Imponiamo ch f a Notiamo ch f è pari, simmtrica

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x Problma Sia P un punto di un arco AB di una smicirconfrnza di cntro O raggio r. Sia T il punto in cui la smirtta OP incontra la tangnt in A all arco. Porr AOT ˆ PT AP P A AT P A AT AOT ˆ Limitazioni gomtrich

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 : A R R A ' Funzioni Continu La unzion si dic continua in ( ( s ( solo s A N sguono tr proprità ainché ( sia continua in :. Dvono sistr initi il it dstro sinistro di ( in. Tali iti dvono ssr uguali tra

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

LIMITI E CONTINUITÀ 1 / ESERCIZI PROPOSTI

LIMITI E CONTINUITÀ 1 / ESERCIZI PROPOSTI ANALISI MATEMATICA I - A.A. 03/04 LIMITI E CONTINUITÀ / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili. Definizioni di ite e di continuità. Sia k>0un parametro reale fissato. Verificare

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 1/A

Modelli e Metodi Matematici della Fisica. Scritto 1/A Modlli Mtodi Matmatici dlla Fisica. Scritto 1/A Csi/Prsilla A.A. 007 08 Nom Cognom Il voto dllo scritto sostituisc gli sonri 1 problma voto 1 4 5 6 7 total voto in trntsimi Rgolamnto: 1) Tutti gli srcizi,

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

MATEMATICA GENERALE (A-K) -Base 13/2/2004

MATEMATICA GENERALE (A-K) -Base 13/2/2004 MATEMATICA GENERALE (A-K) -Bas //004 PRIMA PARTE ) Individuar la rimitiva dlla funzion f(x) = x log x assant r il unto (4,) ) Calcolar, usando la d nizion, la drivata dlla funzion f(x) = x + nl unto x

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

Campi conservativi e potenziali / Esercizi svolti

Campi conservativi e potenziali / Esercizi svolti SRolando, 01 1 Campi consrvativi potnziali / Esrcizi svolti ESERCIZIO Stabilir s il campo vttorial F (x, y) = xy xy + y +, x + xy +1 è consrvativo nl proprio dominio In caso armativo, calcolarn il potnzial

Dettagli

TRACCIA A. e z 2 = 1 i + 2e i y = 2

TRACCIA A. e z 2 = 1 i + 2e i y = 2 Politcnico di Bari L in Inggnria Elttronica Primo sonro di Analisi Matmatica I AA 008/009-1 novmbr 008 TRACCIA A 1 Dtrminar i numri complssi ch soddisfano l quazion ( z + (i + 1) z + i ) (z z z + i) 0

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 3.17 < a < 3.4 7.05 < b < 7.9 11.89 < c < 1.11 Quali

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

II Prova - Matematica Classe V Sez. Unica

II Prova - Matematica Classe V Sez. Unica Lico Scintifico Paritario R Bruni Padova, loc Pont di Brnta, /9/7 II Prova - Matmatica Class V Sz Unica Soluzion Problmi Risolvi uno di du problmi: Problma L azinda pr cui lavori vuol aprir in città una

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, 22/12/2014. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, 22/12/2014. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, //4 A = {x R : x n } =, n N, n >. cosπn)n! + n 3n + 5 e n + n + )!. x sinx + x ) + log x x + x 4 ) + + x. x + coshx x ) e x sinh x x 3 )

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Nozioni di base - Quiz - 2

Nozioni di base - Quiz - 2 Nozioni di base - Quiz - Rispondere ai seguenti quesiti (una sola risposta è corretta).. L insieme delle soluzioni della disequazione (a) (0, ) (, + ) (x ) log(x) x + 0 è: (b) [, ] (c) (d) (e) (, + ) (0,

Dettagli

x ( sin x " ha una unica soluzione x " 0. 0,0

x ( sin x  ha una unica soluzione x  0. 0,0 PROBLEMA ESAME DI STATO CORSO DI ORDINAMENTO ANNO 8-9 ) L ara richista è la diffrnza dll ara dl sttor circolar qulla dl triangolo AOB, cioè S r ( r sin " r & ( sin ) Posto r= si ha S$ % " & ( sin$ % '.

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

{ } { } CONTENUTO. Funzioni polinomiali. p( x) = 7x + 20x; si tratta di una funzione. = ±. Funzione infinita x. + 16; si tratta di una

{ } { } CONTENUTO. Funzioni polinomiali. p( x) = 7x + 20x; si tratta di una funzione. = ±. Funzione infinita x. + 16; si tratta di una Funzioni polinomiali -4-4 - In rosso: 3 p( ) = 7 ; si tratta di una funzion dispari tal ch lim p( ) =. Funzion infinita (divrgnt) in infinito. Si ha, inoltr, p : R R. In azzurro: 4 q( ) = 8 6; si tratta

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 27 giugno 2018 (prof. M. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 27 giugno 2018 (prof. M. Bisceglia) Traccia A Matmatica pr l Economia (-K) Matmatica Gnral 7 iuno 8 (pro M isclia) Traccia s,, dir s è dotata di minimo; dir s è s, invrtibil, s lo è, riportar la sua invrsa, dir s è itata Data la sunt unzion: :, Data

Dettagli

Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, 22/12/2014. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, 22/12/2014. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-A, Ingegneria Energetica, //4 )3 punti) Dato il seguente insieme A, stabilire se è aperto o chiuso. Inoltre studiare: l interno, il derivato, la frontiera, la chiusura,

Dettagli

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola: UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esam di MATEMATICA (A) San Floriano, //9 Informazioni prsonali Si prga di indicar il proprio nom, cognom

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Prova scritta di Analisi Matematica T-1, 18/12/2018. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-1, 18/12/2018. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-, 8/2/28 MATRICOLA:...NOME e COGNOME:............................................. Ingegneria chimica e biochimica Ingegneria elettronica e telecomunicazioni )3 punti)

Dettagli

Le soluzioni della prova scritta di Matematica del 9 Giugno 2015

Le soluzioni della prova scritta di Matematica del 9 Giugno 2015 L soluzioni dlla prova scritta di Matmatica dl 9 Giugno. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disgnini, quali sono gli intrvalli in cui è positiva

Dettagli

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018.

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018. DIARIO DELLE LEZIONI DI TUTORATO DI ANALISI MATEMATICA I Corsi di laurea in Ingegneria delle Comunicazioni e Ingegneria Elettronica Tutor: Dott. Salvatore Fragapane Lezione 1-03/10/2018, dalle 12.00 alle

Dettagli

Laboratorio di Matematica. 9 novembre Determinare i punti critici voncolati per la funzione il problema. f(x, y) = x x 2 + y y.

Laboratorio di Matematica. 9 novembre Determinare i punti critici voncolati per la funzione il problema. f(x, y) = x x 2 + y y. Laboratorio di Matmatica. 9 novmbr 2011 ẏ t ty = 0 con y(0) = 1 ÿ + 4ẏ = 0 con y(0) = 1 ẏ(0) = 0. 2. Dtrminar i punti critici voncolati pr la funzion il problma max(x + 2y + z) xyz = 2. 3. È data la funzion

Dettagli

Matematica per l Economia (A-K) I Esonero 26 ottobre 2018 (prof. Bisceglia) Traccia A e C

Matematica per l Economia (A-K) I Esonero 26 ottobre 2018 (prof. Bisceglia) Traccia A e C Matmatica pr l Economia (A-K) I Esonro 6 ottobr 8 (pro Biscglia) Traccia A C Sia A b dopo avrn data la dinizion riportar l Insim dll Parti A Data la unzion P riportar la rtta o la unzion g ch dscrivr con

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018.

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018. DIARIO DELLE LEZIONI DI TUTORATO DI ANALISI MATEMATICA I Corsi di laurea in Ingegneria delle Comunicazioni e Ingegneria Elettronica Tutor: Dott. Salvatore Fragapane Lezione 1-0/10/018, dalle 1.00 alle

Dettagli

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2 LIITI Limit inito in un punto Limit ininito in un punto 3 Limit inito all ininito 4 Limit ininito all ininito 5 Limiti da dstra da sinistra Nota bn 6 Esmpi di ripilogo Nota bn 7 Limit pr ccsso pr ditto

Dettagli

INTEGRALI DEFINITI / ESERCIZI PROPOSTI

INTEGRALI DEFINITI / ESERCIZI PROPOSTI ANALISI MATEMATICA I - A.A. / INTEGRALI DEFINITI / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili. Integrali definiti e loro proprietà. Calcolare i seguenti integrali definiti: a)

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza

Dettagli

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2.

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. 1 Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. Esercizio 2. Sia f(x) = sin(log x ). Questa funzione è Esercizio 3.

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) :

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) : Ystudio Corsi lzioni d srcizi on lin di Matmatica, Statica Scinza dll costruzioni www.studio.it/sit. Dominio : Poichè la unzion è pari, lo studio vin itato al smipiano dll asciss positiv. Intrszion assi

Dettagli

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo.

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo. Politcnico di Bari Laur in Inggnria dll Automazion, Elttronica Informatica corso B Esam di Analisi matmatica II A.A. 2006/2007-8 sttmbr 2007 - TRACCIA A. Studiar gli vntuali punti critici dlla funzion

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Danila TONDINI Parzial n. - Compito I A. A.

Dettagli

ESAMI DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA SCIENTIFICO BROCCA Sessione 2002 seconda prova scritta Tema di MATEMATICA

ESAMI DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA SCIENTIFICO BROCCA Sessione 2002 seconda prova scritta Tema di MATEMATICA ESAMI DI STATO DI LIEO SIENTIFIO PIANO NAZIONALE DI INFORMATIA SIENTIFIO BROA Sssion 00 sconda prova scritta Tma di MATEMATIA Il candidato risolva uno di du problmi 5 di 0 qusiti dl qustionario. PROBLEMA

Dettagli

e coerentemente con quanto evidenziato dal grafico;

e coerentemente con quanto evidenziato dal grafico; POBLEMA Punto La unzion : - È dinita in ; - Intrsca l ass dll asciss in du unti all sgunti asciss: Si noti ch corntmnt con quanto vidnziato dal graico; - Intrsca l ass dll ordinat in, cornt con il graico;

Dettagli

Continuità di funzioni

Continuità di funzioni Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

1) Calcolare, se esiste, il limite seguente. 1 cos x + log(1 + x) lim 1) 2) Dire per quali numeri reali x converge la serie. ( 1) n ( e 1 n 1.

1) Calcolare, se esiste, il limite seguente. 1 cos x + log(1 + x) lim 1) 2) Dire per quali numeri reali x converge la serie. ( 1) n ( e 1 n 1. Prova scritta di Analisi Matematica I del giorno 05-1-009 Appello riservato a studenti fuori corso o ripetenti 1) Calcolare, se esiste, il ite seguente 1 cos x + log(1 + x) x 0+ x(e x 1) ) Dire per quali

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli