Foglio N.3. PRIMITIVE. Pn (x) Q m (x) dx

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Foglio N.3. PRIMITIVE. Pn (x) Q m (x) dx"

Transcript

1 Integrli di Funzioni Rzionli: Foglio N3 PRIMITIVE Pn (x) Q m (x) dx dove P n (x) e Q m (x) sonopolinomidigrdon ed m rispettivmente Un funzione rzionle il cui denomintore P n (x) è un polinomio di grdo inferiore del polinomio del numertore Q m (x) prende il nome di funzione rzionle propri Se n m possimo eseguire l clssic divisione tr polinomi, in questo modo ottenimo l seguente scomposizione P n (x) =Q m (x) D (x)+r (x) con D (x) e R (x) polinomi di grdo più piccolo di m, P n (x) R (x) = D (x)+ Q m (x) Q m (x) il nostro integrle or ssume l form Pn (x) Q m (x) dx = D (x) dx + R (x) Q m (x) dx dove l l funzione rzionle R (x) Q m (x) èpropri Esempio: Determinre l integrle x 3 +2x 2 +2 x 2 dx L divisione tr i due polinomi d luogo ll seguente scomposizione: segue che x 3 +2x 2 +2= x 2 (x +2)+(x +4) x 3 +2x 2 +2 x 2 x 3 +2x 2 +2 x 2 dx = =(x +2)+ x +4 x 2, x +4 (x +2)dx + x 2 dx Il problem è determinre le primitive di funzioni rzionli proprie e per fre questo introducimo l scomposizione per frtti semplici:

2 IA] Ad ogni fttore linere x + b che figuri l denomintore di un funzione rzionle propri corrisponde un sol frzione przile dell form A x + b dove A è un costnte d determinre IB] Fttori Lineri Ripetuti Ad ogni fttore (x + b) k che figuri l denomintore di un funzione rzionle propri corrisponde un somm di k frzioni del tipo A k A x + b + A 2 (x + b) (x + b) k dove A,A 2, A k sono le costnti d determinre Esempio: Cso IA]: ottenimo che 2x + x 3 +2x 2 x 2 x 3 +2x 2 x 2=(x ) (x +) (x +2) 2x + x 3 +2x 2 x 2 = A (x ) + B (x +) + C (x +2) Dunque eseguendo le moltipliczioni ricvimo segue 2x +=A (x +)(x +2)+B (x ) (x +2)+C (x +)(x ) in ltre prole Cso IB]: 2x +=(A + B + C) x 2 +(3A + B) x +2A +2B C A + B + C = 3A + B =2 2A 2B C = = A = 2 B = 2 C = 2x + x 3 +2x 2 x 2 = 2(x ) + 2(x +) (x +2) ottenimo che 3x +5 x 3 x 2 x + 2

3 x 3 x 2 x +=(x +) (x ) 2 3x +5 x 3 x 2 x + = A (x +) + B (x ) + C (x ) 2, eseguendo le vrie operzioni ricvimo: 3x +5=(A + B) x 2 +(C 2A) x + A B + C dunque i vlori di A, B e C si ottengono risolvendo il sistem linere: A + B = 2A + C =3 A B + C =5 IIA] Fttori Qudrtici Distinti: Ad ogni fttore qudrtico irriducibile x 2 + bx + c che figuri l denomintore di un funzione rzionle propri corrisponde un sol frzione przile propri dell form Ax + B x 2 + bx + c dove A e B sono le costnti d determinre IIB] Fttori Qudrtici Ripetuti: Ad ogni fttore x 2 + bx + c k,conx 2 + bx + c fttore qudrtico irriducibile, che figuri l denomintore di un funzione rzionle propri corrisponde un somm di k frzioni przili proprie dell form A x + B x 2 + bx + c + A 2 x + B 2 (x 2 + bx + c) A kx + B k (x 2 + bx + c) k dove A,A 2, A k e B,B 2, B k sono le costnti d determinre Esempio: Cso IIA] ottenimo che qui irriducibile signific che x 3 + x 3 + x +2 x 4 +3x 2 +2 x 4 +3x 2 +2= x 2 + x 2 +2 x 3 + x 3 + x +2 x 4 +3x 2 +2 = Ax + B x 2 + Cx + D x 2 +2, 4 = b 2 4c < 3

4 eseguendo le vrie operzioni ottenimo x 3 + x 3 + x +2=(A + C) x 3 +(B + D) x 2 +(2A C) x +2B D dunque i vlori di A, B, C e D si ottengono risolvendo il sistem linere: A + B = B + D = 2A C = 2B d =2 Cso IIB] ottenimo che x 3 + (x 2 + x +2) 2 x 3 + (x 2 + x +2) 2 = Ax + B (x 2 + x +2) + Cx + D (x 2 + x +2) 2, x 3 +=(Ax + B) x 2 + x +2 + Cx + D, come nei csi precedenti ottenimo un sistem linere di quttro incognite e quttro equzioni F Integrli immediti di funzioni rzionli con prmetri, b, c, R, 6= x + b dx = µ x + b log + Cost : 2 x dx = ³ x rctn + Cost; 3 x 2 2 dx = 2 log x x + 4 x x + b dx = [(x + b) b log (x + b)] + Cost; 2 Ex] Determinre i seguenti integrli l vrire dei prmetri, b, c, A, B R,, A 6= : 2 x 2 + bx + c dx; Ax + B x 2 + bx + c dx 4

5 Dimo or le primitive di lcuni integrli tipici: Integrli tipo: [ sin (αx)+b cos (αx)] e βx dx, con, b, α, β R Un primitiv è dt dll funzione con A e B costnti d determinre Inftti derivndo ottenimo F (x) =e βx [A sin (αx)+b cos (αx)] F (x) =e βx [βasin (αx)+βb cos (αx)] + e βx [A sin (αx)+b cos (αx)] dto che ottenimo F (x) =e βx [(βa αb)sin(αx)+(βb + αa)cos(αx)], F (x) =[ sin (αx)+b cos (αx)] e βx [(βa αb)sin(αx)+(βb + αa)cos(αx)] = [ sin (αx)+b cos (αx)] segue βa αb = βb + αa = b Integrli tipo: P n (x) e βx dx, con P n (x) polinomio di grdo n Un primitiv è dt dll funzione F (x) =Q n (x) e βx con Q n (x) polinomio di grdo n d determinre Derivndo ottenimo F (x) =βq n (x) e βx + Q n (x) e βx = e βx [βq n (x)+q n (x)] posto ottenimo Integrli tipo: con n N F (x) =P n (x) e βx P n (x) =βq n (x)+q n (x) x n log (x) dx = xn+ log (x) xn+ n + (n +) 2 5

6 Exb] Determinre i seguenti integrli definiti: π [2 sin (3x)+cos(3x)] e x dx; 2 x 2 +2x + e 2x dx; T] Sino α (t) e β (t) funzioni qulsisi verificre che: β(t) d f (s) ds = β (t) f (β (t)) α (t) f (α (t)) dt α(t) Exc] Utilizzndo l esercizio precedente determinre i seguenti limiti: 2 3 lim x + x 2 sin(x) x e t2 dt; sin(x2 ) rcsin (t) lim dt; x + sin (x) sin(x) t n n lim n T2] Si dt un qulsisi funzione continu x n log (x) dx f : D R con D intervllo di R, verificre che per ogni funzione di clsse C risult G(β) G(α) G :[α, β] D f (x) dx = β α f (G (t)) G (t) dt Se l ppliczione G è iniettiv per ogni, b pprtenenti Im(G) D 2 possimo scrivere: b f (x) dx = G (b) G () f (G (t)) G (t) dt 2 Ovvimente con Im(G) bbimo denotto l immgine (codominio) dell funzione G 6

7 Exd] Verificre che per ogni funzione continu f :[, ] R risult Exf] L scrittur è un errore? π f (sin (t)) cos (t) dt = dx = rctn(tn(x)) + Cost Exg] Verificre i seguenti risultti: 2 3 π 2 /4 2 tn(x/2) + x 2 3x 2 27 dx = log (2) ; cos 2 ( x) dx = h π i 2 2 log (2), R; tn(x) cos ³π 2 (tn (x)) cos 2 dx =; (x) π/4 7

8 INTEGRALI IMPROPRI T3] Si f :[, b[ R un funzione continu, verificre che se l funzione è limitt l integrle risult convergente Se esiste il limite b possimo ffermre che l integrle f (x) dx lim f (x) =l R x b converge? b f (x) dx T3b] Si f :], + [ R un funzione continu, verificre cheseesisteillimite esiste un numero rele tle che lim f (x) =l> x + + f (x) dx =+ T4] Si f :], + [ R un funzione continu, dre un senso ll scrittur + f (x) dx L funzione è integrbile? x ], + [ sin (x) R T5] Utilizzndo il principio del confronto dimostrre il teorem del confronto sintotico: Sino f,g :], b[ R 8

9 funzioni continue tle che f (x), g(x) >, con se f (x) lim = L [, + ] x b g (x) L = L =+ L ], + [ b b b g (x) dx < + = g (x) dx =+ = g (x) dx b b b f (x) dx; Sino F, G :], b[ R due funzioni continue 3, considerimo l integrle improprio se esistono b x o F (x) G (x) dx, L, l ], + [ tle che f (x) =F (x)(l + o ()) ; g (x) =G (x)(l + o ()) verificre che b F (x) b G (x) dx f (x) g (x) dx x o x o f (x) dx < + ; f (x) dx =+ ; 3 Anche qui vlgono le considerzioni dell not precedente 9

10 Exh Clcolre i seguenti integrli: log (x) x β dx, β > log (x) x β dx, β > 3 [log (x)] n dx, n N 4 π 6 cos (x) q dx, sin (x)+sin 2 (x) Exi] Studire l convergenz dei seguenti integrli impropri: dx, β > β log (x) 2 2 e (x )2 dx, β > β [log (x)] 3 sin (x α )+sin(x) x α log (x) 2 dx, α > 4 π/2 e xα x β +sin(x α dx, α, β > ) 5 + log x 7 + x 3 + log x 7 + x α log (x 2 + x + e x ) β dx, α, β > 6 + sin x 4 x 5 cos dx, x 7 + rctn x α dx, α > e x

11 8 π/4 sin ( x α ) e x3 dx, α > Exl] Studire l integrbilità delle seguenti funzioni: nell intervllo (, ) f (x) =e x sin (x); 2 nell intervllo (, + ) l vrire del prmetro α in R : f (x) = e +x 4 2 x log x α ; 3 nell intervllo (, 7π) l vrire del prmetro α in R : x 7 (x ) 2 2 α f (x) = log ³+(x 2 ; 3 ) 4 nell intervllo ( π, + ) l vrire del prmetro α in ], + [ : f (x) = e x x α p log ( + x ) ;

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi INTEGRLE INDEFINITO OIETTIVI MINIMI: Sper definire l integrle indefinito di un funzione. onoscere le proprietà dell integrle indefinito. Sper clcolre l integrle indefinito di un funzione utilizzndo i diversi

Dettagli

Appunti sull integrale di Riemann. Roberto Monti. 11 Gennaio Versione riveduta

Appunti sull integrale di Riemann. Roberto Monti. 11 Gennaio Versione riveduta Appunti sull integrle di Riemnn Roberto Monti Gennio - Versione rivedut Indice Cpitolo. Integrle di Riemnn 5. Definizione dell integrle di Riemnn 5. Teorem Fondmentle del Clcolo Integrle 8. Integrzione

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a Anlisi Mtemtic per Bio-Informtici Esercitzione 3.. 27-28 Dott. Simone Zuccher 28 Febbrio 28 Not. Queste pgine potrebbero contenere degli errori: chi li trov è pregto di segnlrli ll utore (zuccher@sci.univr.it).

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx Integrli impropri: esercizi AM: Esercizi Discutere l convergenz dei seguenti integrli ed eventulmente clcolrli. d. ( 3) 3 + + d 3. 3 + d 3. d 5. ( + ) 3 e sin d 6. e sin d 7. e cos d 8. d + log 3 9. d

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Clcolo Integrle Nello studio del clcolo differenzile si è visto come si può ssocire d un funzione l su derivt. Il clcolo integrle si occup del problem inverso: dt un funzione f è possibile determinre

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

Integrazione per parti. II

Integrazione per parti. II Integrzione per prti. II L regol di integrzione per prti f xgx dx [ f xgx] b f xg x dx f, g funzioni derivbili con funzione derivt continu su [, b], pplict ripetutmente, permette in prticolre di integrre

Dettagli

Integrali impropri. Riccarda Rossi. Analisi I. Università di Brescia. Riccarda Rossi (Università di Brescia) Integrali impropri Analisi I 1 / 48

Integrali impropri. Riccarda Rossi. Analisi I. Università di Brescia. Riccarda Rossi (Università di Brescia) Integrali impropri Analisi I 1 / 48 Integrli impropri Riccrd Rossi Università di Bresci Anlisi I Riccrd Rossi (Università di Bresci) Integrli impropri Anlisi I 1 / 48 (2) α > 0 f (x) = 1 (0, + ). Inftti, x α NON È integrbile in senso improprio

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

Integrali impropri. Vogliamo definire e calcolare f (x)dx quando. I y. f (x)

Integrali impropri. Vogliamo definire e calcolare f (x)dx quando. I y. f (x) Integrli impropri Voglimo definire e clcolre f (x)dx qundo I I è illimitto, I è limitto, m f non è limitt su I. y y f (x) f (x) x x c Pol Gervsio - Anlisi Mtemtic - A.A. /2 Integrli impropri cp0.pdf Integrle

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Introduzione al calcolo integrale

Introduzione al calcolo integrale Introduzione l clcolo integrle Indice: Integrle di Riemnn. Proprietà delle funzioni integrbili. Continuità dell funzione integrle. Teorem dell Medi. Teorem Fondmentle del Clcolo Integrle. Metodi di integrzione.

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Formulario di Analisi Matematica 1

Formulario di Analisi Matematica 1 Formulrio di Anlisi Mtemtic Indice degli rgomenti Punti interni, isolti, di ccumulzione e di frontier Alcune costnti Proprietà delle potenze Proprietà degli esponenzili Proprietà dei logritmi Proprietà

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 7/8 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

1 Integrale indefinito

1 Integrale indefinito Anlisi Mtemtic II, Fisic(A.A. 6/57) Preprzione Prov sritt Mrzo-Aprile 7 * * Integrle indefinito Definizione L funzione F (x) e primitiv di f(x) se e solo se F (x) = f(x). Se F (x) è primitiv di f(x) llor

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri ANALISI 1 1 VENTIDUESIMA LEZIONE Integrli impropri 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Funzioni reali di variabile reale Esercizi su integrali e integrali generalizzati. Mauro Saita

Funzioni reali di variabile reale Esercizi su integrali e integrali generalizzati. Mauro Saita Funzioni reli di vribile rele su integrli e integrli generlizzti Per commenti o segnlzioni di errori scrivere, per fvore, : murosit@tisclinet.it Dicembre 5 Indice Integrli. Primitive e integrli definiti.............................

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione del 20 Aprile 2011

Analisi 2. Roberto Monti. Appunti del Corso - Versione del 20 Aprile 2011 Anlisi 2 Roberto Monti Appunti del Corso - Versione del 2 Aprile 2 Indice Cpitolo. Teori dell integrle di Riemnn. Integrli generlizzti 5. Integrli impropri su intervllo illimitto 5 2. Convergenz ssolut

Dettagli

Alcune note introduttive alle serie di Fourier.

Alcune note introduttive alle serie di Fourier. Alcune note introduttive lle serie di Fourier. Definizione. Si f : IR IR periodic di periodo e integrbile su [, ]. Diremo coefficienti di Fourier di f i numeri reli = f dx, = IN f cos dx, b = IN e serie

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni. 8 Dicembre 208 Indice Teoremi per l second prov in itinere. Dimostrzioni.

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Clcolo Integrle Nello studio del clcolo differenzile si è visto come si può ssocire d un funzione l su derivt. Il clcolo integrle si occup del problem inverso: dt un funzione f è possibile determinre

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi su spazi di funzioni, convergenza uniforme

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi su spazi di funzioni, convergenza uniforme Corso di Metodi Mtemtici per l Ingegneri A.A. 2016/2017 Esercizi su spzi di funzioni, convergenz uniforme Mrco Brmnti Politecnico di Milno October 7, 2016 A. Esercizi su spzi vettorili, spzi vettorili

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

ESERCIZI SUGLI INTEGRALI IMPROPRI

ESERCIZI SUGLI INTEGRALI IMPROPRI ESERCIZI SUGLI INTEGRALI IMPROPRI cur di Michele Scgli RICHIAMI TEORICI INTEGRALI IMPROPRI NOTEVOLI L integrle CONVERGE dx, < DIVERGE per

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Teoremi per l second prov. Dimostrzioni. Federico Lstri, Anlisi e Geometri Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni.

Dettagli

Pacchetto d onda. e (a2 k 2 ikx) dk (1)

Pacchetto d onda. e (a2 k 2 ikx) dk (1) Pcchetto d ond 1 Clcolo d integrli gussini Per clcolre un integrle del tipo ψ(x) = e ( k ikx) dk (1) l procedur stndrd e di scrivere l espressione che ppre nell esponenzile come il qudrto di un funzione

Dettagli

equazioni e disequazioni

equazioni e disequazioni T Cpitolo equzioni e disequzioni Disequzioni e princìpi di equivlenz Le disuguglinze sono enunciti fr espressioni che confrontimo medinte le seguenti relzioni d ordine: (minore), (mggiore), # (minore o

Dettagli

Integrale: Somma totale di parti infinitesimali

Integrale: Somma totale di parti infinitesimali I problemi del Clcolo Ininitesimle (Newton, Method o Fluxions, 67) o Problem. (Derivt) Dt l lunghezz dello spzio percorso in ogni istnte di tempo, determinre l velocità in ogni istnte. 2 o Problem. (Integrle)

Dettagli

(somma inferiore n esima), (somma superiore n esima).

(somma inferiore n esima), (somma superiore n esima). Clcolo integrle Appunti integrtivi lle dispense di Mtemtic ssistit rgomento 9 (Integrli definiti) e rgomento (Integrli impropri) cur di C.Znco (Il contenuto di questi ppunti f prte del progrmm d esme)

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

f(z) = log A.2) Determinare i valori del parametro 2 IR per cui il problema ( y 00 +3y = y y(0) = 0

f(z) = log A.2) Determinare i valori del parametro 2 IR per cui il problema ( y 00 +3y = y y(0) = 0 (prov scritt di ANALISI MATEMATICA II - mggio 00) Compito A A.) Studire il dominio di denizione e quello di olomor dell funzione f(z) = log 0 z I def = fz C jz 6= g ; I ol = C n ( x y =0 A.) Determinre

Dettagli

Università di Trento Dip. di Ingegneria e Scienza dell Informazione

Università di Trento Dip. di Ingegneria e Scienza dell Informazione Cognome Nome Matricola Non scrivere qui A 1 3 4 5 6 Università di Trento Dip. di Ingegneria e Scienza dell Informazione CdL in Informatica - CdL in Ingegneria dell informazione e delle comunicazioni CdL

Dettagli

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s),

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s), Soluzione N3 Soluzione T] Si F l primiiv dell nosr funzione f, in lre prole F (s) =f (s), per definizione di inegrle definio oenimo β() α() f (s) ds = F (β ()) F (α ()) derivndo oenimo β() d f (s) ds =

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Elenco dei teoremi dimostrati a lezione

Elenco dei teoremi dimostrati a lezione Elenco dei teoremi dimostrti lezione Muro Sit murosit@tisclinet.it In queste pgine si riport l elenco dei teoremi dimostrti lezione. 1 1 Principio di induzione. 1. Utilizzndo il principio di induzione

Dettagli

Calcolo Integrale. Avviso. Integrazione analitica. Proprietà dell integrale

Calcolo Integrale. Avviso. Integrazione analitica. Proprietà dell integrale M. Annunzito, DMI Università di Slerno - documento provvisorio p. 3/18 M. Annunzito, DMI Università di Slerno - documento provvisorio p. 4/18 Avviso I contenuti di queste nnotzioni non sono esustivi i

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A Prim prov scritt di Anlisi Mtemtic 1 del 10/01/2011 A (1) Fornire l definizione di funzione integrbile secondo Riemnn e di integrle di Riemnn. (2) Enuncire e dimostrre il Teorem di Rolle. (3) Dimostrre

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

TEST SUGLI INTEGRALI VERO/FALSO V F V F V F V F V F

TEST SUGLI INTEGRALI VERO/FALSO V F V F V F V F V F TEST SUGLI INTEGRALI VERO/FALSO ) Di un funzione continu in un intervllo chiuso e limitto esiste sempre l' integrle indefinito ) f f d V F 3) [8f + 5g ] 8 f d + 5 g d V F 4) f f = f + c V F c c V F c c

Dettagli

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrle secondo Riemnn 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni Integrle di Riemnn 1 Funzioni integrbili Dto un intervllo non degenere [, b], indichimo con T[, b] l collezione dei sottoinsiemi finiti di [, b] che contengono {, b}. Ogni D T[, b] si chimerà suddivisione

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

ANALISI MATEMATICA 2 Anno accademico

ANALISI MATEMATICA 2 Anno accademico ANALISI MATEMATICA 2 Anno ccdemico 27-8 ELENCO delle DEFINIZIONI e TEOREMI del CORSO DISPENSE Principio di sostituzione pg. 5 Integrli impropri pg. Serie numeriche pg. 27 Integrli Doppi pg. 43 SINTESI

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Errata Corrige al testo Leonardo Angelini Meccanica Quantistica: problemi scelti Springer II edizione

Errata Corrige al testo Leonardo Angelini Meccanica Quantistica: problemi scelti Springer II edizione Errt Corrige l testo Leonrdo Angelini Meccnic Quntistic: problemi scelti Springer 08 - II edizione 5 novembre 08 Cpitolo. Costnti del moto Correggere l formul pg. 0 d F, G F, G + i F, G, H dt t F t G +

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

INTEGRAL IMPROPRI. C.d.L in Fisica Lecce, a.a. 2011/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag.

INTEGRAL IMPROPRI. C.d.L in Fisica Lecce, a.a. 2011/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag. INTEGRAL IMPROPRI (Cosimo De Mitri). Le definizioni... pg.. Criteri di integrbilità... pg. 6 3. Esercizi... pg. C.d.L in Fisic Lecce,.. / INTEGRALI IMPROPRI (C. De Mitri). Le definizioni I concetti di

Dettagli

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli curvilinei di prim specie (integrli di densità) 15 Dicembre 215 Indice 1 Integrli di line di prim specie

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L.

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L. Anlisi Mtemtic II, Anno Accdemico 7-8. Ingegneri Edile e Architettur Vincenzo M. Tortorelli 5 Settembre 7: prim prov in itinere. N. mtr./nno iscr. Cognome docente/ crediti Nome Istruzioni l fine dell vlutzione:

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli di line di prim specie (Integrli di densità lungo cmmini non orientti) Gennio 213 Indice 1 Integrli di

Dettagli

Trasformate di Laplace nel campo reale

Trasformate di Laplace nel campo reale Trsformte di Lplce nel cmpo rele Funzioni generlmente continue Definizione. Un funzione f si dice generlmente continu in (, b) se esistono un numero finito di punti x = < x < < x n = b tli che f è definit

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

Analisi Matematica 1 Venticinquesima lezione[1cm]integrale di Riemann 5 marzo (cont.) / 20

Analisi Matematica 1 Venticinquesima lezione[1cm]integrale di Riemann 5 marzo (cont.) / 20 Anlisi Mtemtic 1 Venticinquesim lezione Integrle di Riemnn (cont.) prof. Cludio Sccon Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni lgeriche. NOTA ogni monomio o polinomio può essere

Dettagli

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni 9 ) Proprietà delle disuguglinze fr numeri reli reltivi ) Inequzioni e loro proprietà ) Inequzioni rzionli intere di primo grdo d un incognit 4) Segno del trinomio di secondo grdo : T = c 5) Inequzioni

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Le frazioni algebriche

Le frazioni algebriche Progetto Mtemtic in Rete - Frzioni lgeriche - Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri.. 2008/2009 Integrzione () 29 mggio 2009 1 / 18 Integrzione Problem: pprossimre integrli definiti del tipo: f (x)dx,

Dettagli

14 - Integrazione numerica

14 - Integrazione numerica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 4 - Integrzione numeric Anno Accdemico 205/206 M. Tumminello, V.

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli