PRINCIPIO DI INDUZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PRINCIPIO DI INDUZIONE"

Transcript

1 PRINCIPIO DI INDUZIONE LORENZO BRASCO Contents. Qualche richiao. Esercizi. Qualche richiao Sia n N e siano a,..., a n nueri reali. Ricordiao il sibolo di soatoria a a 0 + a + + a n. Ricordiao la definizione di fattoriale {, se n 0, n! n n, se n e quella di coefficiente binoiale n n!, dove 0 n.! n! Dalla definizione di fattoriale, abbiao le seguenti relazioni: n + n! n +! e n! n! n n n +. Ci servirà inoltre il seguente piccolo risultato tecnico: Lea.. Per ogni n N \ {0} ed ogni n, si ha n n + n +.

2 LORENZO BRASCO Soluzione. È sufficiente scrivere esplicitaente i binoiali a prio ebro e svolgere qualche calcolo, infatti si ha n n n! +!n! + n!!n +! n! n +!n + n! + n!! n +! n! n +!n +! + n!! n +! n!n + + n! n!n + +!n +!!n + n + n! n +!n +, che è esattaente ciò che volevao provare.. Esercizi Esercizio.. Diostrare che per ogni n si ha n n +.. Soluzione. Procediao per induzione: la. è ovviaente vera per n, coe è facile convincersi. Infatti in tal caso abo i ebri valgono. Supponiao adesso che la. sia vera per un qualche naturale ipotesi induttiva, dobbiao ostrare che questo iplica la validità della stessa forula per il naturale successivo +. Se riusciao a ostrare ciò, abbiao finito grazie al principio di induzione. Abbiao quindi + +, e sfruttando l ipotesi induttiva, sappiao dire esplicitaente chi è la soatoria a seconda ebro, ovvero ,

3 PRINCIPIO DI INDUZIONE 3 dopo di che basta svolgere un po di seplici passaggi algebrici, per ottenere che , ovvero la. è vera anche per + e quindi possiao concludere. Esercizio.. Diostrare che per ogni n si ha. n n + n +. Soluzione. Procediao per induzione: la. è ovviaente vera per n, coe è facile convincersi. Supponiao adesso che la. sia vera per un qualche naturale ipotesi induttiva: è vero che questo iplica la validità di. anche per il naturale successivo +? Se la risposta è sì abbiao finito, grazie al principio di induzione. Abbiao quindi + + e sfruttando l ipotesi induttiva, sappiao dire esplicitaente chi è la soatoria a seconda ebro, ovvero , dopo di che basta svolgere un po di seplici passaggi algebrici, per ottenere che [ ] , ovvero la. è vera anche per + e quindi possiao concludere. Esercizio.3. Diostrare che per ogni n si ha nn

4 4 LORENZO BRASCO Osservazione.4. Più in generale, per ogni n N ed i N, definiao N i n i, ovvero N i n è la soa delle potenze i esie dei prii n nueri: in particolare, negli esercizi precedenti abbiao trovato la fora esplicita per N i n quando i,, 3. Si può provare la seguente forula ricorsiva per N i n:.4 N i n i + n + i+ i + i 0 i + N n. Infatti coinciao osservando che, usando il cabio di indice j + e la forula del Binoio di Newton si veda Esercizio.7, si ottiene n n i i N i n j + i j, 0 j0 j0 0 ovvero scabiando le soatorie nella precedente, si ha i i n i i N i n j N n j0 0 N i n + i N i n + i 0 i N n. Osserviao adesso che N i n N i n n i per definizione, quindi la relazione precedente può anche essere riscritta, portando N i n e la soatoria a prio ebro e dividendo per i, coe N i n i ni i i 0 i N n, ovvero, visto che la precedente vale per ogni i e per ogni n, sostituendo i con i + e n con n + si ottiene la.4. Esercizio.5. Diostrare che per ogni n, il nuero n n è divisibile per. Soluzione. Conviene coe sepre appellarci al principio di induzione: la tesi è ovviaente vera per n, dal oento che in tal caso il nuero in questione è 3 + 5, Notare che i due indici j e sono indipendenti.

5 PRINCIPIO DI INDUZIONE 5 che è chiaraente divisibile per. Supponiao adesso che per un certo naturale, il nuero n sia divisibile per ipotesi induttiva, vogliao che lo stesso succeda anche per il naturale successivo n, ovvero vogliao provare che n 3 +5 n è anch esso divisibile per. D altronde si ha n n [n ] + [3 + ] +, e quest ultia è la soa di tre nueri, tutti divisibili per : il prio n lo è per ipotesi induttiva, il terzo è, entre il secondo 3 + è divisibile per in quanto triplo prodotto del nuero pari +. In conclusione, anche è divisibile per. Esercizio.. Diostrare che per ogni n, il nuero 0 n è divisibile per 9. Soluzione. Procediao per induzione: coe sepre, il prio passo è verificare che la nostra afferazione sia vera per il prio naturale per cui viene forulata, ovvero in questo caso per n. D altronde in tal caso il nuero in questione è 0 9, che è divisibile per 9. Adesso, doandiaoci cosa succede se assuiao che la nostra afferazione sia vera per un certo naturale N, ovvero assuiao di sapere che 0 sia divisibile per 9 ipotesi induttiva: lo stesso varrà per anche per 0 +? In effetti si ha , ovvero 0 + è la soa di due nueri divisibili per 9 e quindi è anch esso divisibile per 9. Per il principio di induzione, ne concludiao che l afferazione di partenza è vera per ogni n. Esercizio.7 Binoio di Newton. Siano x, y R due nueri positivi. Diostrare che per ogni n si ha n.5 x + y n x y n Soluzione. Procediao usando il principio di induzione: la verifica che.5 è vera per n è iediata. Supponiao adesso di sapere che.5 sia vera per un certo N, vorreo diostrare che allora essa è vera anche per il successivo naturale, ovvero per + : osserviao innanzitutto che vale ovviaente x + y + x + y x + y, Si provi che per ogni n N, nn + è un nuero pari.

6 LORENZO BRASCO dopo di che applichiao l ipotesi induttiva ovvero il fatto che stiao supponendo.5 vera per, ottenendo quindi x + y + x + y x y x x y + y x y x + y + x y +. A questo punto, riscriviao la pria soatoria cabiando il noe dell indice di soa e ponendo h, così da ottenere n x + y x h y h+, h in odo che abbiao ottenuto x + y + h x y [ x + + y + + x y + ] x y +, ovvero, utilizzando l identità diostrata nel Lea. x + y + x + + y x y + + x y +, quindi la.5 è vera anche per +. Per il principio di induzione, essa è vera per ogni n. Esercizio.8. Diostrare che per ogni n N si ha. n n!. Soluzione. La proposizione è chiaraente vera per n 0, ricordandosi che 0! per definizione. Supponiao adesso che. sia vera per un certo N, ostriao

7 PRINCIPIO DI INDUZIONE 7 coe questo iplichi che. debba essere vera anche per il naturale successivo +. Si ha infatti per ipotesi induttiva!, e d altronde +, appena, quindi abbiao provato concludendo così la diostrazione. +!, Esercizio.9 Soa geoetrica. Sia a R \ {0, }, diostrare che per ogni n N si ha.7 a an+ a. Soluzione. Procediao per induzione: per n 0 si vede facilente che.7 è vera, infatti entrabi i ebri coincidono con. Assuiao adesso che per un certo N valga a a+ a, e consideriao il passo +. Si ha a a + a +, ed usando l ipotesi induttiva ovvero il fatto che.7 è vera per si ha a a + a + a a + a+ Questo diostra che.7 è vera per +. a+ + a + a + a a+ a. Esercizio.0 Il falso binoio di Newton. Siano x, y R due nueri positivi. Diostrare che per ogni n si ha.8 x n+ y n+ x y x y n.

8 8 LORENZO BRASCO Soluzione. Osserviao innanzitutto che se x y la forula è banalente vera, perché abo i ebri valgono 0. Ugualente, se y 0 la forula è banalente vera, visto che entrabi i terini valgono x n+ - Supponiao quindi x y e y 0. Usando le proprietà delle potenze y n y n y y n y, e quindi grazie alla forula.7 con a x/y si ha x y x y n x y y n x x x y yn y y n+ x x y y n y x y coe voluto. x y y n xn+ y n+ x y y n x n+ y n+, Osservazione. Casi particolari del falso binoio di Newton. Due casi particolari della forula precedente saranno probabilente ben noti al lettore fin dalle scuole superiori. Si tratta dei casi n e n : in tali casi la forula diventa rispettivaente x y x y x + y, e x 3 y 3 x y x + x y + y. Esercizio. Disuguaglianza di Bernoulli. Diostrare che per ogni x ed ogni n N \ {0} vale.9 + x n + n x. Soluzione. Procediao usando il principio di induzione. La disuguaglianza.9 è vera per ogni x quando n, dato che entrabi i ebri coincidono con + x. Supponiao adesso che.9 sia vera per un certo ed ogni x. Dobbiao diostrare che allora.9 è vera anche per +. Osserviao innanzitutto che + x + + x + x,

9 PRINCIPIO DI INDUZIONE 9 dopo di che per ipotesi induttiva sappiao che + x + x. Inoltre x, quindi il terine + x è positivo, possiao quindi dire che + x + + x + x + x + x. Sviluppando l ultio prodotto, troviao quindi + x x + x. Osserviao che l ultio terini è positivo, quindi abbiao ottenuto + x x, ovvero.9 al passo +, coe volevao. Esercizio.3. Diostrare che per ogni n, si ha.0 n n! n n. Soluzione. Di nuovo, usereo il principio di induzione: partiao intanto col verificare che.0 è vera per n, infatti si ha!, con seplici calcoli 3. Supponiao adesso che.0 sia vera per un certo N, vogliao provare che lo stesso possiao dire per il naturale successivo +. Osserviao che si ha, sfruttando l ipotesi induttiva + +! +! + n 0, quindi se riusciao a diostrare che la quantità a secondo ebro può essere stiata coe segue. + n 0 + +, abbiao concluso, perchè avreo diostrato proprio che.0 è vera anche per n. Il problea quindi si è ridotto a diostrare la validità di., a d altronde si vede subito che essa è equivalente a diostrare che +, la quale è una conseguenza inediata della forula del Binoio di Newton diostrata in precedenza, infatti + + +, concludendo così la diostrazione. n 0 3 Non volendo sforzarsi con calcoli troppo lunghi o non volendo usare la calcolatrice, non è difficile convincersi che! e quest ultia è ovviaente vera. n 0

