genera un campo magnetico che, sull asse del i entrante

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "genera un campo magnetico che, sull asse del i entrante"

Transcript

1 In prospettiva Dal lato Le proprieta magnetiche della materia derivano da quelle di dipoli magnetici naturali Abbiamo gia visto A A che un dipolo magnetico = i A i genera un campo magnetico che, sull asse del i entrante dipolo, e dato da: R ia B = i B ( ) 3 3 2π 2π E importante notare che il campo e di natura locale: 1 B 3 Dipolo in campo magnetico uniforme Sappiamo, inoltre, che la risultante delle fore magnetiche su un dipolo magnetico in un campo magnetico uniforme e nulla, mentre il momento meccanico e dato da: τ = B τ B senθ con = Al quale si associa un energia poteniale corripondente al lavoro necessario per allineare il dipolo magnetico ad un angolo θ rispetto il campo magnetico esterno: θ θ θ = τ dθ = Bsenθdθ = B[ cosθ ] π / 2 = B π / 2 π / 2 // B U anti // B U con ΔU = 2B U. (si paragoni al poteniale del dipolo elettrico U DE = p E ) Si noti che: quando assume il proprio valore minimo assume il proprio valore massimo θ 1 B

2 I dipoli magnetici tendono dunque ad allinearsi con il campo magnetico esterno finche e uniforme, non risentono di fora netta. Questo risulta anche da: F fino a che B U B = = ( B) = = (lo stesso vale per le altri componenti) B rimane uniforme. Dipolo magnetico in campo non uniforme, es., il campo generato da un altro dipolo magnetico B F = U = ( B) = Esiste allora una fora risultante non-nulla sul secondo dipolo. Si arriva alla medesima conclusione da un analisi delle fore. df B F = idl B = i dl B idl uscente Nel caso illustrato, le componenti in direione si rinforano. Ne risulta una fora sul secondo dipolo in direione opposta al campo del primo (dipoli allineati si attraggono). B idl entrante df B ma, 2

3 Le Proprieta magnetiche della materia sono dovute alla presena di dipoli naturali che derivano da due proprieta : il momento angolare l e lo spin s degli elettroni atomici. Una descriione fedele di questi fenomeni e possibile solo in base alla fisica quantistica ma e possibile farsi una buona idea del momento angolare in termini classici. Modello (classico) a spira: Si suppone che l elettrone descriva un orbita circolare intorno al nucleo. 2πr τ = v e ev i = = τ 2πr ev 2 evr = ia = πr = 2πr 2 e ricordando che il momento angolare l e dato da: l = r p = mevr si ottiene, per il momento magnetico, el = 2 m e In base alla teoria quantistica, e impossibile misurare il momento angolare l. Si possono solo misurare le sue component in una qualsiasi direione (diciamo la direione ). L espressione per questi valori e conforme con quella del momento angolare classico: el = 2m 3 e e- v l R e+

4 In fatti, al momento angolare totale (J), concorre anche il contributo dallo spin degli elettroni e l espressione va modificate in questo senso: ej ej = e = 2 2me m e dove i valori di J sono quantiati J = m dove dove m = 1,2,3,. oppure ½ + 1,2,3,. J e m J = h 34 2π con h = 6,63 1 J s costante di Planck Il valore fondamentale di e dunque il Magnetone Bohr: e eh 24 B = = = 9,27 1 J / T 2m 4πm e e 4

5 Si distingue tra 3 diversi tipi di proprieta magnetiche. (a) Diamagnetismo deriva da momenti magnetici indotti. Quando B =, =. In assena di campo magnetico, i momenti magnetici atomici sono nulli. L induione di dipoli magnetici a livello atomico o molecolare, che avviene quando viene imposto un campo magnetico B, si spiega in base alla legge di Faraday. Schematiando al fine di semplicita, si puo dire che le diverse orbite elettroniche giaciono in piani diversi ed i corrispondenti momenti magnetici si annullano. Con l aumento del campo magnetico in una direione (diciamo ), le orbite con area perpendicolare al campo (cioe a ) modificano le loro correnti (cioe le loro velocita orbitali), per effetto della legge di Faraday, a modo di opporre l aumento del campo che le induce. L effetto netto e l induione di un dipolo magnetico in direione opposta al campo che le induce. L effetto e paragonabile a quello illustrato accanto: B Se un magnete permanente si muove in direione con velocita v, dando luogo cosi ad un aumento del flusso magnetico attraverso la spira. Questo aumento genera un aumento Δ del momento magnetico della spira in direione opposta a quella del campo che la induce. S N v Δ 5 B

6 Il diamagnetismo e caratteriato da questa opposiione. Il momento magnetico indotto e di polarita opposta a quella del campo che lo induce ed il materiale diamagnetico viene respinto dalla regione di piu alta intensita. Tutte le materie manifestano diamagnetismo in una certa misura (taluni piu di altri) ma, essendo piccolo si manifesta anitutto in assena di altri effetti. 6

7 (b) Paramagnetismo Le materie paramagnetiche possiendo momenti magnetici intrinsici: Il campo magnetico esterno genera un momento meccanico, τ = B che tende ad allineare questi dipoli naturali con B U B (valore minimo) e aggiungendo il loro contributo a B B = B + B M J τ B E generalmente difficile calcolare. Per B B M uniforme (e non troppo intenso) B = B + M dove, per un volume V, M i 2 T. m Am = = [ ] [ ][ ] [ ] V V [ ] verifica : M = M = = = T 3 V A m In tali circostane, si puo scrivere B B E = r E c.f. : E = oppure E = k ε r Allora, rb = B + M 1 B = ( ) M r Dove r e detta la permeabilita relativa del meo. 7

8 Alla magnetiaione si oppone l agitaione termica. Per un gas paramagnetico a temperatura ambiente in 1 Tesla: ( ) 3 K U T 3 2 kt = 3 2 1,38 J 1 23 K ΔU 2 B B = 2 ( 9, J T ) 1T ( ) 6, J = 3,9 1 2 ev ( ) = 2, J =1,7 1 4 ev L energia termica e ~ 5 volte piu grande dell effetto paramagnetici Fino a che l intensita del campo e relativamente bassa, la magnetiaione M aumenta linearmente col campo: M = C B T ( legge di Pierre Curie) ma l aumento di M devia dalla linearita a misura che si avvicina al valore di saturaione: M max = N V E chiaro dunque che la magnetiaione deve deviare dalla legge di Curie a misura che s avvicina al valore di saturaione. La teoria quantisctica (linea solida in figura) rispecchia questa circostana. M max M 1 Legge di Curie Teoria quantistica B /T 8

9 (c) Il Ferromagnetismo e caratteriato da dipoli permanenti forti e dalla forte interaione tra di loro detta accoppiamento di scambio. Vale sempre B B = + B M e, in termini della magnetiaione, B = B + M = rb dove la magnetiaione e dovuta all allineamento dei dipoli naturali ma dove, a questo allineamento, partecipano anche le interaioni tra dipoli. M e pertanto molto forte e r puo raggiungere valori di Inoltre, le interaioni tra dipoli rimangono dopo la rimossione del campo B dando luogo cosi a magneti permanenti. Materie ferromagnetiche (a temperature ambienti) sono: ferro (Fe), cobalto (Co), Nichel (Ni), gadolino (Gd) e disprosio (Dy) e leghe di questi elementi. Anche CrO 2 manifesta ferromagnetismo benche gli elementi componenti non siano ferromagnetici. La magnetiaione aumenta con B, come per il paramagnetismo, ma molto piu rapidamente. Si possono allineare ~7% dei dipoli con un campo intorno ai 1 Gauss e raggiungere saturaione sotto 1 Tesla. L agitaione termica milita, come sempre, contro l allineamento e, con l aumento di temperatura si arriva a perdere le proprieta ferromagnetiche alla temperatura di Curie. Per il Fe questa e 77 o C. 9

10 Domini magnetici : La matrice cristallina di materiali ferromagnetici e suddivisa in one con totale allineamento dei dipoli costituenti. Queste one sono dette domini magnetici. L orientamento del momento magnetico in domini diversi e diverso e casualmente distribuito. Con l aumento del campo esterno la magnetiaione aumenta in due modi: 1) domini piu allineati col campo esterno crescono a scapito di altri. 2) domini interi si riallineano. Isteresi: Questo processo non e deltutto reversibile e, con la successiva diminuaione del campo, la materia ritiene una parte della magnetiaione. Questa memoria magnetica viene chiamata isteresi ed e alla base dei magneti permanenti. B M saturaione B 1

i! entrante Le proprieta magnetiche della materia derivano da quelle di dipoli magnetici naturali Abbiamo gia visto che un dipolo magnetico

i! entrante Le proprieta magnetiche della materia derivano da quelle di dipoli magnetici naturali Abbiamo gia visto che un dipolo magnetico In prospettiva Dal lato Le proprieta magnetiche della materia derivano da quelle di dipoli magnetici naturali Abbiamo gia visto A A che un dipolo magnetico = i A i genera un campo magnetico che, sull asse

Dettagli

Legge di Gauss per il magnetismo. La struttura magnetica più semplice in natura è il dipolo magnetico

Legge di Gauss per il magnetismo. La struttura magnetica più semplice in natura è il dipolo magnetico Legge di Gauss per il magnetismo La struttura magnetica più semplice in natura è il dipolo magnetico Φ B = ර B d ԦA = 0 legge di Gauss per i campi magnetici Φ E = ර E d ԦA = q i ε 0 legge di Gauss per

Dettagli

PROPRIETÀ MAGNETICHE DELLA MATERIA. ovvero: comportamento della materia in presenza di un campo magnetico

PROPRIETÀ MAGNETICHE DELLA MATERIA. ovvero: comportamento della materia in presenza di un campo magnetico PROPRIETÀ MAGNETICHE DELLA MATERIA ovvero: comportamento della materia in presenza di un campo magnetico dinamometro Fenomenologia All'interno di un solenoide percorso da corrente si crea un campo magnetico

Dettagli

PROPRIETÀ MAGNETICHE DELLA MATERIA

PROPRIETÀ MAGNETICHE DELLA MATERIA PROPRIETÀ MAGNETICHE DELLA MATERIA G. Pugliese 1 Descrizione Macroscopica B 0 Definiamo il vettore: Consideriamo un solenoide vuoto: B0 = µ 0 ni H = B 0 µ 0 = ni u x Supponiamo di riempire completamente

Dettagli

Elettrostatica e magnetostatica nei materiali

Elettrostatica e magnetostatica nei materiali Elettrostatica e magnetostatica nei materiali Fino a questo momento sono stati studiati le sorgenti di campo elettrico e magnetico e i loro rispettivi campi nel vuoto. Cosa succede se poniamo un oggetto

Dettagli

PROPRIETÀ V T T O R I MAGNETICHE DELLA MATERIA g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

PROPRIETÀ V T T O R I MAGNETICHE DELLA MATERIA g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Batteri magnetotattici. Essendo anaerobici seguono le linee del campo magnetico terrestre per affondare nel fango ed allontanarsi dallo ossigeno atmosferico. Introduzione I materiali magnetici

Dettagli

FAM. 1. Determina la forza risultante sulla spira, cosa puoi dedurre sull equilibrio della spira?

FAM. 1. Determina la forza risultante sulla spira, cosa puoi dedurre sull equilibrio della spira? FAM Serie 33: Elettrodinamica VIII C. Ferrari Eserciio Momento meccanico su una spira: motore elettrico Una spira conduttrice quadrata di lato 0cm si trova nel piano. Una corrente di 0A la percorre nel

Dettagli

Lezione 1: Introduzione alle grandezze magnetiche

Lezione 1: Introduzione alle grandezze magnetiche Lezione 1: Introduzione alle grandezze magnetiche 1 Campi Magnetici Il campo magnetico è un campo vettoriale: associa, cioè, ad ogni punto nello spazio un vettore. Un campo magnetico si puo misurare per

Dettagli

Approfondimento. Forze magnetiche su fili percorsi da corrente: dipoli magnetici

Approfondimento. Forze magnetiche su fili percorsi da corrente: dipoli magnetici Approfondimento Forze magnetiche su fili percorsi da corrente: dipoli magnetici correnti elettriche e campi magnetici: le sorgenti del campo magnetico Principio di equivalenza di Ampere Proprietà magnetiche

Dettagli

MAGNETISMO - 2a parte. pina di vito

MAGNETISMO - 2a parte. pina di vito MAGNETISMO - 2a parte 1 Flusso del vettore B, l unità di misura è il weber (Wb) B Caso generale: Teorema di Gauss per il magnetismo F S ( B) = 0 Poli magnetici non separabili Il numero di linee entranti

Dettagli

Fisica Generale III con Laboratorio

Fisica Generale III con Laboratorio Fisica Generale III con Laboratorio Campi elettrici e magnetici nella materia Lezione 7 Cenni a ferromagnetismo Equazioni di Maxwell nella materia Ferromagnetismo - I Comportamento ferromagnetico, ferrimagnetico,

Dettagli

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Campo magnetico prodotto da una corrente Si consideri

Dettagli

1.4 - Magnetismo nella materia

1.4 - Magnetismo nella materia 1.4 - Magnetismo nella materia Quando il mezzo interposto non è lo spazio vuoto ma una sostanza materiale, le interazioni magnetiche possono essere significativamente diverse a causa del valore che la

Dettagli

FAM. Serie 33: Soluzioni. Esercizio 1 Momento meccanico su una spira: motore elettrico. Esercizio 2 Campo magnetico dipolare (difficile) C.

FAM. Serie 33: Soluzioni. Esercizio 1 Momento meccanico su una spira: motore elettrico. Esercizio 2 Campo magnetico dipolare (difficile) C. Serie 33: Soluioni FAM C. Ferrari Eserciio 1 Momento meccanico su una spira: motore elettrico 1. α F α = 0, ma non si tratta di una situaione di equilibrio! 2. Se l rappresenta il lato della spira M tot

Dettagli

Fisica Generale III con Laboratorio

Fisica Generale III con Laboratorio Fisica Generale III con Laboratorio Campi elettrici e magnetici nella materia Leione 5 Diamagnetismo e Paramagnetismo Teorema di Larmor - I 1) Moto di precessione Grandea vettoriale generica, funione del

Dettagli

Proprietà dei materiali

Proprietà dei materiali Meccaniche Materiale Fisiche Elettriche Megnetiche Termiche Elettriche Resistività Conducibilità Effetto Joule Megnetiche Permeabilità magnetica Diamagnetismo Paramagnetismo Ferromagnetismo Resistività

Dettagli

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Corrente elettrica Sotto l effetto di un campo elettrico le cariche si possono muovere In un filo elettrico, se una carica dq attraversa una sezione del filo nel tempo dt abbiamo una corrente di intensità

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico: Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico; l'importante

Dettagli

MISURA DELLA SUSCETTIVITA MAGNETICA. Elettroni e particelle nucleari sono dotati di spin. Si orientano in un campo magnetico.

MISURA DELLA SUSCETTIVITA MAGNETICA. Elettroni e particelle nucleari sono dotati di spin. Si orientano in un campo magnetico. MISURA DELLA SUSCETTIVITA MAGNETICA Elettroni e particelle nucleari sono dotati di spin. Si orientano in un campo magnetico. EFFETTO DIAMAGNETICO (elettroni accoppiati) Quando una qualunque sostanza è

Dettagli

Unità 9. Il campo magnetico

Unità 9. Il campo magnetico Unità 9 Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico;

Dettagli

Il flusso del campo magnetico

Il flusso del campo magnetico Il flusso del campo magnetico Il flusso del campo magnetico attraverso una superficie si definisce in modo analogo al flusso del campo elettrico. ( B) BScos Con α angolo compreso tra B e S. L unità di

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 1. Campo magnetico e Forza di Lorentz 2. Campo magnetico e corrente elettrica 3. Induzione elettromagnetica 4. Applicazioni 30 25 20 Veterinaria Ottica

Dettagli

Il campo magnetico. Le prime osservazioni dei fenomeni magnetici

Il campo magnetico. Le prime osservazioni dei fenomeni magnetici Il campo magnetico Le prime osservazioni dei fenomeni magnetici la magnetite (Fe 3 O 4 ) attira la limatura di ferro un ago magnetico libero di ruotare intorno ad un asse verticale si orienta con una delle

Dettagli

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3 I.S.I.S.S. A. Giordano Venafro (IS) 1 Fenomeni Magnetici prof. Valerio D Andrea VB ST - A.S. 2017/2018 Appunti di Fisica n. 3 In natura esiste un minerale che è in grado di attirare oggetti di ferro: la

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II NGEGNERA GESTONALE corso di Fisica Generale Prof. E. Puddu nterazioni di tipo magnetico 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica chiamata

Dettagli

Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente

Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente CAMPO MAGNETICO Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente INTERAZIONI MAGNETICHE Le proprietà magnetiche di alcuni

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Evidenze sperimentali Struttura fine delle transizioni atomiche (doppietto( del sodio) Esperimento di Stern-Gerlach Effetto Zeeman

Dettagli

Filo percorso da corrente

Filo percorso da corrente Campo magne*co Filo percorso da corrente Sperimentalmente si osserva che: un filo percorso da corrente genera intorno a se un campo magnetico le cui linee di forza sono concentriche al punto in cui passa

Dettagli

Riassunto lezione 11

Riassunto lezione 11 Riassunto lezione 11 Forza di Coloumb attrattiva o repulsiva F A B = 1 4 π ϵ 0 q A q B r 2 Consideriamo effetto di una carica sola campo elettrico: E Q = F Qq q = 1 4 π ϵ 0 Q r 2 ^u A B Come si rappresenta?

Dettagli

Il magnetismo nella materia

Il magnetismo nella materia Le orbite degli elettroni in atomo di idrogeno Forma spaziale degli Orbitali elettronici di atomo di idrogeno Un solido Il magnetismo nella materia ferrimagnetismo Dr. Daniele Di Gioacchino Istituto Nazionale

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

Cenni sulla struttura della materia

Cenni sulla struttura della materia Cenni sulla struttura della materia Tutta la materia è costituita da uno o più costituenti fondamentali detti elementi Esistono 102 elementi, di cui 92 si trovano in natura (i rimanenti sono creati in

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Premessa TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

MAGNETISMO NELLA MATERIA

MAGNETISMO NELLA MATERIA MAGNETISMO NELLA MATERIA Gli atomi hanno momenti magnetici di dipolo dovuti al moto dei loro elettroni. Ogni elettrone ha a sua volta un momento magnetico di dipolo intrinseco associato alla sua rotazione

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

M A G N E T I S M O in C H I M I C A

M A G N E T I S M O in C H I M I C A M A G N E T I S M O in C H I M I C A Le sostanze in cui tutti gli elettroni sono accoppiati, poste in un campo magnetico esterno, sono respinte da questo; i piani degli orbitali vengono leggermente inclinati

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

LO SPIN DELL'ELETTRONE. Lezioni d'autore

LO SPIN DELL'ELETTRONE. Lezioni d'autore LO SPIN DELL'ELETTRONE Lezioni d'autore VIDEO Momento magnetico e momento angolare (I) L immagine dell atomo di idrogeno, con la carica negativa in orbita chiusa intorno al protone, suggerisce l effetto

Dettagli

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo A) Meccanica Un cilindro di altezza h, raggio r e massa m, ruota attorno al proprio asse (disposto verticalmente) con velocita` angolare ω i. l cilindro viene appoggiato delicatamente su un secondo cilindro

Dettagli

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

LO SPIN. Facciamo riferimento agli stati dell elettrone ottico di un sistema idrogenoide o di un metallo alcalino.

LO SPIN. Facciamo riferimento agli stati dell elettrone ottico di un sistema idrogenoide o di un metallo alcalino. 8/ / Effetti di un campo magnetico sugli stati a un elettrone Facciamo riferimento agli stati dell elettrone ottico di un sistema idrogenoide o di un metallo alcalino. Gli effetti di un campo magnetico

Dettagli

Descrizione vettoriale dell esperimento di risonanza magnetica

Descrizione vettoriale dell esperimento di risonanza magnetica Descriione vettoriale dell esperimento di risonana magnetica oto di un momento magnetico in campo magnetico. Un momento magnetico (associato ad un momento angolare) in un campo magnetico è soggetto ad

Dettagli

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione UARTO APPELLO 11092017 FISICA GENERALE T-2, Prof G Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione ESERCIZIO 1 Una sfera conduttrice di raggio R1 = 2 cm e carica = 1 mc è circondata

Dettagli

MAGNETI E AZIONI MAGNETICHE DELLE CORRENTI

MAGNETI E AZIONI MAGNETICHE DELLE CORRENTI MAGNETI E AZIONI MAGNETICHE DELLE CORRENTI In natura esistono corpi capaci di attrarre i materiali ferrosi: i magneti naturali. Un esempio di magnete naturale è la magnetite, che è un minerale da cui si

Dettagli

Modello vettoriale per la descrizione della magnetizzazione

Modello vettoriale per la descrizione della magnetizzazione odello vettoriale per la descriione della magnetiaione Sistema di uno spin I=/2 in assena di campo magnetico esterno : fissato un asse arbitrario H I=/2 I I( I ) I=/2 I m i m i / 2, / 2 I, I indeterminati

Dettagli

Potenziale vettore. f = soddisfa ancora l equazione precedente. (Invarianza di gauge)

Potenziale vettore. f = soddisfa ancora l equazione precedente. (Invarianza di gauge) Ricordiamo le seguenti identità MAGNETOSTATICA Potenziale vettore ( f ) ( v) Poiché E U : U E B A : A B I potenziali U ed A non sono unici infatti U è definito a meno di una costante f mentre A A + f soddisfa

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

Fenomeni magnetici. Capitolo. 1. Il magnetismo nella materia. Quali forze sperimenta un aghetto magnetico in un campo B?

Fenomeni magnetici. Capitolo. 1. Il magnetismo nella materia. Quali forze sperimenta un aghetto magnetico in un campo B? Capitolo 5 Fenomeni magnetici 1. l magnetismo nella materia Quali forze sperimenta un aghetto magnetico in un campo? L aghetto magnetico è lo strumento che definisce la direzione del campo in ogni punto.

Dettagli

Elettromagnetismo. Magnetismo nella materia Diamagnetismo. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Magnetismo nella materia Diamagnetismo. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 30 27.04.2018 Magnetismo nella materia Diamagnetismo Anno Accademico 2017/2018 Proprietà magnetiche della materia La

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

Materiali magnetici. B = vettore induzione magnetica H = vettore intensità del campo magnetico. nel vuoto: B = μo H

Materiali magnetici. B = vettore induzione magnetica H = vettore intensità del campo magnetico. nel vuoto: B = μo H Materiali magnetici = vettore induzione magnetica H = vettore intensità del campo magnetico nel vuoto: = μo H La costante μo è la permeabilità magnetica del vuoto: μo = 1,26 10-6 H/m In presenza di un

Dettagli

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete:

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: Il campo magnetico Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: correnti elettrici creano campo magnetici magneti permanenti (calamiti) ogni

Dettagli

CAPITOLO 1 ELETTROSTATICA

CAPITOLO 1 ELETTROSTATICA CAPITOLO 1 1.1 Introduzione Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della natura (dopo quella gravitazionale che abbiamo visto

Dettagli

1.2 Teoria classica del diamagnetismo: teoria di Langevin

1.2 Teoria classica del diamagnetismo: teoria di Langevin 1. Teoria classica del diamagnetismo: teoria di angevin Il fenomeno del diamagnetismo causato dalla tendenza delle cariche elettriche (elettroni) a schermare in parte un corpo dall azione di un campo magnetico

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli V Appello - 22/7/213 Soluzioni Esercizi Ex. 1 Nel vuoto, nella regione di spazio delimitata dai piani x = e

Dettagli

FORZE MAGNETICHE SU CORRENTI ELETTRICHE

FORZE MAGNETICHE SU CORRENTI ELETTRICHE Fisica generale, a.a. 013/014 SRCTAZON D: FORZ MAGNTCH SU FORZ MAGNTCH SU CORRNT LTTRCH D.1. Una spira rettangolare di dimensioni a 10 cm e b 5 cm, percorsa da una corrente s 5 A, è collocata in prossimità

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW ,

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW , Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW 26.1-26.4, 26.6-26.7 1 1. Magneti permanenti Le estremità di una barretta magnetica corrispondono a poli opposti (detti polo nord e polo sud).

Dettagli

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Nuova orza La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Come Agisce? Può essere attrattiva Un metallo (la magnetite)

Dettagli

Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2013

Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2013 Fisica 2 per biotecnologie: Prova scritta 9 Settembre 203 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Campo magne*co F B. Il verso della forza di deviazione è tale che i vettori F, v, B (in quest ordine) formano una terna destrorsa.

Campo magne*co F B. Il verso della forza di deviazione è tale che i vettori F, v, B (in quest ordine) formano una terna destrorsa. Campo magne*co Il Magne*smo L esistenza di una forza capace di attirare particelle metalliche risale all antica città di Magnesia in Grecia. In quella città ricca di molte miniere di Ferro si osservarono

Dettagli

Proprietà magnetiche della materia

Proprietà magnetiche della materia Proprietà magnetiche della materia February 14, 2014 Paola Giacconi 1 Spira percorsa da corrente Consideriamo una piccola spira circolare di raggio r percorsa da una corrente I immersa in un campo magnetico

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale. i l F B

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale. i l F B FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo sperimentale Consideriamo per semplicità un campo magnetico uniforme, le linee di forza sono parallele ed equidistanti. Si osserva una forza di

Dettagli

IL LEGAME METALLICO 1

IL LEGAME METALLICO 1 IL LEGAME METALLICO 1 Non metalli Metalli Metalloidi Proprietà dei metalli Elevata conducibilità elettrica; Elevata conducibilità termica; Effetto fotoelettrico; Elevata duttilità e malleabilità; Lucentezza;

Dettagli

CAPITOLO 6 CAMPI MAGNETICI

CAPITOLO 6 CAMPI MAGNETICI CAPITOLO 6 CAMPI MAGNETICI Elisabetta issaldi (Politecnico di ari) - A.A. 2017-2018 2 Interazione magnetica Magnetismo: proprietà osservata fin dall antichità in alcuni minerali (es. MAGNETITE) di attirare

Dettagli

Calamite e fenomeni magnetici

Calamite e fenomeni magnetici Campo magnetico Calamite e fenomeni magnetici Magnetite: scoperta dai Greci (ossido di ferro capace di attirare piccoli pezzettini di ferro) Materiali ferromagnetici: ferro, cobalto, nichel... se posti

Dettagli

LA V TLEGGE T O R I DI AMPERE g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

LA V TLEGGE T O R I DI AMPERE g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Un cannone elettromagnetico a rotaia spara un proiettile con una accelerazione molto elevata: da zero a 10 km/s in 1 ms; circa 5 x 10 6 g. Come si realizza una tale accelerazione? https://www.youtube.com/watch?v=wbxdef6oghe

Dettagli

4πε. Esercizio 1. per r > R A. E = 0 per r R A, E =

4πε. Esercizio 1. per r > R A. E = 0 per r R A, E = Esercizio 1 a) Il campo elettrostatico E all interno e all esterno della sfera di raggio R A deve essere, per simmetria, radiale ed assumere lo stesso valore in ogni punto di una generica sfera concentrica

Dettagli

Risonanza Magnetica Nucleare

Risonanza Magnetica Nucleare Risonanza Magnetica Nucleare Il fenomeno della risonanza magnetica nucleare è legato ad una proprietà p di alcuni nuclei quale lo spin. Lo spin è una proprietà fondamentale come la carica e la massa. Protoni,

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 29 30.04.2019 Magnetismo nella materia Diamagnetismo. Paramagnetismo Teoria macroscopica del magnetismo nella materia

Dettagli

CAPITOLO 6 CAMPI MAGNETICI

CAPITOLO 6 CAMPI MAGNETICI CAPITOLO 6 CAMPI MAGNETICI Elisabetta issaldi (Politecnico di ari) - A.A. 2017-2018 2 Interazione magnetica Magnetismo: proprietà osservata fin dall antichità in alcuni minerali (es. MAGNETITE) di attirare

Dettagli

IL LEGAME METALLICO 1

IL LEGAME METALLICO 1 IL LEGAME METALLICO 1 Modello semplificato di un reticolo metallico Mare di elettroni di valenza, molto mobili e delocalizzati Cationi disposti secondo un reticolo ordinato 2 Non metalli Metalli Metalloidi

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6 Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW 27.1-27.4, 27.6 1 1. L esperimento di Faraday Una corrente elettrica produce un campo magnetico. Vale anche per l opposto!

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Proprietà magnetiche S. I. m 0 = 4p x 10-7 Henry/m. c m =m r - 1

Proprietà magnetiche S. I. m 0 = 4p x 10-7 Henry/m. c m =m r - 1 Proprietà magnetiche S. I. Solenoide con n spire per unità di lunghezza percorso da intensità di corrente pari ad i n = N/l H = ni B = m 0 H = m 0 ni m 0 = 4p x 10-7 Henry/m n = N/l H = ni B = m H =m 0

Dettagli

MOTO DI CARICHE IN CAMPI MAGNETICI

MOTO DI CARICHE IN CAMPI MAGNETICI MOTO DI CARICHE IN CAMPI MAGNETICI E1. Un protone (q = 1.6(10 19 )C, m = 1.67(10 7 )kg) con una velocità iniiale v = 4(10 6 m/s)i + 4(10 6 m/s)j entra in una ona dove vi è un campo magnetico uniforme =

Dettagli

CAPITOLO 3 TEOREMA DI GAUSS

CAPITOLO 3 TEOREMA DI GAUSS CAPITOLO 3 3.1 Il concetto di flusso Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria nella

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI IOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Campi magnetici generati da corrente

Campi magnetici generati da corrente Campi magnetici generati da corrente E noto che una particella carica in moto genera un campo magnetico nella zona circostante. Vediamo ora come calcolare il campo magnetico generato da una corrente. Suddividiamo

Dettagli

Proprietà magnetiche della materia

Proprietà magnetiche della materia Proprietà magnetiche della materia La seguente presentazione è stata ideata per offrire agli studenti una sintesi dei più importanti fenomeni riguardanti l elettromagnetismo. La presente non deve sostituirsi

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

L induzione elettromagnetica

L induzione elettromagnetica L induzione elettromagnetica Alcune esperienze Consideriamo una bobina collegata ad un galvanometro a zero centrale (amperometro in grado di misurare correnti positive e negative di intensità molto piccola)

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici e fenomeni

Dettagli

Festival della filosofia Agonismo Vinca il migliore

Festival della filosofia Agonismo Vinca il migliore Festival della filosofia 2016 - Agonismo Vinca il migliore Formazione degli studenti di scuola superiore in alternanza scuola-lavoro CAMPO ELETTRCO - Penna a sfera strofinata attira pezzetti di carta.

Dettagli

IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA

IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA MAGNETI E SOSTANZE FERROMAGNETICHE MAGNETI capaci di attirare oggetti di ferro naturali

Dettagli

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Corrente elettrica Sotto l effetto di un campo elettrico le cariche si possono muovere In un filo elettrico, se una carica dq attraversa una sezione del filo nel tempo dt abbiamo una corrente di intensità

Dettagli

ESERCIZI DI RIEPILOGO

ESERCIZI DI RIEPILOGO ESERCIZI DI RIEPILOGO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Esercizio R.1 Una spira rettangolare di lati a = 10 cm e b = 6 cm e di resistenza R = 10 Ω si muove con velocità costante

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

NUCLEI NMR ATTIVI E SPIN

NUCLEI NMR ATTIVI E SPIN NUCLEI NMR ATTIVI E SPIN I diversi nuclei risuonano a campi magnetici (e frequenze) molto diversi La frequenza caratteristica a cui risuonano i nuclei dello standard è Ξ Per un nucleo specifico, le variazioni

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli