Soluzioni dei Problemi di controllo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzioni dei Problemi di controllo"

Transcript

1 Soluioni i roblmi i ontrollo Si v raliar un sistma i ontrollo i tipo on transitorio h si annulli in tmpo finito minimo Dato h la ha già un polo in non è nssario introurn altri pr mo l ontrollor G r ottnr un sistma a ilo hiuso on tmpo i risposta finito, i poli lla funion i trasfrimnto a ilo hiuso G W vono ssr olloati tutti nll'origin, ioè bisogna G imporr h n n δ W ov l'intro n v ssr il più piolo possibil A tal sopo la G v anllar tutti i poli gli ri i intrni al rhio i raggio unitario v moifiar i offiinti l polinomio W in moo h sso abbia tutt l raii nll'origin n bas al primo rquisito la slta iniial pr G è la sgunt G 5 h prmtt i anllar il polo in lo ro in 5 lla Tuttavia tal G non rius a spostar tutti i poli l polinomio W nll'origin r soisfar il sono rquisito quini si v gnraliar la G Qusto può ssr fatto pr tntativi, iniiano a aggiungr a nominator un polinomio l primo n orin β β vrifiar s si ris a imporr W δ ; si vrifihrà subito h tal slta è insuffiint pr ui si prosguirà ompliano anora la G aggiungno un polinomio l primo orin α a numrator, ottnno α α α G 5 β β a ui α α G β β offiinti α, α, β, β vanno alolati imponno h l raii l polinomio W, lla funion i trasfrimnto l sistma a ilo hiuso, abbia tutt l raii nll'origin Si ottin a ui quini W α δ α β β β β δ β β α β β α β δ, β β, α β β, α β Si può sglir δ, i onsguna si ha

2 β, β, α, α l ontrollor h soisfa tutti i rquisiti rihisti è quini il sgunt G 5 Com si v sso introu un ultrior polo in nl ramo irtto, pr ui il sistma a ilo hiuso risultrà ssr i tipo Qusto garantis h l'rror i lungo prioo in risposta a obittivi a rampa è nullo La soluion i qusto problma può anh ssr ottnuta appliano la proura iniata nl paragrafo 9 in ui G sono rapprsntat nl sgunt moo ' " n n ' ' " ng ng G G ', " " G G " Si ottin subito h,, n G G " 5 noltr v ssr G ' a ui si riava n G α α ' a ui G β β γ ' ' n γ G G ' " max{ γ γ n,} γ, min G Si è quini ottnuta irttamnt la G prntmnt ostruita pr tntativi offiinti α, α, β, β vanno alolati om prima, imponno h l raii l polinomio W siano tutt nll'origin Dall'quaion all iffrn si v riavar la funion i trasfrimnto l prosso Qusto si ottin failmnt sguno la trasformata ta i ambo i mmbri, riorano h si vono onsirar oniioni iniiali null Si ottin Y 5 U a ui Y U 5 onno quini G, il polinomio a nominator lla funion i trasfrimnto a ilo hiuso ivnta W, 5 5

3 L raii i qusto polinomio al variar l paramtro possono stuiarsi miant il luogo ll raii La iffrna poli/ri è n m, pr ui u rami l luogo 5 anranno nl punto all'infinito on asintoti il ui ntro è 5 L'anamnto qualitativo l luogo è il sgunt Com si v pr il luogo ngativo LN l raii non sono mai tutt all'intrno l rhio i raggio unitario; in partiolar l u raii h tnono all'infinito sono smpr strn a sso r il luogo positivo inv si nota h è possibil h l raii possano ssr tutt ontmporanamnt intrn al rhio i raggio unitario: infatti la rai in, all'aumntar i, si muov lungo l'ass ral ntra nl rhio in orrisponna a Contmporanamnt l altr u raii si muovono all'intrno l rhio lungo l'ass ral fino a inontrarsi nl punto singolar, poi ivntano omplss oniugat sono al rhio pr poi tnr all'infinito sono i u asintoti vrtiali on ntro in -5 Si v vrifiar h quano la prima rai è in l altr u non siano già usit al rhio A tal sopo aloliamo il valor i pr ui una rai è in W 5 5, a ui si ha 4 Ora, pr trminar l altr u raii in orrisponna i qusto valor i, ossrviamo h il polinomio W, ha la sgunt struttura W 4 5 α α, α a ui, uguagliano i offiinti ll potn llo stsso orin, si ha W,4

4 Quano la prima rai ntra nl rhio i raggio unitario l altr u valgono i ± pr ui sono già usit al rhio Di onsguna non sistono ontrollori proporionali h assiurino stabilità asintotia l sistma a ilo hiuso 4 L'rror in risposta a * Y è ato a * * * Y n Y Y W E Dato h pr i ampioni ll'rror sono nulli si ha h n E on n γ Uguagliano l u sprssioni si ottin n n n n Ora, nl nominator l trmin a stra i sono solo raii nll'origin, pr ui il trmin nl nominator a sinistra v pr fora ssr anllato al

5 ' numrator Si ha quini h Dato h vin rihisto il minimo tmpo finito i risposta sappiamo h la G v anllar tutti i poli gli ri i h sono intrni al rhio i raggio unitario α G β 5 β, tnno onto h v anh assgnar la rai al nominator i, può ssr ultriormnt spifiata nl moo sgunt β Da qusta si ottin G α 5 β β G Dalla rlaion prntmnt trovata n α β β n si ha α β β β β n Uguagliano i nominatori si v h v ssr pr ui il tmpo finito minimo è pari a 4 oi sgu h α β β α β β a ui si ottin h β, β /, α 4 / quini 4 5 G noltr si ottin h n /, pr ui risulta / / E

6 / Si aotta il sgunt shma y * G G y - on G 5 si ha G 5, si ottin stabilità asintotia pr { 6 } { > /} Con < 6 G, La snsibilità non ipn all ntità lla variaion i è pari a S 7, q, G 5 q W y u u, y y, y /, y, si può riptr la sintsi l aso prnt ma il tmpo finito minimo i risposta sarà più lungo i un passo prhé non si può anllar la rai q r q 5, 4

7 8 9 G,, > 9 / o < / y y u 5u 5u y, y, y 6, y 8, y4 54

8 y * G G y G, G 5

9 rima soluion: G, l'rror è nullo inipnntmnt all variaioni i p, prhè il sistma a ilo hiuso è i tipo l paramtro va slto in moo a avr stabilità asintotia l sistma a ilo hiuso Sona soluion: G, pr la stabilità asintotia 9 < < 9 mntr pr la spifia sulla snsibilità < Quini 67 < < 9 4 5, 5 r si ha stabilità asintotia pr, 8

10 5, > < β α Con β α, nll'insim ammissibil 5 G β α 4 G 6 Appliano Shur-Cohn si ottngono l sgunti isguaglian pr i paramtri l ontrollor 4 > > > > 4 < < < <

11 L rror è pari a K a on K, a ui S S L rror è a insnsibil all variaioni i prhé è inipnnt a sso nv l variaioni rlativ i sono i sgno opposto a qull i pr ui s a smpio aumnta l %, si ha una variaion rlativa i pari a a ui, pr ui 7 assum il valor 9, iminuis priò l % 8 G G, non sistono ontrollori intgrali h rnano il sistma a ilo hiuso asintotiamnt stabil G, sistma il a ilo hiuso è asintotiamnt stabil s, sistma il a ilo hiuso è asintotiamnt stabil pr, sono soisfatt l sgunti isguaglian > > < 4 il ontrollor h assgna il tmpo finito i risposta è ato a

12 9 a 5 %, 5% b %, % l ontrollor α G α α rn il sistma a ilo hiuso astatio β β risptto a isturbi i attuaion ostanti sglino i sgunti valori i paramtri α, α, α, β, β, assgna il tmpo i risposta finito L'insim ammissibil pr i paramtri è finito all sgunti isquaioni α > α β > α > α < α β < α < α α α r α, β nll'insim ammissibil G ; α β i valori α, α, α si ottngono olloano tutti i poli nll'origin 4

13 5 G 4 Non si hanno intrvalli i stabilità asintotia prima soluion: G, smpli ma pr rispttar il vinolo sulla snsibilità potrbb srvir un valor troppo alto i, tal a non garantir la stabilità asintotia Sona soluion: G, l'rror è nullo inipnntmnt a p pr ui la snsibilità è ro; si ha un ontrollor un pò più omplsso l prnt 4 r 8 il sistma a ilo hiuso ha u poli i moltpliità in ± 6i Si ha stabilità asintotia pr p 84, 5 L'insim ammissibil pr i paramtri l ontrollor è finito all sgunti isquaioni

14 > 5 p 5 p > < 5 p > 5 p > 5 > < < < 5 < G p G, assgna tutti i poli nll'origin, G 5 5 G Dall anamnto l luogo si v h sist un intrvallo i stabilità asintotia a avallo ll origin, intrvallo l tipo i qullo iniato nl tsto Controllo a invrsion, G, G

15 G δ max, l sistma a ilo hiuso ha tmpo i risposta finito quini margin i stabilità massimo, pr variaioni l paramtro simmtrih risptto al valor L'insim ammissibil i paramtri è finito all sgunti isquaioni a > a b > a b > a < a b < a b < a > 4 a G,,

16 5 b G 5 5 G α 7 L'insim ammissibil i paramtri è finito all sgunti isquaioni

17 > < 8 a / b l'insim ammissibil i paramtri è finito all sgunti isquaioni 6β α > 6 4β α > 4 6β α > 4,5 9 u, u, u 9 4 L'insim ammissibil i paramtri è finito all sgunti isquaioni

18 5 5 > > > > 5 5 < < < < 4, 4 8,8 4 G 4 5

19 4 8, 44 a S p, b, < o > 45 a G ; ; -/5 ; /5 ; 4 -/5 ; 5-4/5 ; b G 45 58

20 46 a 5,, b m M M 47 4, 79, 48 L'insim ammissibil i paramtri è finito all sgunti isguaglian 4 / < a < / 4 / < b < 8 / 4 / < < / 49 a ossrvator intità on G b E

21 5 T C, C y, 5 a ossrvator riotto on T, E 4 b ossrvator riotto l punto prnt on E 8 5 ossrvator riotto on T, E * 5 a u y y 4 b σ 4 y" 54 a b 5 5 * u y σ σ y" 55 a 5 * u y y 9 b σ y" 9 56 a * u y b σ σ 5 y "

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equaioni diffrniali ordinari Equaioni diffrniali ordinari Equaioni diffrniali dl ordin a variabili sparabili, Equaioni diffrniali linari dl ordin Equaioni diffrniali dl ordin non linari: Equaion di Brnoulli

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

Esame di Fisica 2. Corso Interateneo di Ing. Informatica e Biomedica 22/07/2011

Esame di Fisica 2. Corso Interateneo di Ing. Informatica e Biomedica 22/07/2011 sam i Fisica orso ntratno i ng. nformatica Biomica 7 Problma Sia ato un filo conuttor tituito a u lunghi fili rttilini raccorati a un tratto smicircolar i raggio, com rapprsntato in figura. l filo è prcorso

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Circuiti Nel progettare un circuito destinato a svolgere una certa funzione normalmente si hanno a disposizione i seguenti elementi:

Circuiti Nel progettare un circuito destinato a svolgere una certa funzione normalmente si hanno a disposizione i seguenti elementi: Ciruiti Nl progttr un iruito stinto svolgr un rt funzion normlmnt si hnno isposizion i sgunti lmnti: NODO )Uno o più sorgnti i f..m. not (ttri, gnrtor i tnsion) )Filo mtllio (onuttor) ) intrruttori )sistnz

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ] Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Strutture dati per insiemi disgiunti

Strutture dati per insiemi disgiunti Sopo Struttur ati pr insimi isiunti Gstir in moo iint una ollzion S = {S 1, S 2,..., S k } i insimi isiunti qualora l sol oprazioni onsntit siano: 1) rar un nuovo insim ontnnt un solo lmnto (tal lmnto

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

Collegamenti. Istruzioni Windows per una stampante collegata localmente. Che cos'è la stampa locale? Installazione del software mediante il CD

Collegamenti. Istruzioni Windows per una stampante collegata localmente. Che cos'è la stampa locale? Installazione del software mediante il CD Pagina 1 i 6 Collgamnti Istruzioni Winows pr una stampant ollgata loalmnt Nota: quano si installa una stampant ollgata loalmnt, s il sistma oprativo in uso non è supportato al CD Softwar oumntazion, è

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Gli integrali indefiniti. Definizione Una funzione F(x) si dice primitiva di f(x) in un intervallo I se F (x) = f(x) per ogni x appartenente ad [a,b].

Gli integrali indefiniti. Definizione Una funzione F(x) si dice primitiva di f(x) in un intervallo I se F (x) = f(x) per ogni x appartenente ad [a,b]. Prmssa : La sgunt dispnsa non vuol ssr un trattamnto saurint dll'argomnto, ma soltanto un supporto agli studnti dl quinto anno di studio di un istituto tnio industrial. Gli intgrali indfiniti Dfinizion

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trapzoiali L cinghi trapzoiali sono utilizzat frquntmnt pr la trasmission i potnza Vantaggi Basso costo Smplicità i installazion Capacità i assorbir vibrazioni torsionali picchi i coppia

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

MATEMATICA CORSO A III APPELLO 19 Settembre 2011

MATEMATICA CORSO A III APPELLO 19 Settembre 2011 MATEMATICA CORSO A III APPELLO 9 Sttmbr 0 Soluzioni. Calcola (Suggrimnto: x lnx = (/x) lnx ) x lnx dx x lnx dx = /x dx = [ln lnx ] = ln ln ln ln = ln ln = ln lnx. Dtrmina l sprssion analitica di una funzion

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2)

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2) # LUOHI E CARTE NELLA SINTESI PER TENTATIVI IN ω # Rifrimnto: A.Frrant, A.Lpschy, U.Viaro Introduzion ai Controlli Automatici. Editric UTET, Cap. 9. Prima dll ra di PC la sintsi pr tntativi nl dominio

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Calore specifico del gas perfetto di Bose

Calore specifico del gas perfetto di Bose Calor spcifico dl gas prftto di Bos L. P. 7 April Il calcolo dl calor spcifico di un gas prftto di Bos prsnta dgli asptti tcnici intrssanti. Dfiniamo la funion polilog g α (), pr α > < mdiant la sri g

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1 ANALISI MATEMATICA II Sapinza Univrsità di Roma - Laura in Inggnria Informatica Esam dl 15 sttmbr 016 - Soluzioni compito 1 E 1 Calcolar il sgunt intgral di funzion di variabil ral con i mtodi dlla variabil

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA 8 9 DERIVATA DI UNA FUNZIONE COMPOSTA La drivata di una funion composta ( funion di funion si ottin (dim all pagin 0 : a drivando la funion principal ( qulla ch si applica pr ultima risptto al suo argomnto

Dettagli

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare Funioni Linari tra Spai Vttoriali D. Siano V V du spai vttoriali sia : V V. è dtta FUNZIONE LINEARE s: v, v V, k R si ha : v v v additività v kv k omognità v Oppur con l unica proprità: v v v v Nota Com

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 12/12/2004 Sintsi La sintsi si

Dettagli

ESPERIMENTO DELLA LENTE E DELLA CANDELA

ESPERIMENTO DELLA LENTE E DELLA CANDELA S.S.I.S. a.a. 003-004 RELAZIONE di Laboratorio di Didattica dlla Fisica (Esprimnto dlla lnt dlla candla) di MARIA LEPORE SARA MARSANO I anno, Classi 47-48-59 Pro.ssa Tuccio SSIS a.a. 003-004 Laboratorio

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero )

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero ) ESERCITAZIONI 7-8- 9- STUDI DI FUNZIONI A) Esrcizi svolti. Studiar il dominio d il comportamnto agli strmi dl dominio dll sgunti funzioni. Calcolarn splicitamnt vntuali asintoti orizzontali o vrticali.

Dettagli

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x Problma Sia P un punto di un arco AB di una smicirconfrnza di cntro O raggio r. Sia T il punto in cui la smirtta OP incontra la tangnt in A all arco. Porr AOT ˆ PT AP P A AT P A AT AOT ˆ Limitazioni gomtrich

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

RSA e PARIGP: POSSIBILI ATTACCHI

RSA e PARIGP: POSSIBILI ATTACCHI RSA PARIGP: POSSIBILI ATTACCHI Di Cristiano Armllini, cristiano.armllini@alic.it Supponiamo i consirar un problma RSA : p 7, q, n 87 ϕ( n) (7 )( ) 60 7, MCD(, ϕ( n)), mo( ϕ( n)) C M M C,mo( n),mo( n) ov

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Gestione dei processi aziendali. Prof. Sergio Faccipieri. Analisi delle code

Gestione dei processi aziendali. Prof. Sergio Faccipieri. Analisi delle code Analisi dll od L od i tmpi di attsa sono un asptto inliminabil di quasi tutti i sistmi di trasformazion sia ni sttori manifatturiri h in qulli di srvizi. L od drivano dal omportamnto asinrono dll rihist

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

G(r,r ) è la funzione diadica di Green. L equazione differenziale soddisfatta da G(r,r ) è simile a quella soddisfatta dal campo elettrico Er ( ).

G(r,r ) è la funzione diadica di Green. L equazione differenziale soddisfatta da G(r,r ) è simile a quella soddisfatta dal campo elettrico Er ( ). 1 La funion diadica di Grn prmtt di sprimr il campo lttrico in funion dll su sorgnti. Poiché sia il campo lttrico Er ( ) sia la sorgnt lttrica Jr ( ) sono quantità vttoriali, la funion di Grn risulta ssr

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE EQUAZIONI DIFFERENZIALI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE EQUAZIONI DIFFERENZIALI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI Risoluzion di uazioni diffrnziali a ura dl prof. Massimo Latino EQUZIONI DIFFERENZILI DEL PRIMO ORDINE Dnominazion Com si prsntano Com si risolvono Euazion diffrnzial dl d primo ordin a variaili sparaili

Dettagli

Laboratorio di Algoritmi e Strutture Dati Ingegneria e Scienze Informatiche - Cesena A.A

Laboratorio di Algoritmi e Strutture Dati Ingegneria e Scienze Informatiche - Cesena A.A Inggnri Sinz Informtih - Csn A.A. 3- iln@s.unio.it, pitro.iln@unio.it : psuooi Clol il osto l mmino minimo un vrti sorgnt s tutti i rstnti vrtii nl grfo. Clol un lro i oprtur i mmini minimi (shortst pth

Dettagli

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti PREMIO EQUO E PREMIO NETTO Prof. Crchiara Rocco Robrto Matrial Rifrimnti. Capitolo dl tsto Tcnica attuarial dll assicurazioni contro i Danni (Daboni 993) pagg. 5-6 6-65. Lucidi distribuiti in aula La toria

Dettagli

Guida alla connettività

Guida alla connettività Pagina 1 i 7 Guia alla onnttività Istruzioni Winows pr una stampant ollgata loalmnt Nota: quano si installa una stampant ollgata loalmnt, s il sistma oprativo in uso non è inluso nl CD Sotwar oumntazion,

Dettagli

Rapporto Incrementale Def. rapporto incrementale nel punto x incremento h Nota:

Rapporto Incrementale Def. rapporto incrementale nel punto x incremento h Nota: Rapporto Incrmntal + α Δ= Δ m tan +. Il rapporto incrmntal dlla unzion nl punto rlativo ad un incrmnto è il coicint anolar dlla scant al raico dlla unzion ni punti di ascissa d + Nota: Nll smpio raico

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Prova scritta di Fisica della Materia Condensata ed Elettronica dei Dispositivi a Stato Solido del Proff. P. Calvani, M.

Prova scritta di Fisica della Materia Condensata ed Elettronica dei Dispositivi a Stato Solido del Proff. P. Calvani, M. Prova sritta di Fisia dlla Matria Condnsata d Elttronia di ispositivi a Stato Solido dl 18--09 Proff. P. Calvani, M. Capizzi Esrizio 1 - Fisia atomia L nrgi di aluni livlli dll atomo di lio, rifrit a qulla

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 5/12/02 Sintsi La sintsi si svol

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

Laboratorio di Calcolo B 79

Laboratorio di Calcolo B 79 Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014 L soluzioni dlla prova scritta di Matmatica dl 7 Fbbraio 4. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disnini, quali sono li intrvalli in cui è positiva

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Multivibratori. Si suddividono in: Bistabili Astabili (oscillatori a rilassamento) Monostabili

Multivibratori. Si suddividono in: Bistabili Astabili (oscillatori a rilassamento) Monostabili Elttronica - anzoni Multiibratori Si dfiniscono multiibratori i circuiti in grado di gnrar transizioni di alcun grandzz tnsioni o corrnti con tmpi di commutazion di durata br risptto al priodo. Pr qusta

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

1;. Argomenta con adeguate motivazioni. ax b abbia un massimo di.. Argomenta con adeguate motivazioni

1;. Argomenta con adeguate motivazioni. ax b abbia un massimo di.. Argomenta con adeguate motivazioni CALCOLO DIFFERENZIALE APPLICAZIONI E COMPLEMENTI 1 Calcola il valor di a b in modo ch il grafico dlla 3 funzion y a b 4 1 abbia un massimo nl punto di coordinat ;1 Argomnta con adguat motivazioni Calcola

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

AcquaCard. Manuale Ridotto ad Uso dell'utente AcquaMob multiplo

AcquaCard. Manuale Ridotto ad Uso dell'utente AcquaMob multiplo AcquaCard Manual Ridotto ad Uso dll'utnt AcquaMob multiplo 1. Gnralità La tssra lttronica in posssso dll'utnt è carattrizzata da un display sul qual si ffttuano l lttur di du tasti avnti rispttivamnt l

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

ESERCIZI AGGIUNTIVI - MODELLO OA - DA

ESERCIZI AGGIUNTIVI - MODELLO OA - DA ESERCIZIO n. 1 ESERCIZI AGGIUNTIVI - MODELLO OA - DA Considrat un conomia carattrizzata dall sgunti quazioni: DA: OA: 15 M 2 ˆ.5( ) Suppont ch l conomia si trovi, al tmpo, in una situazion di quilibrio

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

(x) diversi da zero per tutti gli x nel loro dominio, mediante la prima proprietà invariantiva, può essere trasformata nell'equivalente:

(x) diversi da zero per tutti gli x nel loro dominio, mediante la prima proprietà invariantiva, può essere trasformata nell'equivalente: Disquazioni razionali intr fratt Prmssa La risoluzion dll disquazioni rapprsnta un capitolo ssnzial nllo studio dll funzioni d è quindi un argomnto di studio ch, affrontato ni primi anni dl Lico scintifico,

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli