ARGOMENTI NECESSARI DI ANALISI MATEMATICA I

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ARGOMENTI NECESSARI DI ANALISI MATEMATICA I"

Transcript

1 0.SIMBOLOGIA ARGOMENTI NECESSARI DI ANALISI MATEMATICA I t (tau) (x; y.z) = teorema a pagina x; numero y punto z. d (delta) (x; y.z) = dimostrazione del teorema a pagina x; numero y punto z. l (lambda) (x) = definizione a pagina x. a (alfa) (x) = assioma a pagina x. p (pi) (x; y.z) = proposizione pagina x; numero y punto z. c (chi) (x; y.z) = corollario pagina x; numero y punto z. 1.INSIEMI E NUMERI l Minimo: Se esiste un elemento a di A che è minore di ogni altro elemento di A, a si dice il minimo di A e si scrive a=min A. l Massimo: Se esiste un elemento b di B che è maggiore di ogni altro elemento di B, b si dice il massimo di B e si scrive b=max B. l Estremo inferiore: L estremo inferiore di un insieme A sottoinsieme R è il più grande dei minoranti di A (se esiste). l Estremo superiore: L estremo superiore di un insieme A sottoinsieme R è il più piccolo dei maggioranti di A (se esiste). t (27; 5.3) Relazione fra minimo ed estremo inferiore: Se A sottoinsieme R ha minimo a, allora a è anche estremo inferiore di A. Viceversa, se A ha estremo inferiore a, e a appartiene ad A, allora a è anche il minimo di A. t (27; 5.3) Relazione fra massimo ed estremo superiore: Se B sottoinsieme R ha massimo b, allora b è anche estremo superiore di B. Viceversa, se B ha estremo superiore b, e b appartiene ad B, allora b è anche il massimo di B. t (28; 5.5) Caratterizzazione dell estremo superiore e inferiore: Sia A un sottoinsieme di R. Un numero a appartenente ad R coincide con sup A se e soltanto se: x è minore o uguale ad a qualunque sia x appartenete ad A; per ogni a primo appartenente ad R tale che a primo minore di a, deve esistere un x appartenente ad A per cui a primo minore di x. Analogamente, un numero b appartenente ad A coincide con inf A se e soltanto se: b minore o uguale ad x, qualunque sia x appartenente ad A; per ogni b primo appartenente ad R tale che b minore di b primo, deve esistere un x appartenente ad A per cui x minore di b primo. a (34) Proprietà di completezza: Sia A un sottoinsieme non vuoto di R limitato superiormente. Allora esiste l estremo superiore di A. Sostituendo per l insieme A l insieme A primo definito come {x appartenete ad R: -x appartenente ad A} (ottenuto ribaltando A rispetto all origine), si deduce che un sottoinsieme non vuoto e limitato inferiormente ha estremo inferiore. In particolare un insieme limitato ha estremo inferiore e superiore. t (34; 7.2) Proprietà delle classi contigue e separate: Se A e B sono separati e contigui, esiste un unico elemento x appartenente ad R che separi A da B, cioè tale che risulti a minore uguale ad x minore uguale a b per ogni a appartenente ad A e b appartenente a B. t (35; 7.3) Proprietà degli intervalli incapsulati: Se I zero, I uno, ecc, I enne, ecc, sono intervalli chiusi e limitati incapsulati, esiste almeno un elemento x comune a tutti gli intervalli. t (37; 8.3) Densità di Q in R: L insieme Q dei numeri razionali è denso in R. p (40; 8.5) Allineamenti decimali: Ogni numero reale ha almeno un allineamento decimale e ogni allineamento decimale individua un numero reale. Due allineamenti decimali diversi individuano lo stesso numero reale se e soltanto se uno di essi ha periodo 9 e l atro si ottiene da esso eliminando il periodo e aumentando di 1 la cifra immediatamente precedente. t (42; 9.2) Principio di induzione: Sia P di enne un predicato la cui variabile n è un numero naturale. Si supponga che: P di zero è vera; se per un dato n è vero P di enne, allora è vera anche P di enne più 1. Allora P di enne è vera per ogni enne appartenente ad N. t (46; 10.2) Formula del binomio di Newton: Per ogni enne appartenente ad N vale l identità: (a+b) elevato alla enne è uguale = (enne su zero) per a alla (enne) + (enne su 1) per a alla (enne - 1 ) b + ecc + (enne su kappa) per a alla (enne kappa) b alla (kappa) + ecc + (enne su enne 1) per a per b alla (enne 1) + (enne su enne) per b alla (enne). t (49; 11.1) Esistenza della radice n-esima di un numero reale positivo: Dati comunque un intero enne maggiore o uguale a 2 e un numero reale alfa maggiore di 0, esiste un unico numero reale t maggiore di 0 tale che t alla (enne) = ad alfa. c (49; 11.4) Densità degli irrazionale in R: L insieme dei numeri irrazionali Z è denso in R. Pagina 1 di 9

2 2.RELAZIONI E FUNZIONI d (53) Prodotto cartesiano di due insiemi: Dati due insiemi A e B, il prodotto cartesiano AxB è, per definizione, l insieme di tutte le coppie ordinate (a,b) in cui la prima componente a è un elemento di A e la seconda componente b è un elemento di B. d (54) Il Piano cartesiano: Un sistema di riferimento cartesiano su un piano consente di rappresentare i punti del piano mediante coppie ordinate di numeri reali. Per far ciò si fissano due rette orientate intersecantesi in un punto O, ciascuna dotata di un suo riferimento cartesiano avente origine in O. Esse vengono dette assi coordinati. l (63) Definizione di funzione: Siano A e B due insiemi non vuoti. Una funzione da A in B è definita dall assegnazione di un sottoinsieme f di A cartesiano B che soddisfi la proprietà: per ogni a appartenente ad A esiste uno ed un solo b appartenente a B tale che la coppia (a,b) appartenga ad f. Gli insiemi f, A, B si chiamano rispettivamente il grafico il dominio e il codominio della funzione. Si dice anche che la funzione e definita su A ed è a valori in B. l (63; 6.11) Suriettività: se Immagine di f è uguale a B si dice che f è suriettiva, o che è su tutto B. Oppure: dato comunque b nel codominio, la retta orizzontale di equazione y = b interseca il grafico f in almeno un punto. l (63; 6.12) Iniettività: Una funzione da A in B si dice iniettiva, o uno a uno, se dati due elementi distinti a e a primo in A, si ha: f di a diversa da f di a primo. Oppure: due punti distinti del grafico non possono avere la stessa ordinata; ogni retta orizzontale y = b interseca il grafico in al più un punto. l (64; 6.13) Biiettività: Una funzione da A in B si dice biiettiva se è iniettiva e suriettiva. Si dice anche che f stabilisce una corrispondenza biunivoca tra gli elementi di A e quelli di B. l (69-70) Prodotto di composizione: Si supponga di avere due funzioni f da A in B e g da B in C. Fissato un elemento a appartenente ad A, applicando la funzione f si ottiene l elemento (b = f di a ) appartenente a B. A tale elemento si può allora applicare la funzione g, ottenendo l elemento c = g di b = f di g di a. La funzione definita da A in C è detta prodotto di composizione. l (72) Funzione inversa: La funzione inversa di una funzione f è definita alla seguente legge: a ogni elemento b appartenente a B facciamo corrispondere quell unico elemento a appartenente ad A tale che f di a = b. l (79-80; 9.2) Funzioni crescenti e decrescenti, monotonia: Una funzione si dice crescente se per ogni x uno e x due appartenenti al dominio di f, e x uno minore di x due, f di x uno è minore o uguale di f di x due. Si dice che è decrescente se per ogni x uno e x due appartenenti al dominio di f, e x uno minore di x due, f di x uno è maggiore o uguale di f di x due. (Per la definizione di strettamente cresc. o descresc. si usa la simbologia del minore o maggiore stretto). Le funzioni crescenti e quelle decrescenti si dicono in generale monotone (strettamente monotone). p (80; 9.3) Iniettività delle funzioni strettamente monotone: Se f è strettamente monotona, allora è iniettiva. l (81; 9.4) Funzioni limitate: Sia A un sottoinsieme di R, e sia f una funzione reale di variabile reale, tale che A sia contenuto nel dominio di f. Si dice che f è limitata su A se esistono due numeri reali m ed m primo tali che: m minore o uguale ad f di x minore o uguale ad m primo, per ogni x appartenente ad A. l (81; 9.5) Funzioni pari e dispari: Una funzione f si dice pari se il suo dominio è simmetrico rispetto all origine (cioè x appartiene al dominio di f allora x appartiene al dominio di f) e inoltre soddisfa la proprietà: f di x = f di x. Una funzione si dice dispari se il suo dominio è simmetrico rispetto all origine e inoltre soddisfa la proprietà: f di x=-f di x. 3.CONTINUITA E LIMITI l (101; 1.1) Intorno: Sia x zero un elemento di R e sia r un numero positivo. Si chiama intorno di centro x zero e raggio r l intervallo aperto (x zero r, x zero + r). Oppure: l intorno di centro x zero e raggio r è costituito dai punti aventi distanza da x zero minore di r. l (102; 1.2) Punto interno: Sia A un sottoinsieme di R. Un elemento x zero appartenente ad A si dice interno ad A se esiste un intorno di x zero interamente contenuto in A. l (102; 1.3) Insieme aperto: Un sottoinsieme A di R si dice aperto se ogni punto di A è interno ad A. l (102; 1.4) Insieme chiuso: Un sottoinsieme di R si dice chiuso se il suo complementare è aperto. l (102; 1.5) Punto aderente: Un punto x zero appartenente ad R si dice aderente ad A se ogni intorno I di x zero ha intersezione non vuota con A. l (103; 1.9) Punto isolato: Un punto x zero appartenente ad A si dice un punto isolato di A se esiste un intorno I di x zero tale che A intersezione I contenga il solo elemento x zero. l (103; 1.10) Punto di accumulazione: Un punto x zero si dice un punto di accumulazione per A se ogni intorno di x zero contiene punti di A distinti da x zero stesso. l (105; 2.1) Continuità in un punto: Sia f una funzione reale di variabile reale, e sia x zero appartenente al dominio di f. Si dice che f è continua in x zero se: per ogni epsilon maggiore di zero esiste un delta maggiore di zero tale che valore assoluto di (x x zero) minore di delta e x appartenga al dominio di f, tale che valore assoluto di (f di x f di x zero) minore di epsilon. p (109; 2.6) Continuità della radice: La funzione f di x = radice n-esima di (x) è continua su dominio = [0, + infinito). Pagina 2 di 9

3 p (111; 2.8) Continuità nei punti isolati: Sia x zero un punto isolato di A di una funzione f. Allora f è continua in x zero. t (113; 3.1) Permanenza del segno: Sia f una funzione continua in x zero e si supponga f di x zero maggiore di 0. Dato un numero nu tale che 0 minore o uguale a nu minore di f di x zero, esiste un intorno (x zero delta, x zero + delta) di x zero tale che f di x minore di nu, in tutti i punti x appartenente al dominio di f intersezione (x zero delta, x zero + delta). Analogamente, se f di x zero minore di 0, dato un numero nu tale che f di x zero minore di nu minore o uguale a 0, esiste un intorno (x zero - delta, x zero + delta) di x zero tale che f di x minore di nu in tutti i punti x appartenenti al dominio di f intersezione (x zero delta, x zero + delta). d (113; 3.1) Permanenza del segno: Consideriamo il caso f di x zero maggiore di 0 e prendiamo epsilon = f di (x zero) nu. Essendo f continua in x zero, esiste delta maggiore di 0 tale che: x appartiene al dominio di f intersezione (x zero delta, x zero + delta) allora f di (x zero) - epsilon minore di f di x minore di f di (x zero) + epsilon. In particolare, per tali valori di x si avrà f di x maggiore di f di (x zero) epsilon = nu, come richiesto. In modo analogo si procede nel caso in cui f di x zero minore di 0. t (114; 3.2) Limitatezza locale: Sia f una funzione continua in x zero. Esiste allora un intorno (x zero delta, x zero + delta) di x zero tale che f di x sia limitata su dominio di f intersezione (x zero delta, x zero + delta). d (114; 3.2) Limitatezza locale: Si fissi per esempio epsilon = 1. Essendo f continua in x zero, esiste un delta maggiore di 0 tale che: x appartiene al dominio di f intersezione (x zero delta, x zero + delta) allora f di (x zero) 1 minore di f di x minore di f di (x zero) + 1. Dunque i valori f di (x zero) 1 ed f di (x zero) + 1 costituiscono rispettivamente una limitazione inferiore e superiore per la restrizione di f a dominio di f intersezione (x zero delta, x zero + delta). l (121; 4.1) Limite: Sia f di x una funzione reale di variabile reale, e sia x zero un punto di accumulazione di dominio di f. Si dice limite di f di x per x che tende ad x zero un numero l che soddisfi la seguente condizione: per ogni epsilon maggiore di 0 esiste un delta maggiore di 0 tale che: 0 minore di valore assoluto di (x x zero) minore di delta e x appartenente a dominio di f, allora valore assoluto di (f di (x) l) minore di epsilon. t (123; 4.3) Unicità del limite: Sia x zero un punto di accumulazione per il dominio di f. Se l uno e l due soddisfano entrambi la condizione di limite, allora l uno = l due. d (123; 4.3) Unicità del limite: Supponiamo che sia l uno diverso da l due e poniamo epsilon = valore assoluto (l uno l due) fratto 3. Allora gli intervalli (l uno epsilon, l uno + epsilon) e (l due epsilon, l due + epsilon) sono disgiunti. Poiché l uno soddisfa la condizione di limite, esiste un delta uno maggiore di 0 tale che: 0 minore di valore assoluto di (x x zero) minore di delta uno, x appartenente al dominio di f, valore assoluto di (f di (x) l uno) minore di epsilon. Analogamente, esiste un delta due tale che: 0 minore di valore assoluto di (x x zero) minore di delta due, x appartenente al dominio di f, valore assoluto di (f di (x) l due) minore di epsilon. Sia delta il minimo tra delta uno e delta due. Poiché x zero è di accumulazione per dominio di f, l intersezione del dominio di f con (x zero delta, x zero + delta) contiene almeno un punto x distinto da x zero. Per un tale punto x si hanno entrambe le disuguaglianze: valore assoluto di (f di (x) l uno) minore di epsilon e valore assoluto di (f di (x) l due) minore di epsilon, ossia f di x appartiene a (l uno epsilon, l uno + epsilon) ed f di x appartiene a (l due epsilon, l due + epsilon). Ma questi due intervalli sono disgiunti, da cui l assurdo. l (124; 5.1) Limite sinistro e destro: Sia x zero un punto di accumulazione per dominio di f intersezione (- infinito, x zero). Si dice che l è il limite destro di f di x per x che tende ad x zero se: per ogni epsilon maggiore di 0 esiste un delta maggiore di 0 tale che: x zero delta minore di x minore di x zero e x appartiene al dominio di f, e valore assoluto di (f di (x) l) minore di epsilon. Analogamente, sia x zero un punto di accumulazione per dominio di f intersezione (x zero, + infinito). Si dice che l è il limite destro di f di x per x che tende ad x zero se: per ogni epsilon maggiore di 0 esiste un delta maggiore di 0 tale che x zero minore di x minore di x zero + delta e x appartiene al dominio di f, e valore assoluto di ( f di (x) l) minore i epsilon. l (126; 5.5) Limite = + infinito: Sia x zero un punto di accumulazione per il dominio di f. Si dice che f ha limite + infinito per x che tende ad x zero se: per ogni a appartenente ad R esiste un delta maggiore di 0 tale che: 0 minore di valore assoluto di (x x zero) minore di delta e x appartiene al dominio di f, e f di x maggiore di a. l (128, 5.7) Limite a + infinito: Si supponga che il dominio di f sia superiormente illimitato. Si dice che f di x tende a l appartenente ad R per x che tende a + infinito se: per ogni epsilon maggiore di 0 esiste un a appartenente ad R tale che: x maggiore di a e x appartenente al dominio di f, e valore assoluto di (f (x) l) minore di epsilon. l (131; 6.2) Discontinuità eliminabile: Sia x zero un punto del dominio di f di x. Si dice che f ha una discontinuità eliminabile in x zero quando esiste finito il limite per x che tende ad x zero di f di x, ma il suo valore l è diverso da f di x zero. l (132; 6.4) Discontinuità di prima specie: Sia x zero un punto del dominio di f di x. Si dice che f di x ha una discontinuità di prima specie in x zero se esistono finiti i limiti destro e sinistro di f di x in x zero, ma tali limiti risultano diversi tra loro. l (132; 6.6) Discontinuità di seconda specie: Sia x zero un punto del dominio di f di x. Si dice che si ha una discontinuità di seconda specie se almeno uno dei due limiti laterali è infinito oppure se almeno uno di essi non esiste. t (138; 8.4) Primo teorema del confronto: Siano f di x e g di x definite su uno stesso insieme A, e sia x zero un punto di accumulazione per A. Sii supponga inoltre che esistano (finiti o uguali a + o infinito) i limiti per x che tende ad x Pagina 3 di 9

4 zero di f di x e g di x, uguali rispettivamente ad l e m. Se esiste un intorno V di x zero tale che f di x minoer o uguale a g di x in tutti i punti di (V meno x zero) intersezione A, allora l minore o uguale ad m. t (139; 8.5) Secondo teorema del confronto: Siano f di x, g di x e h di x tre funzioni definite su uno stesso insieme A e sia x zero un punto di accumulazione per A. Se esiste un intorno V di x zero tale che: x appartenga a (V meno x zero) intersezione A tale che: f di x minore o uguale a g di x minore o uguale ad h di x, e inoltre si hanno i limiti per x che tende a x zero di f gi x e h di x uguali ad l appartenente ad R, allora anche il limite per x che tende ad x zero di g di x è uguale ad l. c (140; 8.6) Limite del prodotto di una funzione limitata per un infinitesimo: Siano f di x e g di x definite su un insieme A, e sia x zero un punto di accumulazione per A. Si supponga che f sia limitata in un intorno di x zero e che il limite per x che tende a x zero di g di x è uguale a 0. Allora il limite per x che tende a x zero di f di x per g di x è uguale a 0. t (143; 9.1) Limite di una funzione monotona: Sia f crescente in A e sia x zero tale che ogni suo intorno sinistro contenga punti di A. Allora il limite sinistro di f in x zero esiste ed è l estremo superiore dell insieme (f di x: x appartiene ad A e x minore di x zero). Analogamente, se ogni intorno destro di x zero contiene punti di A, esiste il limite destro di f in x zero ed è l estremo inferiore dell insieme (f di x: x appartiene ad A e x maggiore di x zero). l (152; 11.4) o-piccolo: Si dice che f = o-piccolo di g per x che tende a x zero se per ogni epsilon maggiore di 0 esiste un intorno V tale che x appartenga a V intersezione A, x diverso da x zero, valore assoluto di (f di x) minore o uguale ad epsilon per valore assoluto di (g di x). In altri termini equivale a dire che quanto più ci si avvicina a x zero, tanto più piccola f diventa in confronto a g. Si dice anche che f è trascurabile rispetto a g per x tendente a x zero. p (153) Proprietà dell o-piccolo: f è o-piccolo di g per x tendente a x zero se e soltanto se il limite di f di x fratto g di x in x zero è uguale a 0. t (153; 11.7) Principio di eliminazione dei termini trascurabili: Se f uno è un o-piccolo di f e g uno un o-piccolo di g per x tendente a x zero, allora il limite per x tendente a x zero di (f di x + f uno di x) fratto (g di x + g uno di x) è uguale al limite per x che tende a x zero di f di x fratto g di x. l (156; 11.12) Funzioni equivalenti: Si dice che f e g sono equivalenti per x tendente a x zero, se esiste una funzione h di x tale che f di x uguale ad h di x per g di x e il limite per x tendente a x zero di h di x è uguale a 1. 5.SUCCESSIONI l (167) Successione: Si chiama successione una funzione definita sull insieme N dei numeri naturali. Se il codominio di tale funzione è R, si parla di successione di numeri reali. p (169; 1.2) Comportamento di una successione: Sia [a, b] un intervallo di numeri reali. Se per ogni n si ha che a con n appartiene ad [a, b] e se il limite per n di a con n è uguale ad l, allora l appartiene ad [a, b]. Una successione si dice convergente se ha limite finito, divergente se ha limite infinito, indeterminata se il limite non esiste. t (170; 1.5) Limitatezza delle successioni convergenti: Ogni successione convergente è limitata. d (170; 1.5) Limitatezza delle successioni convergenti: Sia l il limite della successione, e applichiamo la definizione con epsilon uguale ad 1. Esiste allora un n zero tale che per ogni n maggiore o uguale di n zero si abbia: l 1 minore di a con n minore di l + 1. Siano poi M il massimo dell insieme (a con 0, a con 1, a con 2,, a con (n zero 1)) ed m il minimo dello stesso insieme. Sa A è uguale al minimo tra l 1 ed m e B il massimo tra l + 1 ed M, allora A minore o uguale ad a con n minore o uguale a B, qualunque sia n appartenente ad N (limitata). t (171; 1.6) Relazione fra continuità e continuità per successioni: Sia f da A in R e sia x segnato appartenente ad A. Allora f è continua in x segnato se e soltanto se è verificata la seguente condizione: per ogni successione x con n di elementi di A convergente ad x segnato, si ha che il limite per n di f di (x con n) è uguale ad f di (x segnato). c (172; 1.7) Relazione fra limite e limite per una successione: Sia x segnato un punto di accumulazione per il dominio A di un funzione f. Allora il limite di f di x in x segnato è uguale ad l se e soltanto se per ogni successione x con n di elementi di A meno x segnato convergente ad x segnato si ha che il limite per n tendente all infinito di f di (x con n) è uguale ad l. l (178; 3.1) Sottosuccessione: Sia a con n una successione e sia phi da N in N una successione di numeri naturali strettamente crescente. La successione ottenuta come composizione tra phi ed a da N in R si chiama sottosuccessione, o anche successione estratta, della successione data. t (179; 3.3) Relazione fra la convergenza di una successione e di una sua sottosuccessione: Se il limite per n di a con n è uguale ad l e a con n con k è una sottosuccessione di a con n, allora il limite per k di a con n con k è uguale ad l. t (179; 3.4) Esistenza di punti di accumulazione per insiemi infiniti e limitati: Sia A sottoinsieme R un sottoinsieme infinito e limitato. Allora A ha almeno un punto di accumulazione. t (180; 3.5) Teorema di Bolzano Weierstrass: Sia a con n una successione limitata. Esiste allora una sua sottosuccessione convergente. d (180; 3.5) Teorema di Bolzano Weierstrass: Sia A l insieme (a con n: n appartenente ad N) l insieme immagine della funzione a da N in R. Allora A può essere finito o infinito. Se A è finito, A è uguale ad (alfa 1, alfa 2,, alfa m), la controimmagine di uno almeno degli alfa con j è infinita. In altri termini, si possono trovare infiniti indici n 0 minore di n 1 minore di minore di n k minore di tali che a con n con k è uguale ad alfa con j. Ma ciò equivale a dire che la Pagina 4 di 9

5 sottosuccessione a con n con k è costante, e dunque converge ad alfa con j. Supponiamo ora che A sia infinito. Per ipotesi A è anche limitato, e possiamo affermare che esiste un punto x zero di accumulazione per A. Consideriamo inizialmente l intorno (x zero 1, x zero + 1) si x zero. Poiché esso contiene infiniti elementi di A, esiste sicuramente n zero tale che a con n zero appartenga ad (x zero 1, x zero +1). Consideriamo ora l intorno (x zero ½, x zero + ½). Anch esso contiene infiniti elementi di a, per cui possiamo scegliere un indice n uno maggiore di n zero tale che a con n uno appartenga ad (x zero ½, x zero + ½). Procedendo in questo modo, si viene a scegliere, per ogni k, un indice n kappa in modo che n kappa maggiore di n (kappa 1) e inoltre a con n con k appartiene ad (x zero 2 alla kappa, x zero + 2 alla kappa). Si ottiene così una sottosuccessione a con n con k che soddisfa la proprietà: valore assoluto di (a con n con k x zero) minore di 2 alla kappa. Dunque il limite per kappa di (a con n con k x zero) è uguale a 0, ossia il limite per kappa di a con n con k è uguale a x zero. l (181; 4.1) Successione di Cauchy: Una successione a con n si dice una successione di Cauchy se per ogni epsilon maggiore di 0 esiste un indice n zero tale che n e m maggiori di n zero e valore assoluto di (a con n a con m) minore di epsilon. t (182; ) Relazioni tra successioni convergenti e successioni di Cauchy: Se una successione a con n è convergente allora è di Cauchy. Se una successione a con n è di Cauchy allora è convergente. t (188; 5.6) Relazione fra ordine d infinitesimo e di infinito di esponenziali e potenze: Se a maggiore di 1, la funzione a alla x è un infinito di ordine superiore a qualunque potenza di x per x tendente a + infinito, cioè il limite per x tendente a + infinito di (a alla x) fratto (x alla k) è uguale a + infinito qualunque sia k maggiore o uguale a 0. Per x tendente a infinito la funzione a alla x è invece un infinitesimo di ordine superiore a qualunque potenza di 1 su x, cioè il limite per x tendente a infinito di x alla k per a alla x è uguale a 0 per ogni k maggiore o uguale a 0. l (193; 6.2) Numero e di Nepero: Si indica con e il limite per n tendente a + infinito di (1 + 1 su n) alla n. 6.SERIE NUMERICHE l (App: 98) Serie numerica: Prendiamo in considerazione una successione a con n, n appartenente ad N. Si definisce s con n con n in questo modo: s con 0 = ad a con 0, e s con (n + 1) = ad s con n + a con (n + 1). l (App: 98) Carattere di una seria: Diciamo che la serie converge, diverge o è indeterminata rispettivamente se s con n converge, diverge o è indeterminata. l (App: 99) Carattere della Serie Geometrica: La serie geometrica di q alla n converge ad 1 su (1 q) se q è compreso tra 1 ed 1, diverge a + infinito se q è maggiore o uguale ad 1 ed è indeterminata se q è minore o uguale a 1. t (App: 99) Criterio di Cauchy per le serie: Una seria a con n converge se e soltanto se per ogni epsilon maggiore di 0 esiste un n con 0 tale che il valore assoluto di (a con n + a con (n + 1) + + a con (n + q)) è minore di epsilon per ogni n maggiore o uguale ad n con 0 e per ogni q appartenente ad N. c (App: 100) Condizione necessario per la convergenza: Se la serie a con n converge allora il limite per n di a con n è uguale a 0. t (App: 101) Carattere delle serie a termini non negativi: Una serie a termini non negativi o converge oppure diverge a + infinito. d (App: 101) Carattere delle serie a termini non negativi: La serie s con n con n è monotona crescente, quindi s con (n + 1) è uguale a s con n + a con (n +1). Dato che a con (n +1) è maggiore o uguale a 0, s con n + a con (n +1) è maggiore o uguale ad s con n per ogni n appartenente ad N. Quindi il limite per n di s con n sarà l estremo superiore dell insieme dei valori di s con n. Se s con n è limitata allora la serie a con n converge, se s con n è illimitata allora la serie a con n diverge a + infinito. t (App: 102) Criterio del confronto: Supponiamo serie a con n e serie b con n a termini non negativi e supponiamo anche che a con n si a compresa (non strettamente) tra 0 e b con n definitivamente. Allora se la serie b con n è convergente anche la serie a con n è convergente. Se la serie a con n diverge allora anche la serie b con n diverge. l (App: 102) Carattere della Serie Armonica generalizzata: La serie armonica generalizzata è del tipo: serie per n che va da 1 a + infinito di 1 su n alla alfa, alfa appartenente ad R. Essa converge se alfa è maggiore di 1 e diverge con alfa minore o uguale a 1. t (App: 104) Criterio del confronto asintotico: Supponiamo seri a con n e b con n a termini positivi e supponiamo che esista finito e diverso da 0 il limite per n del rapporto fra a con n e b con n. Allora le serie a con n e b con n hanno lo stesso carattere. t (App: 104) Criterio della radice: Supponiamo seria a con n a termini non negativi. Se esiste un l appartenente a [0, 1) tale che la radice n-esima di a con n è minore o uguale ad l definitivamente allora la serie a con n è convergente. Se la radice n-esima di a con n è maggiore o uguale ad 1 la serie a con n è divergente. t (App: 106) Criterio del rapporto: Supponiamo serie a con n a termini positivi e supponiamo che esista un l appartenente a (0, 1) tale che il rapporto tra a con (n +1) ed a con n sia minore o uguale ad l definitivamente, allora la serie a con n è convergente. Se il rapporto è maggiore o uguale di 1 allora la serie divergerà. t (App: 107) Criterio di condensazione: Supponiamo serie a con n a termini positivi e supponiamo che a con n con n sia monotona decrescente. Allora la serie a con n converge se e soltanto se converge la serie di 2 alla n per a con n. Pagina 5 di 9

6 t (App: 109) Convergenza assoluta: Se consideriamo una serie a termini qualsiasi, e troviamo che la serie dei suoi valori assoluti converge, allora la serie converge anche semplicemente. t (App: 109) Criterio di Liebniz: Sia la serie a con n a termini di segno alterno. Supponiamo che a con n con n sia monotona decrescente quindi a con (n +1) è minore o uguale ad a con n. Supponiamo anche che il limite per n di a con n sia 0, allora la serie a con n converge. 7.PROPRIETA GLOBALI DELLE FUNZIONI CONTINUE t (203; 1.1) Esistenza degli zeri: Se f è continua sull intervallo [a, b] e i valori f di a e f di b sono discordi, allora esiste almeno un punto x segnato appartenente ad (a, b) tale che f di x segnato è uguale a 0. d (204; 1.1) Esistenza degli zeri: Supponiamo che sia f di a minore di 0 e f di b maggiore di 0. Si consideri il punto medio (a + b) fratto 2 dell intervallo, e si calcoli f di ((a+b)/2). Si possono presentare tre possibilità: f di ((a+b)/2) uguale a zero. In tal caso abbiamo già trovato uno zero di f in (a, b) e abbiamo terminato oppure f di ((a+b)/2) maggiore di zero. In questo caso chiamiamo [a uno, b uno] l intervallo [a, (a+b)/2], in modo che i valori di f di a uno e f di b uno siano nuovamente discordi, e ripetiamo l operazione, calcolando f di ((a uno + b uno)/2) oppure f di ((a+b)/2) minore di 0. Procediamo con nel caso precedente chiamando questa volta [a uno, b uno] l intervallo [(a+b)/2, b]. Iterando questo procedimento, può succedere che dopo un numero finito di passi si incontri un punti in cui f si annulli. Allora ci arrestiamo, avendo trovato quello che cerchiamo. Se non siamo così fortunati, otteniamo una successione di intervalli incapsulati chiusi e limitati. Per costruzione, [a con n, b con n] ha ampiezza uguale a (b a)/2 alla n, e inoltre f di a con n minore di 0 minore di f di f di b con n. Per le proprietà degli intervalli incapsulati, esiste un punto x segnato comune a tutti gli intervalli [a con n, b con n]. Poiché l ampiezza degli intervalli tende a 0 per n tendente a infinito di ha che i limiti per n tendente a infinito di a con n e b con n sono uguali a x segnato. Essendo f continua in x segnato, si ha che i limiti per n tendente a infinito di f di a con n e f di b con n sono uguali a f di x segnato. Per il primo teorema del confronto, essendo f di a con n minore di 0 per ogni n, si ha f di x segnato minore o uguale a 0. Analogamente, essendo f di b con n maggiore di 0 per ogni n, risulta f di x segnato maggiore o uguale a 0. Concludiamo quindi che f di x segnato è uguale a 0. c (206; ) Conseguenze del teorema sull esistenza degli zeri: Siano f e g due funzioni continue in [a, b] tali che f di a minore di g di a e f di b maggiore di g di b. Esiste allora almeno un punto x segnato appartenente ad (a, b) tale che f di x segnato = a g di x segnato. Sia f una funzione continua che applica l intervallo chiuso e limitato [a, b] in sé. Allora f ha almeno un punto fisso in [a, b]. Sia f continua su R avente limite sia per x tendente a + infinito che per x tendente a infinito, e si supponga che questi limiti (eventualmente infiniti) siano discordi. Esiste allora almeno un punto x segnato appartenente ad R tale che f di x segnato uguale a 0. t (207; 2.1) Valori intermedi: Sia f continua sull intervallo [a, b]. Allora f assume tutti i valori compresi tra f di a ed f di b. t (207; 2.2) Immagine di una funzione continua su un intervallo: Sia f continua sull intervallo I. Allora l insieme immagine f di I è un intervallo. c (208; 2.4) Immagine della funzione esponenziale: Sa a maggiore di 0 e a diverso da 1, l immagine della funzione esponenziale exp di a è R +, uguale a (0, + infinito). t (211; 3.3) Continuità della funzione inversa: Sia f una funzione continua e iniettiva sull intervallo I. Posto J uguale ad f di I, f alla 1 è continua su J. t (213; 4.1) Teorema di Weierstrass: Sia f continua sull intervallo chiuso e limitato I uguale ad [a, b]. Allora f assume in [a, b] valore massimo e minimo. d (213; 4.1) Teorema di Weierstrass: Dimostreremo solo che f ha massimo. Indichiamo con s (eventualmente uguale a + infinito) l estremo superiore di f di x. Facciamo vedere che esso non può essere infinito. Per assurdo, se così fosse, f non sarebbe limitata superiormente e fissato un qualunque n appartenente ad N esisterebbe un x con n appartenente ad I tale che f di x con n maggiore di n. Dunque il limite di f di x con n all infinito è uguale a + infinito. La successione x con n è limitata, per il teorema di Bolzano-Weierstrass esiste una sua sottosuccessione x con n con k convergente. Indichiamo con x segnato il limite di tale successione. Essendo a minore o uguale ad x con n con k minore o uguale a b, per il primo Teorema del Confronto si ha a minore o uguale ad x segnato minore o uguale a b, ossia x segnato appartiene ad I. Ma allora, per la continuità di f in x segnato il limite di f di x con n con k per k tendente all infinito è uguale a f di x segnato. Avremo l assurdo di una successione divergente a + infinito e dotata di una sottosuccessione convergente. Ora che abbiamo appurato che s è finito, dimostriamo che s appartiene ad f di I. Per la definizione di estremo superiore, fissato comunque n maggiore o uguale a 1, esiste un y con n uguale ad f di x con n che appartiene ad f di I tale che s 1 su n minore di y con n minore o uguale ad s. Ripetendo le considerazioni già svolte, dalla successione limitata x con n si può estrarre una sottosuccessione x con n con k convergente ad x segnato appartenente ad I. Essendo il limite per n all infinito di f di x con n uguale al limite per n all infinito di y con n uguale ad s, si ha che il limite per k all infinito di f di x con n con k è uguale ad s. D altra parte il limite per k tendente all infinito di f con n con k è uguale a f di x segnato, in quanto f è continua in x segnato. Per l unicità del limite, si ha f di x segnato uguale ad s. Pagina 6 di 9

7 l (217; 5.2) Uniforme continuità: Una funzione f si dice uniformemente continua sull intervallo I se per ogni epsilon maggiore di 0 esiste un delta maggiore di 0 tale che x uno e x due appartenenti ad I, valore assoluto di (x uno x due) minore di delta, valore assoluto di (f di x uno f di x due) minore di epsilon. t (218; 5.5) Teorema di Heine-Cantor: Sia f continua sull intervallo chiuso e limitato [a, b]. Allora f è uniformemente continua in [a, b]. l (219; 5.6) Funzione Lipschitziana: Si dice che una funzione f soddisfa la condizione di Lipschitz sull itervallo I se esiste una costante L maggiore di 0 tale che x uno e x due appartennte ad I, e valore assoluto di (f di x uno f di x due) minore o uguale ad L per il valore assoluto di (x uno x due). 8.DERIVATE l (229: 1.1) Derivabilità in un punto: Sia x zero un punto interno al dominio di f. Si dice che f è derivabile in x zero se il limite per x tendente ad x zero di (f di x f di x zero) fratto (x meno x zero) esiste finito. Il valore di tale limite si chiama la derivata di f in x zero. t (230; 1.3) Relazione fra derivabilità e continuità: Se f di x è derivabile in x zero, allora f di x è continua in x zero. l (236; 4.1) Derivate laterali: Sia [x zero, x zero + delta] incluso nel dominio di f. Si definisce derivata destra di f in x zero il limite, se esiste finito, per x che tende ad x zero da destra di (f di x f di x zero) fratto (x x zero). Analogamente si definisce la derivata sinistra. p (249; 6.1) Segno della derivata di funzioni monotone: Sia f una funzione monotona crescente (rispettivamente decrescente) su un intervallo I incluso nel dominio di f, e sia x zero un punto interno ad I. Se f è derivabile in x zero, allora f primo di x zero è maggiore o uguale a 0 (rispettivamente minore o uguale a 0). p (250; 6.2) Monotonia in un punto di funzioni con derivata non nulla nel punto: Sia f di x derivabile in x zero e sia f primo di x maggiore di 0. Allora esiste un delta maggiore di 0 tale che f di x maggiore di f di x zero per x appartenente ad (x zero, x zero + delta) e f di x minore di f di x zero per x appartenente ad (x zero- delta, x zero). Ragionamento analogo se f primo di x è minore di 0. l (252; 7.1) Massimo e minimo relativo: Sia f una funzione reale di variabile reale e sia x zero appartenente al dominio di f. Si dice che x zero è un punto di minimo relativo (rispettivamente massimo relativo) se esiste un delta maggiore di zero tale che f di x maggiore o uguale ad f di x zero (rispettivamente f di x minore o uguale a f di x zero) per ogni x appartenente a (x zero delta, x zero + delta) intersezione dominio di f. t (254; 7.3) Teorema di Fermat o condizione necessaria per l estremalità: Se x zero è un punto di minimo o do massimo reativo di f e se f è derivabile in x zero, allora f primo di x zero è uguale a 0. d (254; 7.3) Teorema di Fermat o condizione necessaria per l estremalità: Supponiamo che x zero sia un punto di minimo relativo, con f di x maggiore o uguale a f di x zero per ogni x appartenente a (x zero- delta, x zero + delta). Per tali x si ha la possibilità che il rapporto incrementale sia maggiore o uguale di zero se x maggiore di x zero, oppure minore o uguale di zero se x minore di x zero. Poiché f primo di x zero è il limite sia destro che sinistro dei rapporti incrementali al tendere di x a x zero, il primo teorema del confronto implica che la derivata prima sia contemporaneamente maggiore o uguale di 0 e minore o uguale di 0, da cui si deduce che f primo di x zero è uguale a 0. t (257; 8.2) Formula di Leibniz per la derivata n-esima di un prodotto: La formula di Leibniz dice che la derivata n-esima del prodotto di f per g in x zero è uguale alla sommatoria per k che va da 0 a n di (n su k) per la derivata k- esima di f in x zero per la derivata (n-k)-esima di g in x zero. 9.TEOREMI E APPLICAZIONI DEL CALCOLO DIFFERENZIALE t (259; 1.1) Teorema di Rolle: Sia f una funzione continua nell intervallo chiuso e limitato [a, b] e derivabile nell intervallo aperto (a, b). Si supponga inoltre che f di a sia uguale a f di b. Esiste allora almeno un punto x zero appartenente ad (a, b) tale che f primo di x zero sia uguale a 0. d (259; 1.1) Teorema di Rolle: Per il teorema di Weierstarss, la funzione f assume valore massimo M e minimo m sull intervallo [a, b]. Indichiamo con x uno un punto di massimo (tale cioè che f di x uno sia uguale ad M) e con x due un punto di minimo (f di x due uguale ad m). Se entrambi i punti sono estremi di [a, b], allora M è uguale ad m perché i valori assunti da f agli estremi coincidono. In tal caso f è costante, e dunque f primo di x è uguale a 0 in ogni punto di (a, b). Se invece almeno uno di essi è interno all intervallo, allora si può applicare il teorema di Fermat e concludere che in tale punto f primo si annulla. t (260; 1.2) Teorema di Lagrange o del valor medio: Sia f continua nell intervallo chiuso e limitato [a, b] e derivabile nell intervallo aperto (a, b). Esiste allora almeno un punto x zero appartenente ad (a, b) tale che f primo di x zero è uguale a (f di b f di a) fratto (b - a). d (260; 1.2) Teorema di Lagrange o del valor medio: Si consideri la funzione g di x ottenuta sottraendo alla f di x la retta passante per gli estremi del grafico (f di a ((f di b f di a) fratto (b a) per (x a))). La g soddisfa le ipotesi del teorema di Rolle. Infatti essa è continua in [a, b] (perché differenza di funzioni continue in [a, b]) e derivabile in (a, b) (per motivo analogo). Inoltre g di a è uguale a g di b che è uguale a 0. Per il teorema di Rolle esiste dunque un punto x zero appartenente ad (a, b) tale che g primo di x zero è uguale a 0, da qui si ricava facilmente la tesi. Pagina 7 di 9

8 t (262; 1.4) Teorema di Cauchy: Siano f e g due funzioni continue nell intervallo chiuso e limitato [a, b] e derivabili nell intervallo aperto (a, b); si supponga inoltre che g primo sia diverso da 0 per ogni x appartenente ad (a, b). Allora g di b è diverso da g di a ed esiste almeno un punto x zero appartenente ad (a, b) tale che il rapporto tra le derivate di f e g in x zero sia uguale ad (f di b f di a) fratto (g di b g di a). d (262; 1.4) Teorema di Cauchy: Se fosse gi di a uguale a g di b, per il teorema di Rolle g primo si annullerebbe in almeno un punto interno. Ma ciò è in contrasto con una delle ipotesi. Come per il teorema di Lagrange, si costruisce una funzione ausiliaria h di x uguale ad f di x f di a ((f di b f di a) fratto (g di b g di a)) per (g di x g di a). La funzione h soddisfa le ipotesi del teorema di Rolle, per cui esiste almeno un x zero appartenente ad (a, b) tale che h primo sia uguale a 0, da cui segue la tesi. t (263; 2.1) Monotonia della funzione con derivata di segno costante: Sia f una funzione derivabile nell intervallo aperto I e si supponga che f primo di x sia maggiore o uguale a 0 (rispettivamente minore o uguale a 0) per ogni x appartenente ad I. Allora f è crescente (decrescente) in I. t (264; 2.3) Condizioni sufficienti per l estremalità: Sia f derivabile nell intervallo aperto I e sia x zero appartenente ad I un punto critico (derivata uguale a 0) di f. Si supponga che esista un delta maggiore di 0 tale che: la derivata prima di x è maggiore o uguale a 0 per x zero minore di x minore di x zero + delta, e minore o uguale a 0 per x zero delta minore di x minore di x zero. Allora x zero è un punto di minimo locale per f. Analogo il discorso per un massimo locale. t (267; 3.1) Regola di de l Hopital: Siano f e g derivabili in un intorno destro (x zero, x zero + a) di x zero. Si supponga inoltre che i limiti destri di f di x e gi di x in x zero siano uguali a 0 e che g primo non si annulli in (x zero, x zero + a). Se esiste il limite (finito o infinito) da destra del rapporto delle derivate di f di x e g di x in x zero uguale ad l, allora esiste anche il limite da destra in x zero del rapporto delle due funzioni ed è anch esso uguale ad l. t (283; 5.2) Formula di Taylor con resto di Peano: Sia f derivabile n volte in x zero. Il polinomio di Taylor è la sommatoria per k che va da 0 ad n di 1 su k fattoriale per la derivata k-esima di f in x zero per (x x zero) alla k. Mentre la differenza fra la f di x ed il polinomio di Taylor è, secondo Peano, un o-piccolo di ((x x zero)alla n) per x tendente ad x zero. t (287; 5.6) Formula di Taylor con resto di Lagrange: Sia f una funzione di classe C alla n nell intorno I di x zero e derivabile n + 1 volte in I meno x zero. Dato x appartenente ad I meno x zero, esiste un punto t compreso strettamente tra x zero ed x tale che il resto tra f di x ed il polinomio di Taylor sia uguale ad 1 su ((n + 1) fattoriale) per la derivata (n +1)-esima di f in t per (x x zero) alla (n + 1). t (315; 9.10) Relazione fra segno della derivata seconda a convessità (concavità) di una funzione: Sia I un intervallo aperto e sia f derivabile due volte su I. Allora, f è convessa su I se e soltanto se f seconda di x è maggiore o uguale a 0 per ogni x appartenente ad I. 10.INTEGRALI INDEFINITI l (323; 1.1) Primitiva: Sia f una funzione definita sull intervallo aperto I, eventualmente non limitato. Si dice che F è una primitiva di f su I se F è derivabile su I e la derivata prima di F di x è uguale ad f di x per ogni x appartenente ad I. 11.INTEGRALI DEFINITI l (352) Partizione di un intervallo: Sia I un intervallo limitato di estremi a e b, con a minore di b, e consideriamo un numero qualunque, ma finito, di punti x uno x due x tre tali che a minore di x uno minore di x due minore di ecc minore di x con (n 1) minore di b (x con zero uguale ad a e x con n uguale a b). Diremo che essi determinano una suddivisione dell intervallo I in n sottointervalli. l (352; 1.1) Funzione a scala: Una funzione definita nell intervallo I a valori reali si dice a scala se esiste una suddivisione dell intervallo I tale che f sia costante su ciascuno degli intervalli aperti (x con (i 1), x con i). l (353; 1.3) Integrale di una funzione a scala: Sia f una funzione a scale definita dell intervallo I, sia c con i il valore assunto da f nell intervallo (x con (i 1), x con i) della sua partizione. Si chiama integrale definito di f sull intervallo I il numero dato dalla sommatoria per i che va da 1 ad n di c di i per (x di i x di (i 1)). L integrale definito di f su I rappresenta la differenza tra l area della parte di trapezoide al di sopra dell asse x e quella della parte di trapezoide al di sotto dell asse x. l (356; 2.1) Integrale superiore: Si chiama integrale superiore di f su I l estremo inferiore dell insieme di tutte le funzioni a scala h di x maggiori o uguali ad f di x. l (356; 2.1) Integrale inferiore: Si chiama integrale inferiore di f su I l estremo superiore dell insieme di tutte le funzioni a scala h di x minori o uguali ad f di x. l (356; 2.3) Funzione integrabile: La funzione f si dice integrabile nell intervallo I se il suo integrale superiore in I è uguale al suo integrale inferiore in I. p (359; 2.7) Condizione necessaria e sufficiente per l integrabilità: Sia f una funzione limitata sull intervallo I. Essa è integrabile se e soltanto se, dato comunque un epsilon maggiore di 0 esistono una funzione a scala h di epsilon appartenente all insieme di tutte le funzioni a scala maggiori o uguali ad f di x, e una g di epsilon appartenente Pagina 8 di 9

9 all insieme di tutte le funzioni a scala minori o uguali ad f di x tali che la differenza tra gli integrali in I di h di epsilon ed g di epsilon sia minore di epsilon. t (359; 3.1) Integrabilità delle funzioni continue su intervalli compatti: Sia f una funzione continua nell intervallo chiuso I uguale ad [a, b]. Allora, f è integrabile in I. t (363; 3.4) Integrabilità delle funzioni monotone: Sia f una funzione monotona nell intervallo I = [a, b]. Allora, f è integrabile in I. t (373; 5.3) Teorema della media Integrale: Sia f integrabile nell intervallo I di estremi a e b, e siano m l estremo inferiore in I di f di x ed M l estremo superiore di f di x in I. Allora, m minore o uguale ad 1 su (b a) per l integrale tra a e b di f di x dx minore o uguale ad M. Se inoltre f è continua in I, esiste un punto t appartenente ad I tale che f di t sia uguale ad 1 su (b a) per l integrale da a a b di f di x dx. c (374; 5.4) Conseguenze della media integrale: Sia f integrabile dell intervallo I di estremi a e b. Posto M l estremo superiore del valore assoluto di (f di x), si ha che il valore assoluto dell (integrale tra a e b di f di x dx) è minore o uguale ad M per valore assoluto di (b a). l (374) Funzione integrale: Sia I un intervallo non necessariamente limitato. Si dice che f è localmente integrabile su I se è integrabile su ogni intervallo chiuso e limitato [a, b] appartenente ad I. Se f è localmente integrabile si I e x zero appartiene ad I, si definisce la funzione integrale come: F di x uguale all integrale tra x zero ed x di f di t dt (F di x zero è uguale a 0). p 375; 6.1) Continuità della funzione integrale: Sia F la funzione integrale di f relativa al punto x zero. Allora F è continua su I. t (376; 6.2) Teorema fondamentale del calcolo integrale: Sia f una funzione continua sull intervallo aperto I, x zero appartiene ad I e F di x la funzione integrale di f relativa al punto x zero. Allora F è derivabile su I e la sua derivata prima è uguale ad f di x per ogni x appartenente ad I. d (376; 6.2) Teorema fondamentale del calcolo integrale: Sia x segnato appartenente ad I e sia x un altro punto di I. Si consideri il rapporto incrementale di F di x come uguale a 1 su (x x segnato) per l integrale tra x segnato ed x di f di t dt. Essendo f continua, per il teorema della media integrale si ha che il rapporto incrementale di F di x è uguale ad f di t di x. Dove t di x è un numero compreso tra x ed x segnato, dipendente dalla scelta di x. Per il secondo teorema del confronto il limite di t di x in x segnato è uguale ad x segnato e, ancora per la continuità di f, il limite del rapporto incrementale di F di x è uguale al limite di f di t di x che è uguale al limite per di f di t per t tendente ad x segnato che è uguale ad f di x segnato. Ciò prova che F è derivabile in x segnato e che la derivata prima di F in x segnato è uguale ad f di x segnato. 12.INTEGRALI IMPROPRI l (389; 1.1) Integrale improprio: Si dice che f ammette integrale improprio convergente tra a e + infinito se esiste finito il limite per m tendente a + infinito dell integrale tra a ed m di f di x dx. Se il limite ha valore + o infinito si dice che f ha integrale improprio divergente. Infine, se non si verifica nessuno dei casi precedenti, si dice che l integrale improprio di f è indeterminato. t (392; 2.2) Criterio di convergenza del confronto: Siano f e g due funzioni localmente integrabili si [a, + infinito), e sia g di x compresa (non strettamente) tra 0 ed f di x. Si ha allora che: se l integrale improprio di f su [a, + infinito) converge, anche l integrale improprio di g su [a, + infinito) converge, e se l integrale improprio di g su [a, + infinito) diverge, anche l'integrale improprio di f su [a, + infinito) diverge. t (393; 2.3) Criterio di convergenza assoluta: Sia f una funzione localmente integrabile su [a, + infinito), e si supponga che l integrale improprio tra a e + infinito del valore assoluto di (f di x) dx converga. Allora anche l integrale improprio di f converge e il valore assoluto dell (integrale tra a e + infinito di f di x dx) è minore o uguale all integrale tra a e + infinito del valore assoluto di (f di x) dx. Pagina 9 di 9

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione PROGRAMMA di Analisi Matematica A.A. 204-205, canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione Testo Consigliato: - Analisi Matematica, Teoria e Applicazioni, A. Marson, P. Baiti,

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Simboli logici. Predicati, proposizioni e loro negazioni.

Simboli logici. Predicati, proposizioni e loro negazioni. PROGRAMMA di Analisi Matematica A.A. 202-203, canale, prof.: Francesca Albertini, Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M. Bramanti,

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Argomenti delle lezioni.

Argomenti delle lezioni. Argomenti delle lezioni. 1 settimana Lunedì 1 ottobre Presentazione del corso. Martedì 2 ottobre Il campo ordinato dei numeri reali. Utilizzo degli assiomi nelle dimostrazione di alcune proprietà. Equazioni

Dettagli

DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017

DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017 DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017 27 settembre.(2 ore) Introduzione e informazioni. Linguaggio matematico. Insiemi numerici e loro proprietà : N, Z, Q. 2 non è un numero

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

Capitolo 9 (9.2, Serie: 1,..., 18).

Capitolo 9 (9.2, Serie: 1,..., 18). Universitá degli Studi di Bari Corso di Laurea in Biotecnologie per l innovazione di Processi e Prodotti Programma dettagliato di MATEMATICA ED ELEMENTI DI STATISTICA- A.A. 2014/2015 Prof. Mario Coclite

Dettagli

Indice. Prefazione. 3 Spazi Metrici Introduzione Definizione ed esempi Intorni... 53

Indice. Prefazione. 3 Spazi Metrici Introduzione Definizione ed esempi Intorni... 53 Prefazione xi 1 Numeri reali 1 1.1 Introduzione.............................. 1 1.2 Rappresentazione decimale dei numeri razionali.......... 1 1.3 Numeri reali e ordinamento..................... 3 1.4

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI Analisi Matematica T1 - A.A.2011-2012 - prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI (Grazie agli studenti del corso che comunicheranno omissioni o errori) 27 SETTEMBRE

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica

Dettagli

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI Consideriamo l insieme R = R {, + } ottenuto aggiungendo all insieme dei numeri reali i simboli e +. Introduciamo in

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R.

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. FABIO CIPRIANI 1. Completezza dell insieme dei numeri reali R. Nell insieme dei numeri reali R la condizione di Cauchy e necessaria e sufficiente per la convergenza

Dettagli

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa 1. Elementi di spazi metrici e di topologia 1.1 Completezza di R. Richiami: Estremo superiore,

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

ARGOMENTI SETTIMANA 1.

ARGOMENTI SETTIMANA 1. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - A. Benvegnù 1 Date d esame: 24/1/217, aule P3-Lu3-Lu4; ore 9.-12.; 24/2/217, aule P3-Lu3-Lu4; ore 9.- 12.; 28/6/217, aule

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 02 - I Numeri Reali Anno Accademico 2013/2014 D. Provenzano, M.

Dettagli

MATEMATICA GENERALE CLAMM AA 15-16

MATEMATICA GENERALE CLAMM AA 15-16 MATEMATICA GENERALE CLAMM AA 5-6 PROGRAMMA PARTE ALGEBRA LINEARE () Sistemi lineari e matrici: sistemi triangolari; a scala e loro risolubilità; matrice dei coefficienti e vettore dei termini noti; vettore

Dettagli

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12 Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12 Martedì 4 Ottobre Settembre 2011 16-19 3 ore Numeri naturali. Definizione di minimo di un sottoinsieme di

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361

9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361 Indice 1 Nozioni di base... 1 1.1 Insiemi... 1 1.2 Elementi di logica matematica... 5 1.2.1 Connettivi logici... 5 1.2.2 Predicati... 7 1.2.3 Quantificatori... 7 1.3 Insiemi numerici... 9 1.3.1 L ordinamento

Dettagli

Regole del corso di Analisi Matematica 1 Ingegneria A.A , docente S. Cuccagna.

Regole del corso di Analisi Matematica 1 Ingegneria A.A , docente S. Cuccagna. Regole del corso di Analisi Matematica 1 Ingegneria A.A. 2014-15, docente S. Cuccagna. Libro consigliato : ANALISI MATEMATICA 1 Giusti, Bollati Boringhieri ed. Esame. Ci saranno 7 appelli nel corso dell

Dettagli

Facoltà di AGRARIA anno accademico 2009/10

Facoltà di AGRARIA anno accademico 2009/10 Facoltà di AGRARIA anno accademico 2009/10 Attività didattica MATEMATICA E STATISTICA [AG0233], MATEMATICA E STATISTICA [AG0233] Periodo di svolgimento: Primo Semestre Docente titolare del corso: FREDDI

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

Completezza e compattezza

Completezza e compattezza 1 Completezza e compattezza Spazi metrici completi Data una successione x : N X, j x j, una sua sottosuccessione è la composizione x ν, ove ν : N N è strettamente crescente. Data una successione (x j )

Dettagli

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Insiemi numerici. Definizioni

Insiemi numerici. Definizioni 1 Insiemi numerici Gli insiemi numerici sono insiemi i cui elementi sono numeri, cioè appartengono all'insieme N dei naturali, degli interi Z, dei razionali Q, dei reali R o dei complessi C ( es.: A =

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre REGISTRO ELETTRONICO DELLE LEZIONI IMPORTANTE: Le definizioni ed i risultati fondamentali per poter studiare con profitto sono scritti in

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2016/2017 Prof. MATTEO FOCARDI Settore inquadramento MAT/05 - ANALISI MATEMATICA REGISTRO Scuola Scienze Matematiche, Fisiche NON e Naturali CHIUSO Dipartimento

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

Successioni, massimo e minimo limite e compattezza in R

Successioni, massimo e minimo limite e compattezza in R Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Complemento 1 Gli insiemi N, Z e Q

Complemento 1 Gli insiemi N, Z e Q AM110 Mat, Univ. Roma Tre (AA 2010/11 L. Chierchia) 30/9/10 1 Complemento 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici

Dettagli

Esempi. La successione {cos n} è limitata; {n ¾ } è limitata inferiormente ma non è limitata superiormente, quindi non è limitata.

Esempi. La successione {cos n} è limitata; {n ¾ } è limitata inferiormente ma non è limitata superiormente, quindi non è limitata. Analisi 2 Successioni numeriche -1- ÔÔÙÒØ Ô Ö Ð ÓÖ Ó Ò Ð ¾ º ËÙ ÓÒ ÒÙÑ Ö Proposizione (unicità del limite). Se {a n } è convergente, allora il limite è unico. Dimostrazione. Supponiamo che la tesi sia

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

Matematica per le Applicazioni Economiche I (M-P)

Matematica per le Applicazioni Economiche I (M-P) Matematica per le Applicazioni Economiche I (M-P) Corsi di Laurea in Economia Aziendale, Economia e Commercio, a.a. 06-7 Esercizi su Calcolo Differenziale. Per la seguente funzione, dato 0, si utilizzi

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

Corso di Laurea in Informatica Sede di Brindisi Esame di Analisi Matematica 25 giugno ex+1 x 2 2x. f (x) =

Corso di Laurea in Informatica Sede di Brindisi Esame di Analisi Matematica 25 giugno ex+1 x 2 2x. f (x) = 25 giugno 215 f (x) = ex+1 x 2 2x 2. Si calcoli il seguente integrale: 4 2 x log(x 2 1) dx. 3. Si enunci la definizione di funzione continua. 4. Si enunci il teorema di Fermat e, facoltativamente, lo si

Dettagli