Argomento 6 Lezione 9 Lezione 10 Francesca Apollonio Dipartimento Ingegneria Elettronica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Argomento 6 Lezione 9 Lezione 10 Francesca Apollonio Dipartimento Ingegneria Elettronica"

Transcript

1 Argomnto 6 Lion 9 Lion Fransa Apollonio Dipartimnto Inggnria lttronia -mail:

2 quaion di lmholt ω µ mi ω µ i ω i La lass di soluioni fornita dall q. di lmholt è più ampia di qulla fornita dal sistma di q. di Maxwll (opraion di drivaion) ω i quindi tra tutt l soluioni dll quaion di lmholt sgliamo qull h soddisfano anh la ω µ OMOGNA

3 Soluion quaion di. ( x,y,) X ( x) Y ( y) Z( ) ω µ Mtodo di soluion pr sparaion dll variabili vttor omplsso funioni salari omplss ( ) ( xx y y ) x, y, dtrmina la polariaion dl ampo lttrio dtrmina la propagaion ioè la dipndna dall oordinat x y Condiion di sparabilità

4 x x y y r vttor di propagaion ( ) ( ) r, y, r x α vttor di fas αvttor di attnuaion ( ) ( ) αr r, y, r x sol. dll q. vttorial di. omogna

5 Dtrminaion di (om modulo) ( ) ( ) r, y, r x apprsnta un onda piana ω µ ω µ σ ( µ ) µ ( ) µ µ ω µ ω ω ω ω µ µ ( µ ) ( µ )

6 Carattristih di propagaion dll ond pian ( ) ( ) r r y x,, ( ) ( ) r α r r y x,, σ µ ω µ ω y x ( ) ( ) σ µ ω α α α α µ ω α σ α part ral part immaginaria Considriamo un mo L-S-O-I-nonD->, µ rali positivi > α α

7 Casi partiolari ) Mo privo di onduibilità (sna prdit) a) vrifiata pr α σ Onda piana uniform α ω µ Onda vansnt α ω µ α ω µ > ω ω µ ω µ ω u µ µ ral vloità dlla lu nl mo b) vrifiata pr α Onda piana non uniform attnuata in dirion prpndiolar alla dirion di propagaion ral u µ ω α µ < µ

8 Onda piana non uniform u r µ α osθ ω µ s θ aros ω α µ u r µ pr θ θ < ur < µ onda lnta pr θ θ > ur > µ onda vlo

9 smpio onda piana uniform Calolo paramtri di bas: Un onda piana uniform on una frquna di 3 G si propaga in un mo sna suprfii di disontinuità on r 7 µ r 3. Calolar la vloità di fas la lungha d onda: u µ µ r r 3 8 ()() m/s < dlla vloità dlla lu λ u π π πu u 6.55 λ 9 f ω µ πf f 3 7 m

10 Onda piana uniform

11 Onda vansnt

12 ) Mo dissipativo (on prdit) ω µ ω µ σ ω µ σ σ ω omplsso α ntrambi non nulli Caso partiolar α // Onda piana uniform attnuata α α ( - α) Onda h si propaga nlla dirion di on vloità di fas uω/, lungha d onda λπ/ d un fattor sponnial di attnuaion.

13 3) Mo dissipativo disprsivo (on prdit) σ omplssa '' ' '' ω µ ω µ σ ω µ σ ω ' µ '' ' σ ' ω ( ) Prdit lgat alla orrnt di spostamnto Prdit lgat alla orrnt di onduion ω ω µ µ ( µ ) ( µ ) omplsso ' '' σ ' '' σ ( ) ω ω Caso partiolar α // Onda piana uniform attnuata

14 Carattristih di polariaion dll ond pian ( ) ( ) r r y x,, L oprator opra sulla funion om [] [] ( )[] [] y x y x y x y x ( ) y x y x r ( ) ( ) ( ) ondiion di sparabilità

15 r (, y, ) ( r) x La funion d onda è stata ottnuta om soluion dll q. vttorial di lmholt ( - α) ( ) α α funion d onda dllo stsso tipo di qulla di Trovato il ampo lttrio, qullo magntio si può riavar dalla: r r

16 Casi partiolari ) Mo non disprsivo non dissipativo, σ µ rali positiv; α Onda piana uniform (non attnuata) α α ( ) ω ω

17 Onda piana uniform (non attnuata) la ostant di propagaion oinidnt on è ortogonal a a,, sia il vttor ampo lttrio h qullo ampo magntio non hanno omponnti nlla dirion di propagaion Onda TM (TrasvrsolttroMagntia) ) ) Sovrapposiion di du ond polariat linarmnt: onda risultant polariata llittiamnt

18 ) h h ω µ µ h h µ Impdna arattristia dl mo µ π Ω 377 Ω vuoto

19 Vttor di Poynting pr l onda piana uniform: * * * h Π r r * ( ) h Vttor ostant ral dirtto om il vttor di propagaion Stsso prodimnto val pr la soluion )

20 ) Mo non disprsivo non dissipativo, µ rali positiv; σ α Onda piana non uniform Considriamo il ampo lttrio polariato linarmnt ad smpio α α y ( α) α α y ( y,) x α ( ) ( α) y, r x y x α y ( y ) x α α y

21 x Il ampo lttrio è polariato linarmnt, qullo magntio è polariato llittiamnt y α il vttor di propagaion -α è ortogonal al ampo lttrio Onda T (Trasvrsolttria) Vttor di Poynting pr l onda piana non uniform attnuata: * * * * r * * r ( - ) r Π ( ) ( ) * * * * αr αr * αr [ ] ( α) ral, dirtta om immaginaria, dirtta om α

22 Π α y ( α ) y S si part dal onsidrar il ampo magntio polariato linarmnt si arriva in modo dual ad un onda h Onda TM (TrasvrsoMagntia) α

23 ) Mo non disprsivo dissipativo, µ rali positiv; σ α ntrambi non nulli non prpndiolari Caso partiolar α // Onda piana uniform attnuata ( α) ω µ Onda TM

24 ampo lttrio polariato linarmnt h anh il ampo magntio è polariato linarmnt h ω µ µ µ quantità omplssa Vttor di Poynting pr l onda piana uniform attnuata: Π r α r * r α r * α r h omplssa, dirtta om, h si attnua on ost α nlla stssa dirion

25 Costanti sondari dl mo Costanti primari dl mo:, µ, σ Costanti sondari dl mo:, ζ µ ω ( ) ( ) µ µ ω µ µ ω µ α

26 Costanti sondari dl mo Trattaion analitia σ µ ω ω µ σ ω σ µ ω ω σ µ ω

27 Costanti sondari dl mo ( ) ω σ ω σ ω σ µ ω σ µ ω ω σ σ ω σ ω σ

28 Onda piana in un buon onduttor ω σ >> smpi Onda piana in un buon dilttrio ω σ << µ σ σ σ µ ω µ ω σ ω µ ω σ σ α σ σ σ σ σ σ

29 ( ) σ ( ) ( ) σδ ( ) σ s δ δ α σ Profondità di pntraion x h y α () () x () x x x α () () () y y y r r y * α () Π() Π r s: ram Pr f M, σ 5.8 µ µ 7 Ω - m m δ.65 m α σ

30 smpio onda piana in un buon onduttor δ σ s δσ

31 smpio onda piana in un buon onduttor Calolar la profondità di pntraion di alluminio, ram, oro argnto alla frquna di G: δ -3 5 α σ πfµ σ σ π ( )( ) 7 4π σ σ alluminio: ram: m m oro: m argnto: m

32 Propagaion di un onda piana in un buon onduttor ( ) δ δ δ δ δ δ δ δ δ δ s in ( ) T s ( ) α ) s ( ( ) T s ( ) δ δ T s δ δ T {

33 la dnsità di orrnt: fftto pll ( ) è dirtta paralllamnt alla suprfii σ δ δ T δ d ha valori snsibili solo in uno strato suprfiial di spssor δ m s L Lm m T T L m L d ( ) δ δ δ d s T Ni mtalli ad alta onduibilità lo spssor dlla pll è talmnt piolo da potr assimilar il ampo di orrnt ad una lamina onntrata sulla suprfii dl onduttor

34 Gnraliaion: Ipotsi: lo spssor dlla pll molto minor di tutt l dimnsioni arattristih dl orpo lo spssor dlla pll molto minor dll minim distan pr ui si hanno apprabili variaioni di T sulla suprfii s molto maggior di δ ma piolo a suffiina da potr onsidrar l lmnto piano impdna suprfiial ( ) T n T s s n Condiion di Lontovi suprfii o part d impdna n part lttria W S S ds T S S S ds potna dissipata in un orpo onduttor

35

36

37

38

39

40

41

42

43

44

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 14 Lezione 15

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 14 Lezione 15 Argomnto 8 ion 4 ion 5 Francca Apollonio Dipartimnto nggnria Elttronica E-mail: in di tramiion Formalimo utiliato pr lo tudio di fnomni di propagaion: toria dll lin di tramiion a toria dll lin di tramiion

Dettagli

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo EQUAZIONI DIFFERENZIALI ORDINARIE Si hiama quazion diffrnzial ordinaria di ordin n in un intrvallo I qualunqu sprssion dl tipo n F,,,,, 0 pr ogni I F è dunqu una funzion di n variabili l sono l drivat

Dettagli

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare Funioni Linari tra Spai Vttoriali D. Siano V V du spai vttoriali sia : V V. è dtta FUNZIONE LINEARE s: v, v V, k R si ha : v v v additività v kv k omognità v Oppur con l unica proprità: v v v v Nota Com

Dettagli

semiconduttori E c E gap E v

semiconduttori E c E gap E v Carattristih a 0K: - banda di valnza opltant oupata - banda di onduzion opltant vuota - piolo gap di nrgi proibit g 1,1 V Si); 0,7 V G); 1,4 V GaAs) a >0K: - un lttron può ssr itato dalla banda di valnza

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equaioni diffrniali ordinari Equaioni diffrniali ordinari Equaioni diffrniali dl ordin a variabili sparabili, Equaioni diffrniali linari dl ordin Equaioni diffrniali dl ordin non linari: Equaion di Brnoulli

Dettagli

G(r,r ) è la funzione diadica di Green. L equazione differenziale soddisfatta da G(r,r ) è simile a quella soddisfatta dal campo elettrico Er ( ).

G(r,r ) è la funzione diadica di Green. L equazione differenziale soddisfatta da G(r,r ) è simile a quella soddisfatta dal campo elettrico Er ( ). 1 La funion diadica di Grn prmtt di sprimr il campo lttrico in funion dll su sorgnti. Poiché sia il campo lttrico Er ( ) sia la sorgnt lttrica Jr ( ) sono quantità vttoriali, la funion di Grn risulta ssr

Dettagli

Esercizi 3 Geometria lineare nello spazio

Esercizi 3 Geometria lineare nello spazio Esrcizi 3 Gomtria linar nllo spazio Ngli srcizi ch sguono si suppon fissato un sistma di rifrimnto (SdR) nllo spazio. S la bas (dllo spazio vttorial di vttori libri) di tal SdR è indicata con (i, j, k),

Dettagli

Argomento 5. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 7 Lezione 8.

Argomento 5. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 7 Lezione 8. Argomno 5 Lion 7 Lion 8 Frncsc Apollonio Diprimno Inggnri lronic -mil: quion dll ond dominio dl mpo B r L-S-O-I-nonD r D r ε r B r µ r D r r J r J r cosni Pr smplicià di noion frmo rifrimno d ssn di crich

Dettagli

Università degli Studi di Roma La Sapienza Corso di laurea in Ingegneria Energetica Geometria A.A Foglio di esercizi n.5 (prof.

Università degli Studi di Roma La Sapienza Corso di laurea in Ingegneria Energetica Geometria A.A Foglio di esercizi n.5 (prof. Univrsità dgli Studi di Roma La Sapinza Corso di laura in Inggnria Enrgtica Gomtria A.A. 2014-2015 Foglio di srcizi n.5 (prof. Cigliola) Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0), v 2 = (2, 1, 1)

Dettagli

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 Foglio n.10 Somma intrszion di sottospazi vttoriali prof. Cigliola Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ] Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2 + ELETTOMAGNETISMO APPLICATO ALL'INGEGNEIA ELETTICA ED ENEGETICA_B (ultima modifica 7/0/07) Enrgia Forz lttrostatich F Una carica positiva posta in un punto P a distanza da una carica positiva fissa ch

Dettagli

Fondamenti di Algebra Lineare e Geometria TEMA A

Fondamenti di Algebra Lineare e Geometria TEMA A Fondamnti di Algbra Linar Gomtria Inggnria Arospazial d Inggnria dll Enrgia - Canal B Quarto Appllo - 3 fbbraio 5 TEMA A Risolvr i sgunti srcizi motivando adguatamnt ogni risposta. () Sia data la matric

Dettagli

Potenziale ed energia potenziale y

Potenziale ed energia potenziale y Potnzial d nrgia potnzial ) Siano dat du carich puntiformi positiv Q =Q Q =9Q, dispost sullo stsso ass rispttivamnt ad una distanza 3 dal punto (vdi figura). a) il lavoro ncssario pr portar una carica

Dettagli

x 1 = t + 2s x 2 = s x 4 = 0

x 1 = t + 2s x 2 = s x 4 = 0 Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 prof. Cigliola Foglio n.10 Somma intrszion di sottospazi vttoriali Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

Propagazione in mezzi omogenei

Propagazione in mezzi omogenei FONDAMNTI DI LTTROMAGNTISMO FORMULARIO FONDAMNTI DI LTTROMAGNTISMO FORMULARIO Propagaione in mei omogenei Soluione di onda piana nel DT e( r t) = e ( r ˆk vt) h( r t) = ζ ˆk e ( r ˆk vt) con ˆk versore

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

1999 suppletiva tema 1 1

1999 suppletiva tema 1 1 1999 suppltiva tma 1 1 1. L sistnza dll ond lttromagnti è prvista dall quazioni di Maxwll, nl vuoto in assnza di ari orrnti libr, assumono la forma: S E 0 S B 0 B 0 C B E t t C E 0 Un onda lttromagntia

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

Sistemi lineari a coefficienti costanti

Sistemi lineari a coefficienti costanti Sistmi linari a cofficinti costanti Stsura provvisoria Considriamo il sistma x ax + by y cx + dy nll funzioni incognit xt, yt, ssndo a, b, c, d quattro costanti assgnat. Indicato con X x, y} con A la matric

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

TRAVE ELASTICA SU SUOLO ELASTICO (MODELLO ALLA WINKLER) Collana Calcolo di edifici in muratura (www.edificiinmuratura.it)

TRAVE ELASTICA SU SUOLO ELASTICO (MODELLO ALLA WINKLER) Collana Calcolo di edifici in muratura (www.edificiinmuratura.it) RAVE EASIA SU SUOO EASIO (MODEO AA WINKER) ollana alcolo di difici in muratura (www.dificiinmuratura.it) Articolo 7 uglio 5 rav lastica su suolo lastico (modllo alla Winlr) In qusta trattaion la trav

Dettagli

+ V in - + V out - V(z) z=l (sezione di carico) z=0 (sezione di generatore)

+ V in - + V out - V(z) z=l (sezione di carico) z=0 (sezione di generatore) Appunti di ompatibilità Elttromagntica ERDITE DI OTENZA NEI AI Il calcolo dll prdit di potna ni cavi di intrconnssion ha grand importana, data la prsna di cavi in tutti i sistmi di misura. r introdurr

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Eq. del moto: F v B. Trasformazione a un riferimento in rotazione, vel. angolare ω: Relaz. fra le accelerazioni nei 2 riferimenti (* in rotazione):

Eq. del moto: F v B. Trasformazione a un riferimento in rotazione, vel. angolare ω: Relaz. fra le accelerazioni nei 2 riferimenti (* in rotazione): Diamagntismo: Modllo di Langvin Torma di Larmor q Insim di particll carich, con fisso, soggtt a: m For cntrali For a du corpi(cntrali) C. magntico Eq. dl moto: ma = Σ F = F C k onk k F v B i + Σ i k +

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 29 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 29 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 giugno 01 1) Un blocco di massa m 500g vin tirato mdiant una fun lungo un piano inclinato di 60, scabro, si muov con acclrazion costant pari

Dettagli

Flusso di E. Flusso di un vettore E attraverso una superficie S

Flusso di E. Flusso di un vettore E attraverso una superficie S S la suprfici è chiusa si parlrà di flusso uscnt di (normal n orintata vrso l strno) di flusso ntrant (n punta vrso l intrno). Tutorato 1 Flusso di 1/8 S n ds Flusso di un vttor attravrso una suprfici

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Principi d applicazioni dl mtodo dgli lmnti finiti Formulazion bas con approccio agli spostamnti METODO DEGLI ELEMENTI FINITI PER N PROBLEMA 2D Si considri un problma piano, il cui dominio sia qullo rapprsntato

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 17 gennaio 2011

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 17 gennaio 2011 CORSO DI LURE I SCIEZE BIOLOGICHE ppllo di ISIC, 17 nnaio 11 1 Una partilla di assa = 1 k vin lasiata libra di uovrsi dalla soità di un piano inlinato. L altzza H dl piano è pari a h = 6 l anolo di inlinazion

Dettagli

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019 I Bonus di Fisica uclar Subnuclar 1 - AA 018/019 17 April 019 OME E COGOME: CAALE: 1 Un acclrator di lttroni positroni di 10 GV di nrgia ciascuno, i cui impulsi sono dirtti lungo l ass z nl sistma di rifrimnto

Dettagli

test Di chimica per l accesso alle Facoltà UNiVersitarie

test Di chimica per l accesso alle Facoltà UNiVersitarie tst i himia pr l asso all Faoltà UNiVrsitari il sistma priodio dgli lmnti il sistma priodio dgli lmnti 1. indiar qual di sgunti lmnti NoN è di transizion: a F zn as Cu Cr (Mdiina Chirurgia 2005) 2. indiar

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Risultati esame scritto Fisica 2-21/07/2014 orali: alle ore 9.30 presso aula G7

Risultati esame scritto Fisica 2-21/07/2014 orali: alle ore 9.30 presso aula G7 Risultati sam scritto Fisica - /7/ orali: 5-7- all or 9. prsso aula G7 gli studnti intrssati a visionar lo scritto sono prgati di prsntarsi il giorno dll'oral Nuovo ordinamnto voto AIO ANTONA nc AROBI

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/rchitttura Corrzion prova scritta 9 sttmbr 011 1. Dati i tnsori: { L = 3x y +3 y z +4 z x M = 3 x x + x z +5 y y d il vttor v =

Dettagli

Algebra lineare Geometria aprile 2006

Algebra lineare Geometria aprile 2006 Algbra linar Gomtria april ) Nllo spaio vttorial R [] si considrino i sottoinsimi U {p() R [] p() } V {p() R [] p() p(-)} la union : R [] R [] tal ch p() R [] (p()) p(-) i) Si vriichi ch U V sono sottospai

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Propagazione ionosferica. Corso di Propagazione: propagazione ionosferica 1

Propagazione ionosferica. Corso di Propagazione: propagazione ionosferica 1 Propaaion ionosfrica Corso di Propaaion: propaaion ionosfrica Introduion La ionosfra è qulla rion dll alta troposfra ch si stnd da circa 6 a circa 4 m in cui l radiaioni solari principalmnt UV rai X provocano

Dettagli

Moneta e Finanza Internazionale. Teoria delle aspettative

Moneta e Finanza Internazionale. Teoria delle aspettative Monta Finanza Intrnazional Toria dll aspttativ L aspttativ adattiv x t : Aspttativa dl valor ch la variabil x assumrà in t Aspttativ strapolativ: il valor attso è funzion di valori storici x t = x t-1

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Antenne e Telerilevamento. Esonero I ESONERO ( )

Antenne e Telerilevamento. Esonero I ESONERO ( ) I ESONERO (28.6.21) ESERCIZIO 1 (15 punti) Si considri un sistma ricvnt oprant alla frqunza di 13 GHz, composto da un antnna a parabola a polarizzazion linar con un rapporto fuoco-diamtro f/d=.3, illuminata

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Laboratorio di Calcolo B 79

Laboratorio di Calcolo B 79 Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Lezione 19 Propagazione di onde EM in un plasma freddo in presenza di campo magnetico

Lezione 19 Propagazione di onde EM in un plasma freddo in presenza di campo magnetico Leione 19 Propagaione di onde M in un plasma freddo in presena di campo magnetico G. Bosia Universita di Torino 1 Derivaione della relaione di dispersione In questa leione studiamo la propagaione di un

Dettagli

Forza d interesse. Università degli Studi di Catania Facoltà di Economia D.E.M.Q.

Forza d interesse. Università degli Studi di Catania Facoltà di Economia D.E.M.Q. Fora d intrss Univrsità dgli Studi di Catania Facoltà di Economia D.E.M.Q. Fora d intrss Lgg di capitaliaion a du variabili Opraion finaniaria : -C + C C+ Intrss prodotto in [ + ] da un capital C invstito

Dettagli

Soluzioni dei Problemi di controllo

Soluzioni dei Problemi di controllo Soluioni i roblmi i ontrollo Si v raliar un sistma i ontrollo i tipo on transitorio h si annulli in tmpo finito minimo Dato h la ha già un polo in non è nssario introurn altri pr mo l ontrollor G r ottnr

Dettagli

Calore specifico del gas perfetto di Bose

Calore specifico del gas perfetto di Bose Calor spcifico dl gas prftto di Bos L. P. 7 April Il calcolo dl calor spcifico di un gas prftto di Bos prsnta dgli asptti tcnici intrssanti. Dfiniamo la funion polilog g α (), pr α > < mdiant la sri g

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

Esercizi Analisi Matematica II Anno accademico

Esercizi Analisi Matematica II Anno accademico Esrcizi Analisi Matmatica II Anno accadmico 06-07 Foglio. P Calcolar la matric Jacobiana dlla funzion composta g f dov l funzioni g f sono dat da: (a) f : R R g : R R dov f(x, y) = (xy, x + y, sin(y))

Dettagli

Riferimenti, coordinate, equazioni per rette e piani

Riferimenti, coordinate, equazioni per rette e piani Rifrimnti, coordinat, quaioni pr rtt piani Diamo pr scontato ch il lttor abbia familiarità con l noioni di bas sullo spaio di vttori applicati dl piano dllo spaio. Pr qust si può consultar il paragrafo.

Dettagli

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza Analisi Matmatica II Esrcizi sugli intgrali multipli, sugli intgrali suprficiali, sull formul di Gauss-Grn, di toks dlla divrgnza orso di laura in Inggnria Mccanica. A.A. 2008-2009. Esrcizio 1. alcolar

Dettagli

Richiami sui fenomeni ondulatori

Richiami sui fenomeni ondulatori Rihiami sui fenomeni ondulatori Cos è un onda? una perturbazione fisia, impulsiva o periodia he, prodotta da una sorgente in un punto dello spazio, si propaga in un mezzo on una veloità ben definita produendo

Dettagli

Linee di Trasmissione: Propagazione per onde

Linee di Trasmissione: Propagazione per onde inee di Trasmissione: Propagaione per onde v + () Rappresentaione shematia di una linea di trasmissione Definiione matematia dell onda di tensione he si propaga verso la resente: 0 v ( ) ( V e ) e j t

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

L UNIVERSO E UNA SFERA PERFETTA Calcolo teorico della TCMBR Leonardo Rubino Aprile 2019

L UNIVERSO E UNA SFERA PERFETTA Calcolo teorico della TCMBR Leonardo Rubino Aprile 2019 L UNIVESO E UNA SFEA PEFETTA Calolo torio dlla T Lonardo ubino April 9 7G m T ( ), 786K k iordiamo du quazioni dll ambito dllo studio dllo Spttro di Corpo Nro di Plank, dall quali, poi, saturis la Lgg

Dettagli

Ingegneria dei Sistemi Elettrici_6c

Ingegneria dei Sistemi Elettrici_6c Ingegneria dei Sistemi lettrici_6c H QUAZIONI D ONDA VTTORIALI OMOGN u u t t H u / sse servono per determinare la distribuione del campo in mei non conduttori, ossia in una regione dello spaio priva di

Dettagli

03. Le oscillazioni meccaniche. 03 c. Le onde monocromatiche

03. Le oscillazioni meccaniche. 03 c. Le onde monocromatiche 03. 03. L ond monoromatih 03. Contnti : il formalismo ral qllo omplsso, l qazion arattristia la rlazion di disprsion, l rapprsntazioni nl dominio dllo spazio dl tmpo. slid#3 Pitagora Samo 570-495 a.c.

Dettagli

METODO DI NEWTON Esempio di non convergenza

METODO DI NEWTON Esempio di non convergenza METODO DI NEWTON S F(x) è C 2 si sa ch (x R k ) F(x+h) = F(x) + F(x) t h + 1/2 h t H(x)h +o( h 3 ) d una stima possibil dl punto di minimo è data da x# = x - H(x) -1 F(x) dov H(x) è la matric hssiana in

Dettagli

Parte IV: Spin e fisica atomica

Parte IV: Spin e fisica atomica Part IV: Spin fisica atomica Atomo in un campo magntico Esprinza di Strn Grlach Spin dll lttron Intrazion spin orbita doppitti spttrali Spin statistica 68 Atomo in un campo magntico Efftto classico: prcssion

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Sessione ordinaria 12_1 1 M. Vincoli

Sessione ordinaria 12_1 1 M. Vincoli Sssion ordinaria 12_1 1 M. Vinoli a) Il orpo nro è un sistma idal apa di assorbir tutta la radiazion inidnt su di sso; è approssimabil mdiant una avità rioprta di nro fumo (nlla pratia, fuliggin di ombustion)

Dettagli

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI I ONDE PIANE E MATERIALI OP 1 Il campo elettrico nel punto A ha un modulo di 1V/m e forma un angolo di 6 o con la normale alla superficie. Calcolare e(b). ε 1 ε 2 A B 6 o e ε 1 =, ε 2 = 2 Nel punto A le

Dettagli

Gestione dei processi aziendali. Prof. Sergio Faccipieri. Analisi delle code

Gestione dei processi aziendali. Prof. Sergio Faccipieri. Analisi delle code Analisi dll od L od i tmpi di attsa sono un asptto inliminabil di quasi tutti i sistmi di trasformazion sia ni sttori manifatturiri h in qulli di srvizi. L od drivano dal omportamnto asinrono dll rihist

Dettagli

Condensatori e dielettrici

Condensatori e dielettrici La fibrillazion è una contrazion disordinata dl muscolo cardiaco. Un fort shock lttrico può ripristinar la normal contrazion. Pr usto è ncssario applicar al muscolo una corrnt di A pr un tmpo di ms. L

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

MATEMATICA GENERALE (A-K) -Base 13/2/2004

MATEMATICA GENERALE (A-K) -Base 13/2/2004 MATEMATICA GENERALE (A-K) -Bas //004 PRIMA PARTE ) Individuar la rimitiva dlla funzion f(x) = x log x assant r il unto (4,) ) Calcolar, usando la d nizion, la drivata dlla funzion f(x) = x + nl unto x

Dettagli

sommario Facoltà di Economia Forma di una distribuzione francesco mola Lezione n 5

sommario Facoltà di Economia Forma di una distribuzione francesco mola Lezione n 5 sommario Corso di Statistica Facoltà di Economia a.a. - francsco mola Indici di forma Variabil standardiata Lion n 5 l5_- statistica-francsco mola Forma di una distribuion olti fnomni dlla raltà si distinguono

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x

1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/Architttura Corrzion prova scritta Esam di Mccanica Razional 30 gnnaio 01 1. Dati i tnsori: { L = 3x y + y z + 3 z x M = x x y y

Dettagli

I momenti angolari e lo spin: proprietà

I momenti angolari e lo spin: proprietà I momnti angolari lo spin: proprità pttroscopi agntic: NR d EPR NR Nuclar agntic Rsonanc EPR Elctron Paramagntic Rsonanc (Elctron pin rsonanc ER i basano sulla intraion dlla radiaion lttromagntica (componnt

Dettagli

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE EQUAZIONI DIFFERENZIALI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE EQUAZIONI DIFFERENZIALI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI Risoluzion di uazioni diffrnziali a ura dl prof. Massimo Latino EQUZIONI DIFFERENZILI DEL PRIMO ORDINE Dnominazion Com si prsntano Com si risolvono Euazion diffrnzial dl d primo ordin a variaili sparaili

Dettagli

Sistemi trifase. Parte 1. (versione del ) Sistemi trifase

Sistemi trifase. Parte 1.   (versione del ) Sistemi trifase Sistmi trifas Part www.di.ing.unibo.it/prs/mastri/didattica.htm (vrsion dl 5--08) Sistmi trifas l trasporto la distribuzion di nrgia lttrica avvngono in prvalnza pr mzzo di lin trifas Un sistma trifas

Dettagli

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali Complmnti sull applicazioni dlla trasformata di ourir alla risoluzion di prolmi pr quazioni a drivat parziali Marco Bramanti March, 00 Nll applicazioni all quazioni a drivat parziali, spsso una funzion

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Scuola di Storia della Fisica

Scuola di Storia della Fisica Scuola di Storia dlla Fisica Sulla Storia dll Astronomia: il Novcnto. Gli strumnti, l scoprt, l tori. Asiago -6 Fbbraio 16 GLOSSARIO: Scattring Thomson Compton Biagio Buonaura GdSF & Lico Scintifico Statal

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Trasformate di Laplace e risoluzione di sistemi lineari di Equazioni Differenziali Ordinarie

Trasformate di Laplace e risoluzione di sistemi lineari di Equazioni Differenziali Ordinarie Trasformat di Laplac risoluzion di sistmi linari di Equazioni Diffrnziali Ordinari Flaviano Battlli 1 Trasformat di Laplac di funzioni a valori in R Una funzion f : R R si dic un original o anch L-trasformabil,

Dettagli

Relazioni Input/Output b

Relazioni Input/Output b Rlaioni Input/Output b 4.3 Valutaion gotrica di H( H ( Si risaini l'sprssion dlla funion di trasfrinto raional (4..5: H( Y( X( N b a (4..5 dov l radici di polinoi a nurator a dnoinator sono chiaat rispttivant

Dettagli

Le onde elettromagnetiche

Le onde elettromagnetiche Le onde elettromagnetihe orgente di onde elettromagnetihe è un sistema di arihe aelerate he produono un ampo elettrio (x,y,z,t) e un ampo magnetio B(x,y,z,t) I due ampi (x,y,z,t) e B(x,y,z,t) sono strettamente

Dettagli

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA 8 9 DERIVATA DI UNA FUNZIONE COMPOSTA La drivata di una funion composta ( funion di funion si ottin (dim all pagin 0 : a drivando la funion principal ( qulla ch si applica pr ultima risptto al suo argomnto

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

Autofunzioni atomiche e autofunzioni molecolari funzioni funzione d onda d onda atomiche molecolare

Autofunzioni atomiche e autofunzioni molecolari funzioni funzione d onda d onda atomiche molecolare utofunioni atomich autofunioni molcolai E m H g g g l g σ σ σ σ g s s + σ funioni d onda atomich funion d onda molcola s s s E s m s E s m autofunion di un otnial atomico con il nuclo osto nl unto autofunion

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Compito del 1 settembre 2014

Compito del 1 settembre 2014 Coito dl sttbr Elttrodinaia Un solnoid di N sir, raggio a lunghzza L, il ui ass oinid on l ass y, ` rorso da una orrnt ontinua I. Si suonga h l dinsioni dl solnoid siano tali da garantir l arossiazion

Dettagli

Dispensa del corso di FLUIDODINAMICA DELLE MACCHINE. Argomento: Meccanismi di perdita

Dispensa del corso di FLUIDODINAMICA DELLE MACCHINE. Argomento: Meccanismi di perdita Disnsa dl corso di FLUIDODINMIC DLL MCCHIN rgomnto: Mccanismi di rdita Pro. Pir Ruggro Sina Diartimnto di Inggnria Coicinti di rdita s s T h h s T h h h h h h Y s s s Comrssion s s T h h s T h h h h h

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4 Esame sritto di Elettromagnetismo del 16 Luglio 2012 - a.a. 2011-2012 proff. F. Laava, F. Rii, D. Trevese Elettromagnetismo 10 o 12 rediti: eserizi 1,2,3 tempo 3 h e 30 min; Reupero di un esonero: eserizi

Dettagli