10 0 LORENZO BRASCO Esercizio.4. Diostrare che per ogni n N, si ha. n n 3 n n!. Soluzione. Usiao il principio di induzione: la verifica che. è vera per n 0 è iediata. Vediao adesso cosa succede se supponiao che. sia vera per un certo N: se grazie a questo riusciao a provare la validità di. anche per il successivo naturale +, abbiao finito. Coe pria, osserviao che grazie all ipotesi induttiva possiao dire 3 + +! 3 + 3! 3 + n 0. Supponiao per un attio di saper provare che n 0 + +, di nuovo questo ci peretterebbe di provare che. è valida anche per + e quindi di concludere. Resta quindi da provare che effettivaente vale la.3: con qualche passaggio algebrico, non è difficile vedere che questa è equivalente alla seguente + 3, che cerchereo adesso di diostrare. Usando nuovaente la forula del Binoio di Newton + + n 0 n 0! !! n 0! +... n 0 +! +! +, dopo di che osserviao che usando la., abbiao!, n 0

11 ovvero riprendendo da dove eravao riasti + + PRINCIPIO DI INDUZIONE 0 + concludendo così la diostrazione. h0! + h h + h 3, Osservazione.5. Si osservi che nella risoluzione degli ultii due esercizi, abbiao diostrato + n n 3, per ogni n.

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn + ) ). 2 Esercizio 2. Diostrare che per ogni n si ha 2) 2 nn + )2n + ). Soluzione. Procediao per induzione: la 2) è ovviaente

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

Lezione 12. Sottogruppi finiti di ordine fissato. I Teoremi di Sylow.

Lezione 12. Sottogruppi finiti di ordine fissato. I Teoremi di Sylow. Lezione 1 Prerequisiti: Lezioni, 7. ruppi di perutazioni. Riferienti ai testi: [Fd] Sezione.1; [H] Sezione.7; [PC] Sezione 5.1 Sottogruppi finiti di ordine fissato. I Teorei di Sylow. Dal Teorea di Lagrange

Dettagli

ELEMENTI DI LOGICA MATEMATICA LEZIONE X

ELEMENTI DI LOGICA MATEMATICA LEZIONE X ELEMENTI DI LOGICA MATEMATICA LEZIONE X MAURO DI NASSO Dedichiao questa lezione all introduzione dei nueri reali R, definiti a partire dall insiee dei nueri razionali Q. Con questo ultio passo, avreo così

Dettagli

IL TEOREMA DI EULERO-FERMAT. Indice. 1. La funzione φ di Eulero

IL TEOREMA DI EULERO-FERMAT. Indice. 1. La funzione φ di Eulero IL TEOREMA DI EULERO-FERMAT STAGE DI MATEMATICA E APPLICAZIONI, 13-22 GIUGNO 2017 Indice 1. La funzione φ di Eulero 1 2. Il Teorea di Eulero-Ferat 2 3. Il punto di vista algebrico 4 3.1. Gruppi ed esepi

Dettagli

Funzioni completamente monotone

Funzioni completamente monotone Funzioni copletaente onotone Sione Parisotto 6 Dicebre 211 1 Alcune considerazioni Un breve richiao su un iportante risultato precedente: Teorea 1.1 (Bochner. Una funzione continua Φ : R d C è seidefinita

Dettagli

Esame di Calcolo delle Probabilità del 7 gennaio 2008 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 7 gennaio 2008 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esae di Calcolo delle Probabilità del 7 gennaio 2008 (Corso di Laurea Triennale in Mateatica, Università degli Studi di Padova). Cognoe Noe Matricola Es. 1 Es. 2 Es. 3 Es. 4 Soa Voto finale Attenzione:

Dettagli

CAPITOLO 1. La retta reale

CAPITOLO 1. La retta reale CAPITOLO 1 La retta reale 1. I nueri naturali. Gli interi relativi. L operazione di contare è una delle più naturali che esistano. Ognuno di noi, pria ancora di sapere che cosa vogliano dire uno e due,

Dettagli

LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI

LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI MAURIZIO PAOLINI - CORSO PAS CLASSE A048 Dipartiento di Mateatica e Fisica, Università Cattolica, sede di Brescia. paolini@df.unicatt.it E-ail

Dettagli

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2)

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2) Esercizio tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa 0.5 Kg è agganciato ad un supporto fisso traite una olla di costante elastica 2 N/; il corpo è in quiete nel punto O di un piano orizzontale,

Dettagli

LAVORO DI UNA FORZA (1)

LAVORO DI UNA FORZA (1) LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

Geometria delle somme di potenze di interi consecutivi

Geometria delle somme di potenze di interi consecutivi Geoetria delle soe di potenze di interi consecutivi Articolo dello stesso Autore, pubblicato sul volue 92 n. 525 di The Matheatical Gazette del Novebre 28 Stefano Costa stefano.costa74@virgilio.it Ñ ÛÑ

Dettagli

A. Teta APPUNTI DI MECCANICA RAZIONALE. Sistemi unidimensionali. a.a. 2016/17

A. Teta APPUNTI DI MECCANICA RAZIONALE. Sistemi unidimensionali. a.a. 2016/17 A. Teta APPUNTI DI MECCANICA RAZIONALE Sistei unidiensionali a.a. 16/17 1 INDICE 1. Introduzione pag. 3. Conservazione dell energia e riduzione alle quadrature 4 3. Equilibrio e stabilitá 6 4. Moti periodici

Dettagli

OPERAZIONI CON I LIMITI

OPERAZIONI CON I LIMITI OPERAZIONI CON I LIMITI Teorea della soa. Siano f e g due funzioni definite da X in R, con X R, e x0d(x). Supponiao che allora, sotto queste ipotesi, Diostrazione Per diostrare che basterà far vedere che

Dettagli

September 30, 2014 INSIEMI

September 30, 2014 INSIEMI Septeber 30, 2014 INSIEMI In odo piuttosto inforale si introducono nozioni e notazioni insieistiche che vengono correnteente usate per sviluppare le teorie ateatiche tra cui quella che è argoento del corso.

Dettagli

Congetture di Weil per le curve non singolari

Congetture di Weil per le curve non singolari Chapter 13 Congetture di Weil per le curve non singolari In questo capitolo dareo l idea della diostrazione delle congetture di Weil per le curve non singolari seguendo la diostrazione di Bobieri Stepanov.

Dettagli

Estrazione solido-liquido

Estrazione solido-liquido Metodo grafico di calcolo - Gradi di libertà Il nuero di gradi di libertà dell operazione di estrazione solido-liquido può essere ricavato facilente dall analisi delle variabili in gioco e delle relazioni

Dettagli

Isometrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether)

Isometrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether) Isoetrie Ad ogni sietria delle Natura corrisponde una quantità conservata (E Noether) Le isoetrie sono particolari affinità cioè trasforazioni lineari del piano in sé, che lasciano invariata la distanza

Dettagli

Amperometri analogici passivi

Amperometri analogici passivi ppunti di Misure Elettriche peroetri analogici passivi NTODUZONE L aperoetro è, in generale, lo struento atto a isurare una corrente elettrica. Parliao invece di galvanoetro quando tale corrente è di intensità

Dettagli

2. Fissato nello spazio un punto O, consideriamo lo spazio vettoriale geometrico

2. Fissato nello spazio un punto O, consideriamo lo spazio vettoriale geometrico Algebra lineare (Mateatica C.I.) 0.2.3. Fissato nello spazio un punto O, consideriao lo spazio vettoriale geoetrico S O dei vettori dello spazio con origine nel punto O. Sia π un piano passante per il

Dettagli

I moti. Daniel Gessuti

I moti. Daniel Gessuti I oti Daniel Gessuti 1 introduzione Uno dei problei che ha interessato gli scienziati fin dall antichità e che costituisce un notevole capo d indagine della Fisica è senza dubbio quello che riguarda il

Dettagli

FM210 - Fisica Matematica 1 Tutorato V - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi)

FM210 - Fisica Matematica 1 Tutorato V - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi) Corso di laurea in Mateatica - Anno Accadeico 01/013 FM10 - Fisica Mateatica 1 Tutorato V - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi) Esercizio 1. Abbiao il sistea eccanico ẍ = dv d

Dettagli

4. Problemi lineari. 4.1 Equazioni di I grado in una incognita

4. Problemi lineari. 4.1 Equazioni di I grado in una incognita . Problei lineari. Equaioni di I grado in una incognita Prerequisiti Conoscene di algebra eleentare Concetto di uguagliana Concetto di relaione di equivalena Concetto di iplicaione e coiplicaione Calcolo

Dettagli

NUOVI CRITERI DI DIVISIBILITÀ?

NUOVI CRITERI DI DIVISIBILITÀ? NUOVI CRITERI DI DIVISIBILITÀ? di Carelo Di Stefano SUMMARY: In this paper the Author, starting fro a "sensational" title on a local newspaper, considers soe divisibility criteria which aren't so diffused

Dettagli

CIRCUITI MAGNETICI GIOGO TRAFERRO COLONNA

CIRCUITI MAGNETICI GIOGO TRAFERRO COLONNA CIRCUITI MAGNETICI Si definisce circuito agnetico un certo sviluppo di linee di induzione tale da svolgersi prevalenteente entro ateriali ferroagnetici cioè con alta pereabilità. Le linee di induzione

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Potenze, logaritmi, equazioni esponenziali e logaritmiche.

Potenze, logaritmi, equazioni esponenziali e logaritmiche. Potenze, logariti, equazioni esponenziali e logaritiche Potenza con esponente intero di un nuero reale Sia a R ed n Z Ricordiao, anzitutto, le seguenti definizioni: ) se n >, si chiaa potenza ennesia (che,

Dettagli

1 Simulazione di prova d Esame di Stato

1 Simulazione di prova d Esame di Stato Siulazione di prova d Esae di Stato Problea Risolvi uno dei due problei e 5 dei 0 quesiti in cui si articola il questionario Sia y = f) una funzione reale di variabile reale tale che la sua derivata seconda

Dettagli

Moto di caduta di un corpo. Un corpo K, supposto puntiforme e di massa m, cade verso il suolo da un altezza h. Studiamone il moto.

Moto di caduta di un corpo. Un corpo K, supposto puntiforme e di massa m, cade verso il suolo da un altezza h. Studiamone il moto. Moto di caduta di un corpo 1. Preessa Un corpo K, supposto puntifore e di assa, cade verso il suolo da un altezza h. Studiaone il oto. Si tratta allora di deterinare: tutte le forze agenti sul corpo; la

Dettagli

ESERCIZI DI ANALISI MATEMATICA I. Maggiorazione della media geometrica con la media aritmetica

ESERCIZI DI ANALISI MATEMATICA I. Maggiorazione della media geometrica con la media aritmetica ESERCIZI DI ANALISI MATEMATICA I Maggiorazioe della edia geoetrica co la edia aritetica Siao x 1,, x 0 Allora er ogi vale la aggiorazioe x1 x x 1 + + x (1) Suggerieto: diostrare er iduzioe utilizzado la

Dettagli

Teoria delle Perturbazioni (seconda parte)

Teoria delle Perturbazioni (seconda parte) Teoria delle Perturbazioni (seconda parte) Corso MMMQ UNIMI (G. Gaeta, a.a. 2018/19) 6 Novebre 2018 In una precedente dispensa abbiao discusso gli aspetti più eleentari della teoria delle perturbazioni

Dettagli

Equazioni delle curve di Lissajous

Equazioni delle curve di Lissajous Equazioni delle curve di Lissajous Danilo Berta aprile 203 Indice Introduzione 2 2 Sistea oscillante canonico 5 3 Soluzione del sistea canonico per = ω 2 7 3. Casi particolari.................................

Dettagli

LA TORRE DI HANOI: GENERALIZZAZIONI

LA TORRE DI HANOI: GENERALIZZAZIONI LA TORRE DI HANOI: GENERALIZZAZIONI CARMELO DI STEFANO. Introduzione. In questo lavoro viene trattato un problea considerato orai una classica applicazione della ricorsione: la torre di Hanoi. Dopo una

Dettagli

LA FORMULA DI TAYLOR

LA FORMULA DI TAYLOR LA FORMULA DI TAYLOR LORENZO BRASCO Indice. Definizioni e risultati. Sviluppi notevoli 3.. Esponenziale 4.. Seno 4.3. Coseno 4.4. Una funzione razionale 5.5. Logaritmo 6 3. Esercizi 6. Definizioni e risultati

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) 1 Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

Maturità scientifica P.N.I Q.1

Maturità scientifica P.N.I Q.1 Luigi Lecci\Liceo Scientifico G. Stapacchia - Tricase (LE) 08-54400 Maturità scientifica P.N.I. 99 Q. In un piano cartesiano ortogonale Oxy si considerino le parabole C e C di equazione rispettivaente:

Dettagli

Esercizi di Microeconomia Avanzata

Esercizi di Microeconomia Avanzata Esercizi di icroeconoia Avanzata Teoria del Consuatore - Soluzioni April 6, 06 Esercizio Si consideri la seguente funzione di utilità: u (x, x ) = x x Deterinare le funzioni di doanda arshalliane Anzitutto

Dettagli

AMMORTAMENTI A RATE ANTICIPATE

AMMORTAMENTI A RATE ANTICIPATE Aortaenti a rate anticipate AMMORTAMENTI A RATE ANTICIPATE Sia l operazione regolata secondo la legge della capitalizzazione coposta con tasso di interesse periodale i coerente con la periodicità di pagaento

Dettagli

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

AMMORTAMENTI A RATE ANTICIPATE

AMMORTAMENTI A RATE ANTICIPATE Aortaenti a rate anticipate AMMORTAMENTI A RATE ANTICIPATE Sia l operazione regolata secondo la legge della capitalizzazione coposta con tasso di interesse periodalei coerente con la periodicità di pagaento

Dettagli

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2) 1 Esercizio (tratto dal Problea 4.7 del Mazzoldi 2) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica = 70 N/, che si trova alla lunghezza

Dettagli

TRASLAZIONI E DILATAZIONI

TRASLAZIONI E DILATAZIONI TRASLAZIONI E DILATAZIONI Prof. Fabio Breda Abstract. Lo scopo di questo articolo è fare chiarezza sulla odalità di costruzione del graco di funzioni attraverso traslazioni o dilatazioni del graco di altre

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

Lezione n.15. Doppi bipoli

Lezione n.15. Doppi bipoli Lezione 5 Doppi bipoli Lezione n.5 Doppi bipoli. Definizione di N-polo. Definizione di doppio-bipolo 3. Doppi-bipoli in regie stazionario (doppi-bipoli di resistenze 4. Problei di analisi 5. Problei di

Dettagli

Capitolo 1 Fisica, grandezze, unità di misura, metodo scientifico.

Capitolo 1 Fisica, grandezze, unità di misura, metodo scientifico. Capitolo 1 Fisica, grandezze, unità di isura, etodo scientifico. Fisica e etodo Il terine fisica deriva dal greco physiké che letteralente significa riguardante la natura. Tale definizione, corretta dal

Dettagli

Robustezza del Regolatore Ottimo LQ. Docente Prof. Francesco Amato

Robustezza del Regolatore Ottimo LQ. Docente Prof. Francesco Amato Robustezza del Regolatore Ottio LQ Docente Prof. Francesco Aato Ingegneria dell'autoazione Corso di Sistei di Controllo Multivariabile - Prof. F. Aato Versione 1.3 Novebre 2012 1 Consideriao il problea

Dettagli

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018 Noe Cognoe Nuero di atricola Coordinata posizione Quarto copito di isica Generale + Esercitazioni, a.a. 207-208 3 Settebre 208 ===================================================================== Preesse

Dettagli

AMMORTAMENTI A RATE POSTICIPATE

AMMORTAMENTI A RATE POSTICIPATE AMMORTAMENTI A RATE POSTICIPATE Ci ettiao nell ipotesi che l operazione sia regolata secondo la legge della capitalizzazione coposta con tasso di interesse periodale i coerente con la periodicità di pagaento

