Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione Si definisce dominio normale rispetto all asse

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse"

Transcript

1 Contenuti 1 Integrali multipli Integralidoppisudomininormali Cambiamento di variabili in un integrale doppio Formula di Gauss-Green nel piano e conseguenze Integralitripli

2 Capitolo 1 Integrali multipli 1.1 Integrali doppi su domini normali efinizione Si definisce dominio normale rispetto all asse x l insieme x dei punti del piano le cui coordinate (x, y) soddisfano le seguenti limitazioni a x b α(x) y β (x), dove α (x) e β (x) sono funzioni definite nell intervallo [a, b] eivi continue, con α (x) <β(x) nei punti interni di [a, b] (vedi figura 1.1). Premesso ciò, se f (x, y) è una funzione definita in x e ivi continua, per l integrale doppio esteso a x della f (x, y), sussiste la seguente formula di riduzione b β(x) f (x, y) dxdy = dx f (x, y) dy. (1.1) x a α(x) efinizione Si definisce dominio normale rispetto all asse y l insieme y dei punti del piano le cui coordinate (x, y) soddisfano le seguenti limitazioni c y d γ(y) x δ (y), 2

3 Figura 1.1: 3

4 Figura 1.2: 4

5 dove γ (y) e δ (y) sono funzioni definite nell intervallo [c, d] eivi continue, con γ (y) <δ(y) nei punti interni di [a, b] (vedi figura 1.2). Selafunzionef (x, y) èdefinita in y eivicontinua, sussiste la seguente formula di riduzione d δ(y) f (x, y) dxdy = dy f (x, y) dx. (1.2) y c γ(y) efinizione Se il dominio ènormalerispettoatuttie due gli assi sussistono simultaneamente le formule (1.1) e (1.2), per cui abbiamo la seguente formula di inversione dell ordine di integrazione b a dx β(x) α(x) f (x, y) dy = d c dy δ(y) γ(y) f (x, y) dx. (1.3) Le formule di calcolo precedentemente illustrate possono essere utilizzate anche quando il dominio, pur non essendo normale ad alcun asse, è però decomponibile in n domini normali 1, 2,..., n, a due a due privi di punti interni comuni. In tal caso si ha la seguente relazione f (x, y) dxdy = f (x, y) dxdy+ 1 (1.4) + f (x, y) dxdy f (x, y) dxdy. 2 n Esercizio Si calcoli i seguenti integrali riconducendoli a integrali semplici 1 2 dx dy, dove =[3, 4] [1, 2]. (x + y) sin 2 y dx dy, y dove = {(x, y) IR 2 :0 x y 2, 0 <y π}. 5

6 1.2 Cambiamento di variabili in un integrale doppio Sia Ω aperto misurabile di IR 2 e si consideri la trasformazione biunivoca tra Ω e x = φ (u, v), y = ψ (u, v), (u, v) Ω. (1.5) Supponiamo le funzioni (1.5) di classe C 1 ( Ω) e il determinante jacobiano J della trasformazione sempre diverso da zero, (φ, ψ) J =det (u, v) = φ φ u v ψ ψ 6= 0 (1.6) u v In tali ipotesi vale la seguente formula di trasformazione dell integrale doppio f (x, y) dxdy = f [φ (u, v),ψ(u, v)] J dudv, (1.7) Ω di cui si omette la dimostrazione. Nel caso particolare del passaggio dalle coordinate cartesiane (x, y) alle coordinate polari (ρ, θ), avendosi x = ρ cos θ, y = ρ sin θ, (1.8) con ρ>0 e θ [0, 2π), oppure θ [ π, π), il determinante jacobiano è J = ρ>0 e la formula (1.7) diviene f (x, y) dxdy = f (ρ cos θ, ρ sin θ) ρdρdθ. (1.9) Ω Il passaggio alle coordinate polari è preferibile quando sia l espressione della funzione f (x, y) e sia le limitazioni che definiscono il dominio contengono l espressione x 2 + y 2. 6

7 1.3 Formula di Gauss-Green nel piano e conseguenze efinizione Un dominio regolare IR 2 èperdefinizione l unione di un numero finito di domini normali (rispetto a x o y) regolari 1,... N, adueadueprividipuntiinterniincomune. Se è dominio regolare, la sua frontiera èunionediun numero finito di curve regolari. Per tutti i punti di, eccetto al piu un numero finito di essi, esiste il versore tangente t. Su ogni curva di, il versore normale n associato a t è tale che la coppia {n, t} sia congruente a quella dei versori degli assi orientati (vedi figura 1.3). Si conviene di orientare la frontiera in maniera tale che il versore normale n, così individuato, risulti in ogni punto diretto verso l esterno di. Tale orientamento è detto orientamento positivo (si indica con + ). In altre parole, su ciascuna delle curve che compongono la frontiera di, si fissa come orientamento positivo quello secondo il quale deve muoversi un osservatore per avere sempre alla sua sinistra l interno di. Sia un dominio regolare e sia ½ x = y = x(t) y(t) t [a, b] (1.10) una rappresentazione parametrica di una porzione regolare γ della sua frontiera. Supponiamo l orintamento indotto dalla rappresentazione (1.10) sia quello positivo su. In tal caso, il versore tangente t èilvettorediir 2 t(t) = x 0 (t) p x0 (t) 2 + y 0 (t) i + y 0 (t) p 2 x0 (t) 2 + y 0 (t) j. 2 7

8 Figura 1.3: 8

9 Il versore normale corrispondente è n(t) = y 0 (t) p x0 (t) 2 + y 0 (t) i x 0 (t) p 2 x0 (t) 2 + y 0 (t) j. 2 Esempio Considerata la circonferenza centrata nell origine del sistema di riferimento e di raggio unitario, il versore tangente è eilversorenormaleè t(t) = sin t i +cost j, n(t) =cost i +sint j. Il seguente teorema, permette di trasformare un integrale doppio esteso ad un dominio regolare in un integrale curvilineo esteso alla frontiera di tale dominio: Teorema (Formule di Gauss-Green nel piano) Sia IR 2 un dominio regolare, ed f = f (x, y) una funzione di classe C 1 ( ). Allora f x dxdy = fdy, (1.11) + e f y dxdy = fdx. (1.12) + im. Per semplicità, si dimostrerà solo la (1.11) nel caso particolare che il dominio sia normale rispetto a y = (x, y) IR 2 : c y d, γ (y) x δ (y) ª. 9

10 Figura 1.4: Applicando le formule di riduzione, si ricava f d δ(y) x dxdy = dy γ(y) = c d c f dx = (1.13) x [f (δ (y)) f (γ (y))] dy. altra parte, la frontiera percorsa nel verso positivo si compone della curva γ 1, del segmento γ 2, della curva γ 3 edel segmento γ 4 come descritto nella figura 1.4. Poichè y ècostante sui tratti γ 2 e γ 4, risulta banalmente che fdy =0, fdy =0. γ 2 γ 4 10

11 Gli integrali lungo γ 1 e γ 3 sono uguali a d fdy = γ 1 c f (γ (y),y) dy e d fdy = γ 3 c f (δ (y),y) dy. In conclusione, si ottiene che fdy = fdy + fdy = + γ 3 γ1 (1.14) = d c f (δ (y),y) dy d c f (γ (y),y) dy. Le (1.13), (1.14) implicano la (1.11). La (1.12) si ottiene in maniera analoga. Il teorema vale anche quando è unione di un numero finito di domini regolari 1,... N, a due a due privi di punti interni in comune. Infatti, risulta che f x dxdy = X i f y dxdy = X i f i x dxdy = X i f i y dxdy = X i + i + i fdy,(1.15) fdx. Inoltre, gli archi di curve appartenenti alla frontiera di due domini adiacenti compaiono due volte, ma con orientamento opposto.lasommaditalicoppiediintegraliènulla,quindi X fdy = fdy (1.16) i + i + X fdx = fdx. + i + i 11

12 Tramite le (1.15), (1.16) si ottengono le (1.11), ( 1.12). alle formule di Gauss-Green, si ricava il seguente teorema Teorema (Teoremadelladivergenzanelpiano)Sia IR 2 dominio regolare. Sia F(x, y) =F 1 (x, y)i + F 2 (x, y)j un campo vettoriale definito in e di classe C 1 (). Allora div Fdxdy = F nds. (1.17) (Si ricorda che div F = F 1 x + F 2 y, n èilversorenormalea e s è l ascissa curvilinea) im. Applicando la formula di Gauss-Green possiamo scrivere: µ F1 div F dxdy = x + F 2 dxdy = y (1.18) = F 2 dx + F 1 dy. altronde, se la frontiera di è una curva regolare di equazioni parametriche ½ x = y = x(t) y(t) t [a, b], si ha anche F n ds = " b = = a b a F 1 y 0 (t) p x0 (t) 2 + y 0 (t) 2 F 1 y 0 (t)dt b a F 2 x 0 (t) p x0 (t) 2 + y 0 (t) 2 # px0 (t) 2 + y 0 (t) 2 dt = F 2 x 0 (t)dt = F 1 dy F 2 dx (1.19)

13 Le equazioni (1.18) e ( 1.19) implicano la (1.17). Se è unione di un numero finito di curve regolari a tratti, si ragiona come nella parte finale della dimostrazione delle formule di Gauss-Green, considerando quale unione di domini normali regolari privi di punti interni comuni. Inoltre, Proposizione (Formula di Stokes) Sia F (x, y)=f 1 (x, y) i+ F 2 (x, y) j un campo vettoriale definito in un dominio regolare e di classe C 1 (). Allora risulta µ F2 F 1 dx + F 2 dy = + x F 1 dx dy. y im. La dimostrazione segue dalle formule di Gauss-Green. Tramite il teorema della divergenza si dimostra il seguente risultato sulle forme differenziali, solo enunciato nel quarto capitolo: Teorema (Teorema sulle forme differenziali in un aperto semplicemente connesso) Sia ω (x, y) =F 1 (x, y) dx+f 2 (x, y) dy una forma differenziale lineare di classe C 1 definita in un aperto A semplicemente connesso. Se la forma è chiusa allora è anche esatta in A. (Ricordiamo che un aperto connesso A si dice semplicemente connesso se ogni curva γ regolare a tratti, semplice e chiusa contenuta in A è la frontiera di un dominio limitato interamente contenuto in A). im. Sia fissata una qualsiasi curva regolare, semplice e chiusa γ. Sia il dominio limitato di cui γ èfrontiera. Nonè restrittivo supporre γ orientata nel verso positivo (senso antiorario). Allora utilizzando la formula di Stokes e, ricordando che 13

14 la forma è chiusa, si ottiene F 1 (x, y) dx + F 2 (x, y) dy = γ = F 1 (x, y) dx + F 2 (x, y) dy = µ F2 x F 1 dxdy =0. y Proposizione (Formula di integrazione per parti) Sia un dominio regolare limitato di IR 2 esianof e g funzioni di classe C 1 (). Allorarisulta f g x dxdy = f fgdy + x gdxdy, e f g y dxdy = f fgdx + y gdxdy. im. Si deducono facilmente dalle (1.11, 1.12), utilizzando fg in luogo di f. Proposizione (Formula per il calcolo dell area) Sia un dominio regolare limitato di IR 2 ;siha A() = dxdy = xdy, (1.20) oanche Inoltre, A() = A() = 1 2 dxdy = ydx. (1.21) 14 xdy ydx.

15 im. La (1.20) si ottiene dalla (1.11) utilizzando f(x, y) =x, mentre la (1.21) segue dalla (1.11) per f(x, y) =y. Esempio Calcolare l area A() del dominio avente come frontiera l ellisse ½ x = a cos t γ :. y = b sin t Si ricava A() = 1 xdy ydx = 1 2π abdt = πab. 2 γ Integrali tripli efinizione Si dice che un insieme H IR 3 èundominio normale rispetto al piano xy se esso può essere rappresentato nella forma H = (x, y, z) IR 3 :(x, y) A, α (x, y) z β (x, y) ª, cona dominio normale del piano xy e α (x, y),β(x, y) funzioni continue su A tali che α (x, y) <β(x, y) per ogni punto (x, y) interno di A. Proposizione (Formula di riduzione) Sia f (x, y, z) èuna funzione continua su un dominio normale rispetto al piano xy. Vale la seguente formula di riduzione β(x,y) f (x, y, z) dxdydz = dxdy f (x, y, z) dz, H A α(x,y) che riduce l integrale triplo in un integrale semplice rispetto la variabile z ed a un integrale doppio rispetto le variabili x, y. 15

16 Analogamente si ragiona nel caso di domini normali rispetto al piano yz, oppure al piano zx. Proposizione (Cambiamento di variabili) Sia x = x (u, v, w) y = y (u, v, w) z = z (u, v, w) (u, v, w) B tale che 1) sia un applicazione di classe C 1 (B) ebiunivocadab alla sua immagine A dello spazio xyz 2) il determinante Jacobiano J=det (x, y, z) / (u, v, w) non si annulliinnessunpuntodib. Allora, risulta f (x, y, z) dxdydz A = f (x (u, v, w),y(u, v, w),z(u, v, w)) (x, y, z) det B (u, v, w) dudvdw. Caso particolare è la trasformazione in coordinate sferiche x = ρ sin φ cos θ y = ρ sin φ sin θ, z = ρ cos φ il cui significato geometrico è illustrato nella figura1.5. Il determinante Jacobiano di tale trasformazione è (x, y, z) J =det (ρ, φ, θ) = ρ2 sin φ. Altro esempio è la trasformazione in coordinate cilindriche (vedi figura 1.6): x = ρ cos θ y = ρ sin θ, z = z 16

17 e il determinante Jacobiano, in questo caso, è J =det (x, y, z) (ρ, θ, z) = ρ. Esempio Sia T il tetraedro delimitato dai piani coordinati x =0, y =0,z=0e dal piano obliquo di equazione x a + y b + z c =1. La retta del piano xy che unisce i punti di coordinate (a, 0, 0) e (0,b,0) ha equazione x a + y b =1. Il tetraedro T risulta normale rispetto al piano xy, e precisamente n ³ T = 0 x a, 0 y b 1 x ³, 0 z c 1 x a a y o. b da cui, si ricava che il volume di T, V (T ), è a b(1 x a) c(1 x a y b ) V (T ) = dxdydz = dx dy dz = T a b (1 x a) ³ = dx c 1 x 0 0 a y dy = b a ³ = c dx 1 x y=b y y2 (1 x a) = bc a ³ 1 x dx = 0 a 2b y=0 2 0 a 2 = bc a ³ 1 x 3 x=a = abc 2 3 a x=0 6. Esempio Si consideri un solido omogeneo di forma tetraedrica T edispigolia = b = c =1. E facilecalcolarelecoordinatedel 17

18 Figura 1.5: 18

19 Figura 1.6: 19

20 Figura 1.7: 20

21 baricentro (centro di massa). Infatti, per motivi di simmetria il baricentro ha coordinate (x G,y G,z G ) equindi x G = y G = z G = 1 xdxdydz =6 xdxdydz = 1 V (T ) 4. T T 21

Calcolo integrale in più variabili

Calcolo integrale in più variabili ppunti di nalisi II Calcolo integrale in più variabili Integrali doppi Nel caso di una funzione di una variabile f : a, b] R, supponendo f continua e fx) a, b], la quantità b a fx)dx indica l area fra

Dettagli

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3 Università degli Studi di Napoli Federico II Corso di Laurea in Matematica Analisi Matematica II (Gruppo ), A.A. 22/3 Prova scritta del 28 gennaio 23 Durata della prova: 3h. sercizio (8 punti). Si consideri

Dettagli

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizio 1 Testo Sia F F 1 x,y),f x,y)) ) x 1 x y + 1 x, y 1 x y + 1 y un campo vettoriale. 1. Si determini il dominio in cui

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Capitolo 16 Esercizi sugli integrali doppi

Capitolo 16 Esercizi sugli integrali doppi Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,

Dettagli

Capitolo 5 INTEGRALI DOPPI

Capitolo 5 INTEGRALI DOPPI Capitolo 5 INTEGRALI DOPPI Ci proponiamo di estendere alle funzioni reali di due variabili la nozione di integrale di Riemann nel caso dei domini normali. Vedremo che, in opportune ipotesi, il calcolo

Dettagli

Teoria dei Fenomeni Aleatori 1

Teoria dei Fenomeni Aleatori 1 Integrale Doppio Sia g( x,y ) una funzione continua nel piano ( x,y ) o D è un dominio sul piano ( x,y ) o P è una sua partizione che ricopre il dominio D: ( ) P D D... D... = 1,1 1,2 i,j, con Di,j = ΔxiΔ

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli 09- Integrale doppio: Riferimenti: R.Adams, Calcolo ifferenziale 2. Capitoli 5.1, 5.2, 5.4. Esercizi 5.3, 5.4 Integrale

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove R R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x, C : x + y x Completando

Dettagli

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN Prima prova di verifica in itinere di ANALISI MATEMATICA Gennaio 00 Determinare estremo superiore ed estremo inferiore dell insieme { } ( ) n A = n + : n IN specificando se si tratta rispettivamente di

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3

Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3 1 FUNZIONI DI PIÙ VARIABILI 1 1 Funzioni di più variabili Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3 Definizione 1.1 Dati D R 2 e f : D R, l insieme

Dettagli

Alcuni appunti di Analisi Matematica II - Calcolo Integrale

Alcuni appunti di Analisi Matematica II - Calcolo Integrale lcuni appunti di nalisi Matematica II - Calcolo Integrale Marco Spadini Tratti dal egistro delle lezioni di nalisi Matematica II, Corso di Laurea in Ingegneria Informatica.. 2007/2008 - Prof. Massimo Furi

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2 SOLUZIONE DEL PROBLEMA CORSO DI ORDINAMENTO. Studiamo la funzione f(x) = x R). Notiamo che f( x) = 4 + x, con dominio R (infatti x + 4 per ogni 4 + ( x) = 4 + x = f(x), cioè la funzione è pari e il grafico

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

x + y x2 y 2. y = x y + 1 y(0) = 1 3. Determinare i punti di massimo e di minimo assoluto della funzione f(x, y) = 3x 2 + 4y 2 6x + 3.

x + y x2 y 2. y = x y + 1 y(0) = 1 3. Determinare i punti di massimo e di minimo assoluto della funzione f(x, y) = 3x 2 + 4y 2 6x + 3. COMPITO n. 1 x + y x2 y 2. y = x y + 1 y(0) = 1 3x 2 + 4y 2 6x + 3. nell insieme D = (x, y) R 2 : x 2 + y 2 4}. dove ω = (3x 2 + y) dx + (2x + y 2 ) dy e γ è la curva costituita dalle tre curve regolari

Dettagli

Complementi di Matematica E e Matematica C per Ingegneria delle Telecomunicazioni, dell Automazione, Elettronica e Biomedica, a.a.

Complementi di Matematica E e Matematica C per Ingegneria delle Telecomunicazioni, dell Automazione, Elettronica e Biomedica, a.a. Complementi di Matematica E e Matematica C per Ingegneria delle Telecomunicazioni, dell Automazione, Elettronica e Biomedica, a.a. 2005-6 Martino Bardi Dipartimento di Matematica Pura ed Applicata Università

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Capitolo Sedicesimo CENNO SULLE SUPERFICI

Capitolo Sedicesimo CENNO SULLE SUPERFICI Capitolo Sedicesimo CENNO SULLE SUPERFICI 1. L A N O Z I O N E D I S U P E R F I C I E In tutto il Capitolo, chiameremo dominio un sottoinsieme di  2 che sia la chiusura di un aperto connesso. Sono tali,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

Calcolo integrale per funzioni di più variabili reali

Calcolo integrale per funzioni di più variabili reali CAPITOLO 4 Calcolo integrale per funzioni di più variabili reali La definizione di integrale definito per funzioni di una variabile reale è motivato dal problema del calcolo delle aree: si desidera calcolare

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21 Contenuto Integrali doppi. Teorema di Fubini Cambio di variabili: coordinate polari. Cambio di variabili: caso generale. Coordinate sferiche. Federico Lastaria. Analisi e Geometria 2. Integrali multipli.

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

Nel calcolo elementare esiste un sol tipo di integrale. Data una funzione f : R R ed un intervallo chiuso [a, b], I = R b. f (x ) dx èunnumeroreale,

Nel calcolo elementare esiste un sol tipo di integrale. Data una funzione f : R R ed un intervallo chiuso [a, b], I = R b. f (x ) dx èunnumeroreale, Capitolo 8 ntegrazione Nel calcolo elementare esiste un sol tipo di integrale. Data una funzione f : R R ed un intervallo chiuso [a, b], = R b f (x ) dx èunnumeroreale, a definito come il limite di somme

Dettagli

SUPERFICI REGOLARI E INTEGRALI DI SUPERFICIE

SUPERFICI REGOLARI E INTEGRALI DI SUPERFICIE E SUPERFICI REGOLARI E INTEGRALI DI SUPERFICIE (C. De Mitri) E1. Superfici regolari Definizione E1.1. Sia D un dominio internamente connesso di IR. Un applicazione φ : D IR 3 si dice superficie regolare

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

LP. Lavoro e potenziale

LP. Lavoro e potenziale Lavoro e potenziale LP. Lavoro e potenziale Forza In questa sezione dobbiamo introdurre un nuovo concetto che assumiamo come primitivo dalla fisica: è il concetto di forza. Ci occuperemo anzitutto di una

Dettagli

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com Analisi 2 - funzioni di più variabili Andrea Minetti - andrea.minetti@gmail.com January 28, 2011 Ciao a tutti, ecco i miei riassunti, ovviamente non posso garantire la correttezza (anzi garantisco la non

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da

ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da 1 Integrali su una curva regolare Sia C R N una curva regolare, ossia: (1) C é l immagine di una funzione P (t) definita in un intervallo [a, b] (qui preso chiuso e limitato), tipicamente chiuso e limitato,

Dettagli

Capitolo 4. Funzioni di Più Variabili: Primi Elementi. 4.1 Coordinate Cartesiane in Tre Dimensioni.

Capitolo 4. Funzioni di Più Variabili: Primi Elementi. 4.1 Coordinate Cartesiane in Tre Dimensioni. Capitolo 4 Funzioni di Più Variabili: Primi Elementi L analisi delle funzioni di una singola variabile è fatta sostanzialmente sulla retta R enelpianor. Questi sono gli ambienti naturali per lo studio

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Misura e integrazione Formulario

Misura e integrazione Formulario Misura e integrazione Formulario Integrale su rettangolo 1. 2. Teorema di riduzione per un rettangolo (Fubini) Per passare dal rettangolo ad un qualsiasi dominio si definisce una nuova funzione. Integrale

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Leggi di Newton ed esempi

Leggi di Newton ed esempi Leggi di Newton ed esempi 1 Leggi di Newton Lo spazio delle fasi. Il moto di un punto materiale nello spazio è descritto dalla dipendenza temporale delle sue grandezze cinematiche, posizione, velocità

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel Lezione 19: campi vettoriali e formule di Gauss-Green nel piano.

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 1

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 1 Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. Università di Padova - Lauree in Fisica ed Astronomia - A.A. 8/9 venerdì 8 maggio 9 Questi esercizi sono proposti come preparazione

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

CAMPI E LORO PROPRIETÀ

CAMPI E LORO PROPRIETÀ CMPI E LORO PROPRIETÀ 1.1 Introduzione ia una regione nello spazio in cui, in ogni suo punto, sia definita una grandezza g. La regione si dice allora soggetta ad un campo. Un campo può essere scalare,

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[ Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari Osservazione: Se ( x, ) \{(0,0)} esiste (evidentemente) una sola coppia ( ρ, θ) [ 0,[ tale che x. imane in tal modo

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Note di Analisi Matematica 2

Note di Analisi Matematica 2 Annamaria Mazzia Note di Analisi Matematica 2 Università degli Studi di Padova corso di laurea in Ingegneria Edile-Architettura a.a. 2012-2013 Questo lavoro è pubblicato sotto una Creative Commons Attribution-Noncommercial-No

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

FORME DIFFERENZIALI IN R 3 E INTEGRALI

FORME DIFFERENZIALI IN R 3 E INTEGRALI FORME DIFFERENZIALI IN R 3 E INTEGRALI CLADIO BONANNO Contents 1. Spazio duale di uno spazio vettoriale 1 1.1. Esercizi 3 2. Spazi tangente e cotangente 4 2.1. Esercizi 6 3. Le forme differenziali e i

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-4 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Capitolo 9. Superfici ed Integrazione. 9.1 Curve, Superfici e Dimensioni

Capitolo 9. Superfici ed Integrazione. 9.1 Curve, Superfici e Dimensioni Capitolo 9 uperfici ed Integrazione Il calcolo degli integrali curvilinei ci ha fatto familiarizzare con il concetto di parametrizzazione di curve nel piano xy e per estensione anche nello spazio tridimensionale.

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 203/ 204 Corsi di Analisi Matematica I (Proff A Villani e F Faraci) Prova d Esame del giorno 6 febbraio 204 Prima prova scritta (compito A) Non sono consentiti formulari, appunti, libri

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli