Scopo dell esperienza: verificare le leggi del pendolo e la validità dell approssimazione delle piccole oscillazioni.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scopo dell esperienza: verificare le leggi del pendolo e la validità dell approssimazione delle piccole oscillazioni."

Transcript

1 Moto di un pendoo, soggetto a smorzamento. Scopo de esperienza: verificare e eggi de pendoo e a vaidità de approssimazione dee piccoe osciazioni. Un pendoo sempice è costituito da una massa puntiforme sospesa ad un fio ideae, ovvero inestensibie e di massa trascurabie, fissato a atro estremo. Ciò equivae a dire che i punto materiae è vincoato a muoversi ungo una circonferenza posta su piano verticae, i cui centro è i punto di sospensione O e i raggio a unghezza de fio. L equazione de moto di un pendoo sempice, in mancanza di attrito e resistenza de aria, si ricava immediatamente daa a egge di Newton considerando i punto materiae, di massa m, soggetto aa forza gravitazionae e aa tensione de fio. Con riferimento aa figura di sinistra e ovvio significato dei simboi mg sin θ = ma = T mα ovvero d θ g = sinθ dt Si tratta di un equazione differenziae non ineare che non si può risovere mediante funzioni eementari. Tuttavia, se angoo di osciazione è piccoo ( * ) essa può essere sempificata utiizzando approssimazione sin θ θ : d θ g = θ = ω θ dt g dove si è definita a frequenza cicica ω =. Questa è equazione di un moto armonico, a cui souzione generae si può scrivere nea forma: θ ( t) = θ sin ( ω t + φ) dove θ rappresenta ampiezza ( angoo massimo raggiunto nee osciazioni) e φ a fase iniziae. π Ne imite di piccoe osciazioni questo pendoo ha periodo T = = π. Forse a proprietà ω g più importante dee piccoe osciazioni è che i periodo non dipende da ampiezza. O O θ mg senθ T m mg cosθ θ d mg senθ mg cosθ mg mg Fig. 1. Schema de pendoo sempice (sx) e de pendoo composto (dx).

2 Se si sospende un corpo rigido, vincoato a ruotare intorno ad un asse fisso passante per O (chiamato pendoo composto, per ragioni storiche), si deve considerare i momento dee forze rispetto a punto O. In assenza di attriti, questo è i momento dea forza peso mg, che si può pensare appicata ne centro di massa, a distanza d da punto di sospensione. Con a soita convenzione sui segni, equazione de moto si ricava da teorema de momento angoare, detto anche a egge di Newton per i moto rotatorio. I momento dee forze è τ = mgd sinθ, pertanto: mgd sin θ = Iα cioè mgd md α = sinθ = g sinθ I I I Se definiamo una unghezza effettiva eff =, ritroviamo equazione de pendoo sempice e, md eff I ne imite di piccoe osciazioni, i periodo vae T = π = π. g mdg Per grandi angoi di osciazione a souzione può essere cacoata numericamente. Si trova che i periodo dipende da ampiezza dee osciazioni (θ ) e si può scrivere convenientemente nea forma T = T f ( θ ), essendo T i periodo ne imite di piccoe osciazioni e f(θ ) una funzione che dipende soo da ampiezza e non dae atre proprietà de pendo. θ ( ) T/T θ ( ) T/T,1 1, 5 1,5,5 1, 55 1,61 1 1, 6 1,73 1, 65 1,87 3 1, 7 1,1 5 1, 75 1, , 8 1, ,4 85 1,158 1,8 9 1,18 5 1,1 95 1,5 3 1,17 1 1,3 35 1,4 15 1,6 4 1, , , ,33 5 1,5 1 1,373 T/T 1,4 1,35 1,3 1,5 1, 1,15 1,1 1,5 1, θ ( ) Fig.. Tabea dea funzione f(θ )=T/T e grafico dea stessa. Come si può vedere, i periodo è praticamente costante fino a 5, mentre per un ampiezza di 1 devia deo,% rispetto a T. In pratica, angoo si considera piccoo per θ<5 o, a più, θ<1. L isocronismo de pendoo è un approssimazione, tanto migiore quanto più piccoo è angoo di osciazione. Un pendoo reae è soggetto a smorzamento, dovuto a forze di attrito e resistenza de mezzo. Ne caso di resistenze puramente viscose, equazione de moto diviene Iα = mgd sin θ kω dove k è una costante opportuna. Definendo ω come sopra e b = k / I si può scrivere

3 d θ dθ = ω sinθ b dt dt Una caso moto interessante è queo di piccoe osciazioni con smorzamento deboe (b<ω ); a souzione ha aora a forma θ t = θ sin Ωt + φ e ( ) ( ) bt dove Ω = ω b. I vaore T = π è detto pseudoperiodo in quanto a funzione non è Ω veramente periodica ma smorzata. Anaisi dei dati. A. Misure con magnete ontano. Ideamente, si vorrebbe studiare i moto di un pendoo non smorzato, confrontando i periodo di osciazione misurato con queo cacoato. Purtroppo i pendoo utiizzato ha uno smorzamento non trascurabie, anche se siamo sempre nee condizioni di piccoo smorzamento ne senso tecnico spiegato sopra. Anche i confronto con i periodo cacoato non è sempice, non essendo noto i momento d inerzia de disco, de asta, e neppure a massa dea sfera di gomma. E però possibie studiare a variazione de periodo di osciazione in funzione de atezza, dato che o smorzamento è così piccoo che a singoa osciazione si può trattare come non smorzata ( Ω ω ). Lo scopo di questa parte de esperienza è misurare i periodo in funzione de ampiezza e confrontaro con a curva teorica riportata in tabea e ne grafico. L esperienza si divide in una parte preiminare ed una misura unga. La prima operazione consiste nea caibrazione de apparato di misura. Questa si può effettuare come segue: si misura i vaore costante V 1 (in Vot) con i pendoo in quiete e quindi si ruota i pendoo di 36, misurando i vaore costante nea nuova posizione (V ), sempre a pendoo fermo. La differenza fra i due vaori corrisponde ad un angoo di π radianti e quindi a costante di caibrazione angoo-votaggio sarà α = π V1 V. Nei primi due turni non si è eseguita questa caibrazione, quindi bisognerà ricavara dae atre misure, necessariamente più approssimativa. Anche chi ha fatta però deve prestare attenzione perché a quanto a differenza V 1 -V può variare anche parecchio ripetendo a procedura più vote. La seconda operazione consiste nea misura dee osciazioni in tre brevi intervai ( t <s), ad ampiezze di circa 9, 45 e 5-1, vaori impostati ad occhio. Per intervao di misura si scega un vaore da, a,5s. I dati di queste tre misure sono interpoati con a funzione A sin ( Bt + C) *exp( Dt) + E I vaori registrati sono ampiezza (A), frequenza cicica (B), coefficiente di attenuazione (D) e costante additiva (E). La costante E rappresenta o zero (dovrebbe avere o stesso vaore nee tre interpoazioni) e sarà utiizzata ne anaisi dee misure unghe. E importante confrontare questo vaore con queo misurato a pendoo fermo nea prima operazione (diciamo V 1 ). Se i vaori sono uguai, entro errore, a costante di caibrazione α dovrebbe essere corretta, atrimenti non è utiizzabie. A (da prendere in vaore assouto) rappresenta ampiezza iniziae (t=) dee osciazioni nei tre casi, misurata in Vot. Per trasformara in radianti basta motipicare per a costante di caibrazione α se questa è stata cacoata (ed i suo vaore è coerente), atrimenti si può utiizzare i vaore misurato a 9 come caibrazione: α = π A (in radianti) o α = 9 A in gradi. B rappresenta a frequenza cicica (Ω) e D i coefficiente di smorzamento (b). Verificare che D<<B. Ciò significa che Ω ω e quindi o pseudoperiodo è praticamente uguae a periodo che si misurerebbe senza attenuazione.

4 Per ognuna dee tre misure riportare i periodo ( π B ) e ampiezza centrae ( A* exp( D T / ) ) dove T è i tempo di misura (tipicamente 18s). Infine si esegue una misura unga (ameno 3 minuti, megio 5), a partire da circa 9 in modo da coprire un intervao di ampiezze da grandi a piccoi angoi. Anaisi dea misura unga. Innanzitutto bisogna importare i dati in formato EXCEL. Ciò si ottiene seezionando Dati daa barra degi strumenti e seguendo a traccia che si può facimente intuire. L unica difficotà può essere costituita da formato dei numeri: nei dati si usa a virgoa per separare e cifre decimai, come dovrebbe essere i caso nee versioni itaiane di EXCEL. Chi usa i punto può istruire EXCEL usando e opzioni avanzate. La prima operazione da fare è a sottrazione deo zero, in modo che e osciazioni risutino centrate intorno a vaore zero. Un grafico x-t può essere utie per mostrare che tutto è a posto. La seconda operazione è quea di estrarre periodo e ampiezza dee osciazioni. Non si chiede di cacoari tutti: basta seezionare una osciazione competa ogni s circa. I dati qui sotto fanno parte di una serie misurata: a prima coonna fornisce i tempo in secondi, a seconda è a ettura grezza de ampiezza, a terza è a stessa dopo a sottrazione de fondo (non caibrata). Come si vede, siamo in prossimità di un intersezione con asse dei tempi: i pendoo passa per a verticae (zero) in un istante compreso fra t=,1s e t=,16s. Per trovare istante preciso in cui θ= basta interpoare inearmente fra questi due istanti, come nea tabea qui sotto. L istante T 1 =,18s è stato cacoato digitando a funzione scritta in fianco nea casea coorata D17: A B C D 15,75 6,917 -, ,8 7,6381 -,53 17,85 8,633 -,18,861 18,9 8,889, ,95 8,1434,7468 = A17 + C17 *( A18 A16) /( C18 C16) Osserviamo che, ne caso seezionato, intersezione avviene in su ( ampiezza C è crescente); si cerca a successiva intersezione in su. Ciò avviene fra e casee 4 e 41; si riporta a formua precedente (con copia-incoa) nea casea D4: a formua è automaticamente trasformata come ne riquadro ed i nuovo istante di intersezione (T =,36s) è cacoato. 38 1,9 5,1191-1, ,95 6,866 -,75 4, 8,114 -,3148,36 41,5 8,791,16 4,1 8,461,5437 = A4 + C4 *( A41 A39) /( C41 C39) La differenza fra i due istanti è o pseudoperiodo T=(T -T 1 )=1,175s. I tempo medio corrispondente a osciazione è (T 1 +T )/. L ampiezza de osciazione, pe i periodo in questione, si ottiene come media fra i vaori de massimo e de minimo (in vaore assouto) compresi fra gi "zeri" T 1 e T appena cacoati. Essi si ricavano mediante interpoazione con una paraboa. Con e convenzioni di prima, i vaore de massimo, casea D3, è stato ottenuto con a formua scritta a fianco, vaida ne caso di intervai di tempo costanti.

5 A B C D 1 1,5 5,563 1,3396 1,1 3,141 1, ,15 1,1836 1,5559 1, , -,778 1, ,5 -,736 1,38 = C3 ( C4 C)^ /( C + C4 * C3) / 8 Copiando e incoando a formua, in corrispondenza de minimo, si ottiene i vaore -1,5435. L ampiezza media de osciazione è data daa semisomma dei vaori assouti dei due estremi: ( 1, ,5435) / = 1,55. Ci si sposta in avanti di circa secondi e si ripetono e operazioni, con opportuni copia-incoa, ottenendo anche qui pseudoperiodo (T), tempo medio (<t>) e ampiezza (θ)., e così via, ad intervai di circa secondi fino aa fine (si può scegiere un intervao minore, ma non maggiore). Si dispongano i dati così ricavati in una tabea. In questa tabea si inseriscono anche i vaori ricavati nee tre misure brevi (in questo caso abbiamo soo periodo e ampiezza). Accanto ae ampiezze grezze si cacoano anche e ampiezze normaizzate, cioè motipicate per i coefficiente α. Un grafico ampiezza- tempo medio, in scaa semiogaritmica, mette in evidenza attenuazione in funzione de tempo. Se attenuazione fosse esponenziae i punti starebbero su una retta; si osserva una deviazione da questo andamento per e ampiezze maggiori. Nea figura qui sotto, i dati misurati con i magnete vicino (punti bu) mostrano uno smorzamento maggiore ed hanno un andamento più "rettiineo" (cioè esponenziae), rispetto ai dati misurati co magnete ontano.,5 -, n(θ) -1-1,5 - -,5 <t> (s) Fig. Logaritmo de ampiezza in funzione de tempo. Sono incusi i dati con magnete ontano (punti ciamino) e vicino (bu). Un grafico pseudoperiodo-ampiezza (in gradi) mette in evidenza a variazione de periodo di osciazione con ampiezza. Esso sarà confrontato con a curva teorica fornita sopra. Per questo confronto è essenziae che a normaizzazione α sia corretta (normaizzazione orizzontae ) e che a curva teorica sia aggiustata ai vaori sperimentai (normaizzazione verticae), ovvero si devono motipicare i vaori in tabea (f(θ)) per i periodo de nostro pendoo misurato a piccoi angoi: T=T * f(θ). Per questo proposito bisogna che i vaori misurati raggiungano i imite asintotico T (cioè se ampiezza minima scende sotto i 5 o ameno sotto i 1 ).

6 Ne esempio qui riportato (un caso reae) purtroppo non si scende sotto i. Se angoo minimo dea misura non scende sotto i 1, ad es. se è, possiamo stimare i periodo per piccoi angoi come T = T ( )/ f ( ). In ta modo a curva teorica T f ( θ ) passa per i punto misurato a. 1,7 1,6 1,5 T (s) 1,4 1,3 1, 1, θ ( ) Anche a normaizzazione orizzontae (coefficiente α) è stata un po ritoccata per avere un accordo così buono, cosa praticamente inevitabie se si usa a normaizzazione a 9 fatta ad occhio. Non dovrebbe essere necessario se a normaizzazione è stata fatta ruotando i pendoo di 36, ma non è detto, perché in acuni strumenti sono stati evidenziati probemi di "consistenza" dei dati. Anaogamente non dovrebbe esserci bisogno di aggiustare a normaizzazione verticae (T ) se angoo minimo misurato scende sotto i 1. B. Misure con magnete vicino. Si ripetono esattamente e operazioni de caso precedente, savo eventuamente e misure brevi che erano state asciate facotative in questo caso. Se queste sono state eseguite, si controi se è ancora vaida a reazione D << B. Se o smorzamento è abbastanza grande a curva ampiezza-tempo dovrebbe essere esponenziae con buona approssimazione (o smorzamento esponenziae indotto da magnete copre gi atri effetti) e quindi i grafico in scaa semiogaritmica avrà un andamento rettiineo. Se non sono state fatte e misure brevi è possibie (facotativo) fare un fit esponenziae dei dati per ricavare i coefficiente di attenuazione medio da confrontare con i vaore Ω=π/T (T pseudoperiodo a piccoi angoi) per vedere se è moto minore o confrontabie con esso. La reazione comprende per e misure con magnete ontano: i vaori dei parametri ottenuti dai fit dee 3 misure brevi e verifica che D << B vaori de periodo e ampiezza "centrae" reativi ae 3 misure vaore dea costante di caibrazione α ricavata da'inversione de pendoo o, in mancanza di questa, daa misura a "9 " tabea di "tempo medio", pseudoperiodo, ampiezza presi ogni s (a massimo). grafico ampiezza - "tempo medio" in scaa semiogaritmica grafico pseudoperiodo - ampiezza, insieme aa curva teorica opportunamente normaizzata. Se e normaizzazioni sono corrette dovrebbero sovrapporsi. Stessa cosa con i magnete vicino, savo eventuamente e misure brevi, che erano facotatitive.

( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la

( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la . Limiti di una funzione LIMITI DI UNA FUNZIONE Per ottenere un informazione competa su di una funzione occorrerebbe cacoare tutti i vaori dea funzione per ogni vaore di, ma ciò è impossibie perché tai

Dettagli

La scala logaritmica

La scala logaritmica La scaa ogaritmica Obiettivi utiizzare coordinate ogaritmiche e semiogaritmiche 1. COORDINATE LOGARITMICHE Se un numero k eá maggiore di 10, i suo ogaritmo in base 10 eá moto piuá piccoo de numero stesso:

Dettagli

LE POTENZE DEI NUMERI

LE POTENZE DEI NUMERI ARITMETICA LE POTENZE DEI NUMERI PREREQUISITI conoscere e proprietaá dee quattro operazioni svogere cacoi a mente ed in coonna con e quattro operazioni risovere espressioni con e quattro operazioni distinguere

Dettagli

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA http://www.itimarconi.ct.it/sezioni/didatticaonine/edie/ostruzioni/linea%0eastic... Pagina di 06/0/006 L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTIA. BREVI RIHIAMI SULLA TEORIA DELLE TRAVI INFLESSE Si

Dettagli

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo Dott. Ing aoo Serafini Cic per tutti gi appunti (AUTOAZIONE TRATTAENTI TERICI ACCIAIO SCIENZA dee COSTRUZIONI ) e-mai per suggerimenti Due incognite ipertstatiche con cedimento eastico ineare su vincoo

Dettagli

Esercitazione 4 - Forze distribuite

Esercitazione 4 - Forze distribuite Università degi Studi di ergamo orso di Laurea in Ingegneria essie orso di Eementi di eccanica Esercitazione 4 - Forze distribuite Esercizio n. acoare e reazioni vincoari e e azioni interne per asta di

Dettagli

La statistica descrittiva

La statistica descrittiva MATEMATICAperTUTTI Dee seguenti indagine statistiche individua a popoazione, i carattere oggetto di studio e e possibii modaità di tae carattere. 1 ESERCIZIO SVOLTO Indagine: utiizzo de tempo ibero da

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

x -x-2 =3 x 2 x-2 lim

x -x-2 =3 x 2 x-2 lim G Limiti G Introduzione Si è visto, cacoando i dominio dee funzioni, che per certi vaori dea non è possibie cacoare i vaore dea Cò che ci si propone in questo capitoo è capire come si comporta a assegnando

Dettagli

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili.

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili. TEMI ESAME Esercizio 1 Tema d esame de 1/09/1998 Si consideri a struttura iustrata in figura, con EJ costante. I vaore de azione concentrata F è pari a: Figura 1.1 1 F p 4 La struttura iustrata in figura

Dettagli

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2 ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. 1) Risovere e seguenti equivaenze CLASSE 1TGC2 1 5 m = mm 6 44 km 2 = m 2 2 34,5 dam 2 = dm 2 7 9 cm 3 = m 3 3 5 cm 2 = m 2

Dettagli

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili Esempio di risouzione di struttura iperstatica co metodo misto ompemento aa ezione 47/50: Teai a nodi mobii La struttura in figura è soggetta ad un cedimento verticae dea cerniera. Tutto i teaio ha sezione

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Comportamento meccanico dei materiali Unità 4: Cinematica ed equilibrio del corpo rigido

Comportamento meccanico dei materiali Unità 4: Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiai Unità 4: inematica ed equiibrio de corpo rigido Definizioni Gradi di ibertà Numero minimo di coordinate con e quai è possibie definire in modo non ambiguo a posizione

Dettagli

1. MISURIAMO GLI ANGOLI CON GEOGEBRA

1. MISURIAMO GLI ANGOLI CON GEOGEBRA . MISURIAMO GLI ANGOLI CON GEOGEBRA Nascondiamo gi assi cartesiani in modo da usare a finestra grafica come piano eucideo. Disegniamo un punto C che rappresenti i centro di una circonferenza e creiamo

Dettagli

Esercitazione 7 del corso di Statistica 2

Esercitazione 7 del corso di Statistica 2 Esercitazione 7 de corso di Statistica Prof. Domenico Vistocco Dott.ssa Paoa Costantini 9 Giugno 008 Esercizio La distribuzione dei pesi dei pesi pacchetti per confezionare per confezionare e caramee,

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Meccanica dei Manipoatori Corso di Robotica Prof. Davide Brugai Università degi Studi di Bergamo Definizione di robot industriae Un robot industriae è un manipoatore mutifunzionae riprogrammabie, comandato

Dettagli

Le equazioni e le disequazioni lineari

Le equazioni e le disequazioni lineari MATEMATICAperTUTTI Le equazioni e e disequazioni ineari Le equazioni ineari ESERCIZIO SVOLTO Le equazioni. Chiamiamo equazione ad una incognita un uguagianza fra due espressioni agebriche di cui ameno

Dettagli

3. elementi di linee elettriche: LINEE R-L

3. elementi di linee elettriche: LINEE R-L . eementi di inee eettriche: LINEE R-L cacoo eettrico dee inee R-L cacoo di progetto e verifica criterio dea perdita di potenza ammissibie criterio dea temperatura ammissibie criterio dea caduta di tensione

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale orso di Laurea in Ingegneria Meccanica nno ccadeico 2012/2013 Meccanica azionae Noe... N. Matricoa... ncona, 11 gennaio 2013 1. Un punto P di assa si uove senza attrito su una guida verticae. Una oa di

Dettagli

I materiali. I materiali. Introduzione al corso. Tecnologia di produzione I materiali La misura della durezza. Le prove meccaniche distruttive

I materiali. I materiali. Introduzione al corso. Tecnologia di produzione I materiali La misura della durezza. Le prove meccaniche distruttive I materiai I materiai Introduzione a corso Tecnoogia di produzione I materiai La misura dea durezza Prove non distruttive La meccanica dei materiai 2 26 Poitecnico di Torino 1 Obiettivi dea ezione Conoscere

Dettagli

Richiami sulle oscillazioni smorzate

Richiami sulle oscillazioni smorzate Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

METODO DEGLI SPOSTAMENTI

METODO DEGLI SPOSTAMENTI Corso / MTODO DGLI SPOSTAMNTI.. Introuzione ee conizioni a contorno e souzione Per trovare gi spostamenti incogniti ei noi bisogna introurre nea reazione matriciae i equiibrio e conizioni a contorno, espresse

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE M. G. USTO ROTZIONI DEGLI ESTREMI DI UN TRVE PRISMTIC PPOGGIT LLE ESTREMITÁ E SOGGETT D UN CRICO VERTICLE CSO DEI CRICHI TRINGOLRE, UNIFORME E CONCENTRTO mgbstudio.net PGIN INTENZIONLMENTE VUOT SOMMRIO

Dettagli

IL CALCOLO DEI LIMITI. Le operazioni sui limiti Le forme indeterminate le funzioni continue Gli asintoti Il grafico probabile di una funzione

IL CALCOLO DEI LIMITI. Le operazioni sui limiti Le forme indeterminate le funzioni continue Gli asintoti Il grafico probabile di una funzione IL CALCOLO DEI LIMITI Le operazioni sui imiti Le orme indeterminate e unzioni continue Gi asintoti I graico probabie di una unzione Pro. Giovanni Ianne Pro Giovanni Ianne 1/19 LE OPERAZIONI SUI LIMITI

Dettagli

1. LA PARABOLA CON GEOGEBRA

1. LA PARABOLA CON GEOGEBRA 1. LA PARABOLA CON GEOGEBRA Dopo aver avviato i programma, chiudiamo a Vista Agebra, togiamo gi assi cartesiani e a grigia da quea grafica in modo da avorare iniziamente ne piano eucideo. Affrontiamo poi

Dettagli

La nuova norma europea sui blocchi in laterizio da solaio: parte I Vincenzo Bacco

La nuova norma europea sui blocchi in laterizio da solaio: parte I Vincenzo Bacco a nuova norma europea sui bocci in aterizio da soaio: parte I Vincenzo Bacco a UNI EN 15037-3 può già essere appicata dao scorso 1 dicembre 2011 e per un intero anno avrà vaenza di norma voontaria. I produttori,

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 3 DIAGRAMMA DELLE SOLLECITAZIONI INTERNE

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 3 DIAGRAMMA DELLE SOLLECITAZIONI INTERNE Istituto Professionae Statae per 'Industria e 'rtigianato "L.. berti" Rimini nno Scoastico 009/010 orso di Meccanica, Macchine e Impianti Termici PITOLO 3 DIGRMM DELLE SOLLEITZIONI INTERNE Prof. Matteo

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

7. Travi appoggiate: metodo generale

7. Travi appoggiate: metodo generale 7. Travi aoggiate: metodo generae Se si riesce a trasformare a trave aoggiata in una mensoa, e sue deformazioni si ossono cacoare con gi stessi criteri de aragrafo recedente. Deve trattarsi naturamente

Dettagli

Grafici di particolari funzioni lineari

Grafici di particolari funzioni lineari A Grafici di particoari funzioni ineari Vogiamo tracciare i grafico dea funzione y ˆ jxj. x quando x 0 Sappiamo che jxj significa x quando x < 0 Possiamo aora riscrivere 'equazione di questa funzione in

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

III esperimento: determinazione del momento d inerzia

III esperimento: determinazione del momento d inerzia III esperimento: determinazione del momento d inerzia Consideriamo un corpo esteso (vedi figura seguente) che possa ruotare attorno ad un asse fisso passante per il punto di sospensione PS; si immagini

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Effetto di carichi distribuiti

Effetto di carichi distribuiti Effetto di carichi distribuiti In acune appicazioni non si può più considerare carichi appicati mediante forze concentrate per a determinazione dee azioni interne. Si pensi a peso proprio (soai, bracci

Dettagli

Le acque sotterranee. Tipi di acque nei terreni

Le acque sotterranee. Tipi di acque nei terreni Tipi di acque nei terreni L contenuta in un terreno può essere cassificata in modo diverso a seconda de egame esistente con i granui di terreno. Acqua di ritenuta E che aderisce ai grani di terreno, non

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

CONOSCENZE 1. il concetto di parallelismo e. e perpendicolari. 2. la proiezione di un segmento

CONOSCENZE 1. il concetto di parallelismo e. e perpendicolari. 2. la proiezione di un segmento GEOMETRIA PREREQUISITI conoscere e caratteristiche de sistema decimae conoscere e proprietaá dee quattro operazioni e operare con esse operare con e misure angoari conoscere gi enti dea geometria e e oro

Dettagli

Organi di collegamento

Organi di collegamento Organi di coegamento Linguette Ciavette Aeri scanaati Organi di coegamento - Carmine apoi pag. 1 di 10 LIGUETTA Per inguetta si intende un organo meccanico caettato in opportune cave degi aeri ed utiizzato

Dettagli

Nomenclatura e forme degli archi

Nomenclatura e forme degli archi Università degi Studi di Messina Facotà di Ingegneria A.A. 006/007 Statica e Sismica dee Costruzioni Murarie Docente: Ing. Aessandro Pameri Lezione n. 5: L Arco Funicoare Nomencatura e forme degi archi

Dettagli

i(t) + v(t) S + + R C

i(t) + v(t) S + + R C 3 ANALISI DI CIRCUITI NEL DOMINIO DEL TEMPO 32 3 Anaisi di circuiti ne dominio de tempo (utimo aggiornamento: 9 Marzo 2001) In questo capitoo si considerano circuiti in cui e grandezze eettriche variano

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Esperienza Moti Rotatori

Esperienza Moti Rotatori Esperienza Moti Rotatori Obiettivo: Misura Momento di Inerzia di solidi Verifica della legge di Steiner Verifica della legge di conservazione del momento angolare Apparato Sperimentale Sito Corso Manuale

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Lezione 4. Meccanica del punto materiale Dinamica

Lezione 4. Meccanica del punto materiale Dinamica Lezione 4 Meccanica del punto materiale Dinamica Forze di attrito Se si misura sperimentalmente la legge del moto di un corpo che cade liberamente nell atmosfera si verifica il moto che non e esattamente

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

C è in realtà un quarto sistema, meno utilizzato, che è quello del cavo.

C è in realtà un quarto sistema, meno utilizzato, che è quello del cavo. 0c - Principi costruttivi degi edifici Sua base di quanto appena detto, e interazioni tra gi eementi costruttivi (o strutturai) degi edifici portano a distinguere tre diversi principi statico-costruttivi,

Dettagli

MP. Moti rigidi piani

MP. Moti rigidi piani MP. Moti rigidi piani Quanto abbiamo visto a proposito dei moti rigidi e di moti relativi ci consente di trattare un esempio notevole di moto rigido come il moto rigido piano. Un moto rigido si dice piano

Dettagli

Il Tetraedro regolare

Il Tetraedro regolare I Tetraedro regoare E i soido che ha per facce 4 triangoi equiateri, (F = 4) Ha 6 spigoi (S = 6) e 4 vertici (V = 4) I suo sviuppo è i seguente: Chiuso diventa: Le proiezioni possibii sono: I suoi assi

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Equilibrio statico sul piano inclinato

Equilibrio statico sul piano inclinato Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 1 Dicembre 007 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Lezione del Corso di Esercitazioni di Laboratorio di Meccanica, Roma, 5 Maggio, 2014 Roberto Bonciani 1, Diparto di Fisica dell

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Le equazioni di alcune superfici dello spazio

Le equazioni di alcune superfici dello spazio A Le equazioni di acune suerfici deo sazio L equazione di una suerficie ciindrica In geometria anaitica si dice suerficie ciindrica una quaunque suerficie ce a come direttrice una curva aartenente ad un

Dettagli

Misure di velocità con la guidovia a cuscino d aria (1)

Misure di velocità con la guidovia a cuscino d aria (1) Misure di velocità con la guidovia a cuscino d aria (1) Obiettivo: Riprodurre un moto con velocità costante utilizzando la guidovia a cuscino d aria. Ricavare la tabella oraria e il grafico orario (grafico

Dettagli

Studio dei vincoli di un solaio

Studio dei vincoli di un solaio Studio dei vincoi di un soaio ttraverso gi schemi statici per un determinato soaio, vengono definiti i gradi di vincoo per a vautazioni dee caratteristiche dee soecitazioni, agenti sua struttura. Tai vautazioni

Dettagli

I grafici derivati e la periodicità

I grafici derivati e la periodicità A I grafici derivati e a periodicità A partire dai grafici dee funzioni goniometriche fondamentai possiamo costruire queo di atre funzioni appicando opportune isometrie. Di seguito vediamo acuni esempi.

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Il Principio dei Lavori Virtuali e le sue applicazioni

Il Principio dei Lavori Virtuali e le sue applicazioni I T O L O 12 I rincipio dei Lavori Virtuai e e sue appicazioni di Giuiano ugusti e aoo Maria Mariano I rincipio dei Lavori Virtuai appassiona da moti secoi gi studiosi di Meccanica. Le figure sopra riportate

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 1/13 FM1 - Fisica Matematica I Seconda Prova di Esonero [14-1-13] SOLUZIONI Esercizio 1 (a) La coordinata del centro di massa è data da X cm = 1 (x 1 + x

Dettagli

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II Risouzione di travature reticoari iperstatiche co metodo dee forze ompemento aa ezione 3/50: I metodo dee forze II sercizio. er a travatura reticoare sotto riportata, determinare gi sforzo nee aste che

Dettagli

Circuito RC con d.d.p. sinusoidale

Circuito RC con d.d.p. sinusoidale Circuito C con d.d.p. sinusoidale Un circuito C-serie ha la seguente configurazione: G è la resistenza interna del generatore. Misura dello sfasamento della tensione ai capi del condensatore rispetto alla

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

ATTRITO VISCOSO NEI FLUIDI

ATTRITO VISCOSO NEI FLUIDI ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in

Dettagli

ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE

ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE PROBLEMA DELLA LINEA ELASTICA INSTABILITA DELLA TRAVE A CARICO DI PUNTA (PROBLEMA BUCKLING O DI EULERO) A cura di ing. Andrea Spezzaneve Ph.D. Mechanica Engineer

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Le Condizioni per l Equilibrio

Le Condizioni per l Equilibrio Le Condizioni per Equiibrio La Statica studia e condizioni di equiibrio dei corpi ovvero e eggi cui azioni e reazioni devono soddisfare affinché aa struttura sia garantita inamovibiità. Le strutture, soggette

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio 3 GEMETRI Lunghezza dea circonferenza e area de cerchio Esercizi suppementari di verifica Esercizio 1 Metti una crocetta su vero (V) o faso (F) accanto ad ogni formua reativa aa unghezza dea circonferenza

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

Esercizi- Risposta in frequenza

Esercizi- Risposta in frequenza esercizi 6, 1 Esercizi- Risposta in frequenza Diagrammi di Nyquist Data una funzione di trasferimento: Vogliamo ottenere la sua rappresentazione nel piano complesso al variare della frequenza. curva parametrizzata

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

Cenni sulle travi iperstatiche

Cenni sulle travi iperstatiche pprofondimento Cenni sue travi iperstatiche Pidatea, errari ggradi, Pidatea, Corso di meccanica, macchine ed energia Zanichei 01 1 Generaità Ne primo voume de testo abbiamo trattato argomento dee reazioni

Dettagli

LEZIONE 12 - RESISTENZA DEI MATERIALI 1 ( acciaio per fili ortodontici, ossa, materiali per protesi)

LEZIONE 12 - RESISTENZA DEI MATERIALI 1 ( acciaio per fili ortodontici, ossa, materiali per protesi) LEZIONE 12 - ESISTENZA DEI MATEIALI 1 ( acciaio per fii ortodontici, ossa, materiai per protesi) La prova di trazione/compressione consiste ne misurare e deformazioni in un provino di materiae sottoposto

Dettagli

Theory Italiano (Italy) Prima di iniziare questo problema, leggi le istruzioni di carattere generale fornite a parte.

Theory Italiano (Italy) Prima di iniziare questo problema, leggi le istruzioni di carattere generale fornite a parte. Q1-1 Due problemi di Meccanica (10 punti) Prima di iniziare questo problema, leggi le istruzioni di carattere generale fornite a parte. Parte A. Il disco nascosto (3.5 punti) i consideri un disco solido

Dettagli

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale 4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di un compressore assiale. Con riferimento alla

Dettagli

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013 Esperienza 1/3: viscosità Università di Parma della glicerina a.a. 2012/2013 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Coefficiente di viscosità La viscosità è quella grandezza fisica che ci permette

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata) Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME INILUPPO DI OLO Una volta diagrammate le curve delle potenze disponibili e necessarie, dobbiamo ora usarle per determinare le prestazioni fondamentali del velivolo: tali prestazioni andranno a generare

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 UNIVESITA DEL SANNIO COSO DI FISICA 1 ESECIZI Dinamica dei corpi rigidi 1 La molecola di ossigeno ha una massa di 5,3 1-6 Kg ed un momento di inerzia di 1,94 1-46 Kg m rispetto ad un asse passante per

Dettagli