Dettagli

1. Quale delle seguenti affermazioni è corretta? (riscrivere la risposta corretta per esteso e solo sul foglio protocollo, non qui sotto): [4 punti]

1. Quale delle seguenti affermazioni è corretta? (riscrivere la risposta corretta per esteso e solo sul foglio protocollo, non qui sotto): [4 punti] Problea Un uoo di assa si trova sul bordo estreo di una piattafora di assa, a fora di disco di raggio, che ruota attorno al suo asse verticale con velocità angolare costante ω i. L uoo è inizialente fero

Dettagli

Appunti di complemento per le lezioni del corso di Matematica Finanziaria L OPERAZIONE DI AMMORTAMENTO

Appunti di complemento per le lezioni del corso di Matematica Finanziaria L OPERAZIONE DI AMMORTAMENTO Appunti di copleento per le lezioni del corso di Mateatica Finanziaria L OPERAZIONE DI AMMORTAMENTO Preessa Il presente testo di appunti è stato scritto per fornire agli studenti un supporto didattico

Dettagli

Relazione di Laboratorio di Fisica

Relazione di Laboratorio di Fisica 1 UNIVERSITÀ DEGLI STUDI DI PALERMO Relazione di Laboratorio di Fisica 5 Esperienza di laboratorio 3: 13/12/18 Gruppo 4: Christian Chiappara Antonio Martino Gabriele Pecoraro Alessandro Roancino 10 1.

Dettagli

Fluidodinamica applicata Esercizi Finali

Fluidodinamica applicata Esercizi Finali ESERCZO (NS MENSONE CONOTTO) U Condotto infinito di sezione x Usando l analisi diensionale, studiao la dipendenza del gradiente della pressione dagli altri paraetri del flusso: f (,, U, ) dove U velocità

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO APPUNTI DI CALCOLO NUMERICO Introduzione al calcolo nuerico Rappresentazione dei nueri sul calcolatore Stailità e condizionaento Metodi nuerici Un fenoeno fisico può essere rappresentato attraverso un

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante

Dettagli

Incertezze nelle misure dirette

Incertezze nelle misure dirette Incertezze nelle isure dirette Incertezza assia È l incertezza che definisce l intervallo entro il quale si confida debba cadere con sicurezza il valore vero di. La stia è pessiistica: ogni contributo

Dettagli

Particella Libera. ne deriva che l Hamiltoniano è dato dalla somma degli Hamiltoniani rispettivi:

Particella Libera. ne deriva che l Hamiltoniano è dato dalla somma degli Hamiltoniani rispettivi: 9 Particella Libera Una seplice applicaione dell equaione di Scrödinger riguarda una particella il cui poteniale è costante (V=0). Scriviao l equaione di Scrödinger nella sua fora copleta: V V 8 per cui

Dettagli

Appunti di complemento per le lezioni del corso di Matematica Finanziaria L OPERAZIONE DI AMMORTAMENTO

Appunti di complemento per le lezioni del corso di Matematica Finanziaria L OPERAZIONE DI AMMORTAMENTO Appunti di copleento per le lezioni del corso di Mateatica Finanziaria L OPERAZIONE DI AMMORTAMENTO Preessa Il presente testo di appunti è stato scritto per fornire agli studenti un supporto didattico

Dettagli

Reti Logiche Appello del 9 gennaio 2007 Seconde prove

Reti Logiche Appello del 9 gennaio 2007 Seconde prove Appello del 9 gennaio 27 econde prove (D2) ualunque funzione di coutazione di due variabili f ( y, ) può essere espressa nella fora f ( y, ) = a b cy dy Ricavare i coefficienti a, b, c, d in funzione dei

Dettagli

A dati discreti n casi accertati di una malattia n figli per una famiglia. A dati continui Statura di un gruppo di persone Voti riportati a un esame

A dati discreti n casi accertati di una malattia n figli per una famiglia. A dati continui Statura di un gruppo di persone Voti riportati a un esame La statistica è la scienza che studia l andaento di un fenoeno collettivo, indagando sulla popolazione interessata a tale fenoeno in relazione a una o più caratteristiche, le variabili, che possono essere

Dettagli

Problema 1. m F. che è un sistema di due equazioni e due incognite (a e µ s ). Risolvendo si ottiene:

Problema 1. m F. che è un sistema di due equazioni e due incognite (a e µ s ). Risolvendo si ottiene: 1 Problea 1 Un blocchetto di assa = 1 kg è appoggiato sopra un blocco di assa M = 4 kg e lunghezza d = 0.8, alla sua estreità sinistra (vedi figura). Tra i due blocchi vi è attrito (µ d = 0.6µ s ) entre

Dettagli

8.4 Calcolo di tensori di inerzia

8.4 Calcolo di tensori di inerzia 1 CAPITL 8. IL CRP RIGID Infatti B I ( u) (P )(P ) [ u (P )] dτ(p ) B (P )(P ) [ u (P )] dτ(p ) B 1 + ρ(p )(P ) [ u (P )] dτ(p ) B B = 1 B I + I Analoga proprietà vale per i oenti di inerzia. 8. Calcolo

Dettagli

Esistono quando la funzione possiede punti di discontinuità di seconda specie. se esiste un punto singolare x

Esistono quando la funzione possiede punti di discontinuità di seconda specie. se esiste un punto singolare x Asintoti Una retta r si dice asintoto della curva di equazione y f() quando la distanza tra un punto P( y) della curva e la retta r tende a zero quando aleno una delle coordinate di P tende all' Esistono

Dettagli

Corso di Fondamenti di Informatica. Dispensa 9: Composizione di Classi. Prof. Domenico Rosaci

Corso di Fondamenti di Informatica. Dispensa 9: Composizione di Classi. Prof. Domenico Rosaci Corso di Fondaenti di Inforatica Dispensa 9: Coposizione di Classi Prof. Doenico Rosaci 2015-16 Coposizione di Classi In Java, la dichiarazione di un oggetto appartenente ad una deterinata classe, coporta

Dettagli

La diafonia INTRODUZIONE: IMPORTANZA DELLA DIAFONIA

La diafonia INTRODUZIONE: IMPORTANZA DELLA DIAFONIA Appunti di Copatibilità Elettroagnetica a diafonia Introduzione: iportanza della diafonia... Descrizione del fenoeno...2 Tipiche configurazioni di linee a tre conduttori...4 Uso di un odello a paraetri

Dettagli

II )INTEGRALE DI VAG. In modo più rigoroso possiamo calcolare l integrale delle uguaglianze parametriche

II )INTEGRALE DI VAG. In modo più rigoroso possiamo calcolare l integrale delle uguaglianze parametriche VII. ARA LLISS Area e Perietro llisse Cap. VII Pag. ARA DL STTOR DLL'LLISS I )Sia π S ( ) y d l area OCAA. La funzione S() deve essere tale ds( ) che y e poiché d è S ( ) y + area settore OAA' e l arco

Dettagli

Dai numeri naturali ai numeri reali

Dai numeri naturali ai numeri reali .1 Introduzione Dai nueri naturali ai nueri reali In questa unità didattica vogliao riprendere rapidaente le nostre conoscenze sugli insiei nuerici (N, Z e Q), e successivaente apliarle a coprendere i

Dettagli

BIOLOGIA A. A CHIMICA

BIOLOGIA A. A CHIMICA Laurea triennale in BIOLOGIA A. A. 2013-14 14 CHIMICA Lezioni di Chiica Fisica Energia libera di Gibbs Prof. Antonio Toffoletti 1 Chiica Fisica per Biologia A.A. 2013-2014 Cioè: Alcune equazioni della

Dettagli

Determinazione del momento d inerzia di un pendolo (23 febbraio 2005)

Determinazione del momento d inerzia di un pendolo (23 febbraio 2005) Deterinazione el oento inerzia i un penolo (3 febbraio 005) Consieriao un corpo esteso (vei figura seguente) che possa ruotare attorno a un asse fisso passante per il punto i sospensione PS; si iagini

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0 Prova Scritta di di Meccanica Analitica 3 luglio 015 Problea 1 Un punto di assa unitaria si uove soggetto al potenziale V (x) = k x + l x x > 0 a) disegnare lo spazio delle fasi e calcolare la frequenza

Dettagli

Tesina Fisica Generale II Corso di Laurea in Scienza ed Ingegneria dei materiali

Tesina Fisica Generale II Corso di Laurea in Scienza ed Ingegneria dei materiali Tesina Fisica Generale II Corso di Laurea in Scienza ed Ingegneria dei ateriali Gruppo IV: Gallo Elia Russo Adriano N50000299 N50000286 Il agnetiso Gli effetti del capo agnetico sono conosciuti dall uoo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettroagnetiso Prof. Francesco Ragusa Università degli Studi di Milano Leione n. 9 3.4.19 Magnetiso nella ateria Diaagnetiso. Paraagnetiso Teoria acroscopica del agnetiso nella ateria Anno Accadeico 18/19

Dettagli

La retta. Materia: Matematica Autore: Mario De Leo

La retta. Materia: Matematica Autore: Mario De Leo La retta Definizioni Rette particolari Rappresentazione grafica Rette parallele e perpendicolari Retta per un punto e per due punti Distanza di un punto da una retta Intersezione tra due rette Esercizi

Dettagli

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano. Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 Federico Lastaria Primi elementi di combinatoria 11 Ottobre 2016 Indice 1 Elementi di combinatoria 2 1.1

Dettagli

[ ] 6 CAPITOLO VI. 6.1 La sovrapposizione delle onde. 6.2 Somma di onde della stessa frequenza

[ ] 6 CAPITOLO VI. 6.1 La sovrapposizione delle onde. 6.2 Somma di onde della stessa frequenza - 69-6 CAPITOLO VI 6. La sovrapposizione delle onde Nei prossii capitoli studiereo il fenoeno dell interferenza e della diffrazione. Il principio concettuale coune di entrabi i fenoeni si basa sulla concezione

Dettagli

Le successioni di Fibonacci traslate

Le successioni di Fibonacci traslate Le successioi di iboacci traslate Di Cristiao Arellii, cristiao.arellii@alice.it U successioe di iboacci è ua successioe uerica descritta dalla forula di ricorreza: 0 0, ; +,,3,4,... ovvero ogi terie è

Dettagli

Capitolo 8 - La diafonia (I)

Capitolo 8 - La diafonia (I) Appunti di Copatibilità Elettroagnetica Capitolo 8 - a diafonia (I) Introduzione: iportanza della diafonia... Descrizione del fenoeno... Tipiche configurazioni di linee a tre conduttori...5 Equazioni delle

Dettagli

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%%

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%% Note su uso delle equazioni differenziali in eccanica Spesso la risoluzione delle equazioni del oto si ottiene attraverso la risoluzione di equazioni differenziali lineari a coefficienti costanti. L uso

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Equazione caratteristica Molti problei interessanti in un gran nuero di discipline scientifiche si possono ricondurre alla seguente relazione atriciale Ax = λx dove A è una atrice

Dettagli

CAPITOLO 6 DURATA OTTIMALE

CAPITOLO 6 DURATA OTTIMALE CAPITOLO 6 DURATA OTTIMALE I diritti di proprietà intellettuale proteggono gli innovatori, a la protezione è liitata in durata ed apiezza. In durata, perché i diritti di proprietà intellettuale hanno una

Dettagli

Ottimizzazione Combinatoria Totale Unimodularità

Ottimizzazione Combinatoria Totale Unimodularità Ottiizzazione Cobinatoria Totale Uniodularità Prof. Antonio Sassano Dipartiento di Inforatica e Sisteistica Università di Roa La Sapienza A.A. 2 Coe diostrare che una forulazione è ottia? Problea di PL:

Dettagli

Fondamenti di Informatica. Cosa è l informazione. A cosa serve. Prof. V.L. Plantamura Informatica e Comunicazione Digitale a.a.

Fondamenti di Informatica. Cosa è l informazione. A cosa serve. Prof. V.L. Plantamura Informatica e Comunicazione Digitale a.a. Fondaenti di Inforatica Prof. V.L. Plantaura Inforatica e Counicazione Digitale a.a. 2006-2007 Cosa è l inforazione L inforazione è qualcosa che si possiede e si può dare ad un altro senza perderne il

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PROVA D ESAME SESSIONE ORDINARIA 7 Liceo scientifico counicazione opzione sportiva Il candidato risolva uno dei due problei e risponda a quesiti del questionario. Durata assia della prova: ore. È consentito

Dettagli

Frequenze proprie di una catena unidimensionale

Frequenze proprie di una catena unidimensionale UNIVERSITA DEGLI STUDI DI CATANIA Dipartiento di Scienze MM FF NN Corso di Laurea di prio livello in Fisica Frequenze proprie di una catena unidiensionale Cristalli e quasicristalli Oscillazioni e onde

Dettagli

VII. AREA E PERIMETRO ELLISSE

VII. AREA E PERIMETRO ELLISSE VII. AREA E PERIMETRO ELLIE Area e Perietro Ellisse Cap. VII Pag. AREA DEL ETTORE DELL'ELLIE I )ia ( x) y dx l area OCAA. La funzione (x) deve essere tale d( x) che y x e poiché dx è ( x) xy area settoreoaa'

Dettagli

Fondamenti di Informatica. Cosa è l informazione. A cosa serve. Prof.V.L.Plantamura Informatica e Comunicazione Digitale a.a.

Fondamenti di Informatica. Cosa è l informazione. A cosa serve. Prof.V.L.Plantamura Informatica e Comunicazione Digitale a.a. Fondaenti di Inforatica Prof.V.L.Plantaura Inforatica e Counicazione Digitale a.a. 2005-2006 Cosa è l inforazione L inforazione è qualcosa che si possiede e si può dare ad un altro senza perderne il possesso.

Dettagli

Matematica e crittografia

Matematica e crittografia Mateatica e crittografia Giovanni Cutolo L esigenza di scabiare essaggi privati, incoprensibili per un estraneo non autorizzato che in un odo o nell altro ne venga in possesso, sebra essere antica quanto

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA Il candidato risolva uno dei due problei e degli 8 quesiti scelti nel questionario. N. De Rosa, La prova di ateatica per il liceo

Dettagli

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica:

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Primo parziale Test. L argomento principale del numero complesso (ln 5)i i è (a) 4 π (b) (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Risposta esatta a) ln 5 i i = ln 5 i( + i) i

Dettagli

PROBLEMA 1 Nel piano cartesiano Oxy è data la circonferenza C con centro O e raggio r = 3.

PROBLEMA 1 Nel piano cartesiano Oxy è data la circonferenza C con centro O e raggio r = 3. Sessione ordinaria all estero (AMERICHE) 8 - ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO AMERICHE CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tea di: MATEMATICA Il candidato risolva

Dettagli

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario. LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE ORDINARIA Il candidato risolva uno dei due problei e 5 dei quesiti scelti nel questionario. N. De Rosa, La prova di ateatica per il liceo PROBLEMA t La funzione

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 27 febbraio 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano

Dettagli

Gli strumenti necessari per lo studio

Gli strumenti necessari per lo studio La potenza di un fucile a olla Sunto E possibile deterinare la potenza di un fucile a olla quando sono note la costante elastica K della olla, la isura d della copressione e la assa del proiettile sparato?

Dettagli

Consideriamo un corpo di massa m libero di muoversi senza attrito lungo una

Consideriamo un corpo di massa m libero di muoversi senza attrito lungo una MECCANICA CLASSICA LA DINAMICA DEGLI URTI. QuantitÄ di oto Consideriao un corpo di assa libero di uoersi senza attrito lungo una sola direzione, sottoposto all azione di una forza continua intesa coe successioni

Dettagli

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo;

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo; 1 Esercizio (tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa = 1.5 Kg è agganciato ad una olla di costante elastica k = 2 N/, di lunghezza a riposo = 50 c, fissata ad una parete verticale in x

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

Esercizi riguardanti limiti di successioni e di funzioni

Esercizi riguardanti limiti di successioni e di funzioni Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli