lim I LIMITI IL SIMBOLO DI LIMITE 1. UNA RAPIDA INTRODUZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "lim I LIMITI IL SIMBOLO DI LIMITE 1. UNA RAPIDA INTRODUZIONE"

Transcript

1 1 I LIMITI 1. UNA RAPIDA INTRODUZIONE Nlla fuzio y quado divta grad grad ( 1000, ,... ) la y corrispodt divta piccola piccola, si schiaccia a zro, si avvicia moltissimo a 0. Ciò può ssr sprsso, i simboli, co la scrittura ch si lgg: lim 0 + il limit, pr ch td a +, dlla quatità, è zro. Cosa dvo guardar, ituitivamt, pr dtrmiar u limit? 1) Posso guardar il grafico lim? + Faccio tdr a +, ossia mi sposto, sull ass, molto ma molto a dstra vdo cosa fa la y. I qusto caso, la y corrispodt divta piccola piccola! Td a 0! Il limit è 0. ) Oppur, ach sza grafico, faccio assumr alla valori molto ma molto gradi mi chido quali valori assum la y corrispodt. Tali valori dlla y soo piccolissimi! Il limit è duqu 0. Ma dopo qusta brvissima itroduzio ituitiva, qui vrbi, avvrbi aggttivi ch abbiamo utilizzato ( tdr, avviciarsi, moltissimo, piccola, grad ) dovrao ssr mglio prcisati, soprattutto, iquivocabilmt QUANTIFICATI. lim 0 + IL SIMBOLO DI LIMITE lim Ioltr l situazioi i cui si può parlar di limit soo assai svariat, qull avviciarsi, qul tdr, dlla y ad u crto valor, può ralizzarsi i modalità fra loro diffrti. qui scrivo acosa td qui scrivo l'sprssio dlla fuzio " pr ch td a..." td sigifica si avvicia 1000 y 0, y 0, Abbi paziza, ti sottoporrò ora ua squza di ESEMPI, ch sarao u ANTIPASTO PREZIOSO, PRIMA DI ARRIVARE ALLA DEFINIZIONE, prché ti farao trar a cotatto co l curios problmatich i gioco ti prmttrao così di capir pr qual motivo, oostat qustioi di qusto tipo si siao prstat agli studiosi fi dall atichità classica, ua dfiizio soddisfact di limit sia mrsa soltato l XIX scolo, a coroamto di u avvtura itllttual millaria, appassioat quato impgativa. qui scrivo acosa td y A r c h i m d N w t o W i r s t r a s

2 . UNA RASSEGNA DI ESEMPI Esmpio 1 Fra l molt affasciati formul ch la Gomtria ci propo, c è ach ua ch prmtt, ota la lughzza dl lato dl poligoo rgolar di lati, iscritto i ua circofrza di raggio r, di ricavar la lughzza dl lato dl poligoo rgolar iscritto, avt umro di lati doppio. Tal formula, ricavabil utilizzado i modo opportuo i tormi di Pitagora di Euclid, è la sgut: r r 4r Suppoiamo ch la ostra circofrza abbia raggio uitario: prdiamo, isomma, r 1. Partiamo dall sagoo rgolar iscritto:. E oto ch il lato dll sagoo rgolar iscritto è ugual al raggio: si ha duqu r 1. B! Applicado ora la formula, potrmo subito ricavar la misura dl lato dl dodcagoo rgolar iscritto: , E itrado il procdimto, sarmo poi i grado di calcolar l lughzz di lati di poligoi rgolari iscritti, avti 4 lati, 48 lati, 9 lati : 4 0, , , Nlla tablla sgut ci siamo srviti dlla cooscza di, 1, 4, 48, 9,... pr ricavar i primtri di rispttivi poligoi: ( p), ( p) 1, , ( p) 4, lato primtro lato Primtro , , , , , , ,105384, , , , , ,001054, ,054381, , , ,037343, ,01379, La tablla mostra ch quado il umro di lati divta molto alto, il valor dl primtro, pur aumtado smpr, prsta ua tdza a stabilizzarsi i prossimità di u valor lggrmt suprior a,8. Ciò è prfttamt comprsibil s psiamo ch, all aumtar dl umro di lati, il poligoo rgolar iscritto td a rimpir smpr più il crchio, quidi il suo primtro td ad approssimar smpr più la lughzza dlla circofrza, ossia il umro r 1, Cosidrata ora la succssio a1 primtro dll ' sagoo rgolar iscritto a primtro dl dodcagoo rgolar iscritto, a3 primtro dl poligoo rgolar iscritto, co 4 lati, a4 primtro dl poligoo rgolar iscritto, co 48 lati, s si vuol idicar il fatto ch "il valor dlla quatità ak, pr valori molto alti di k, è assai prossimo al umro " si potrà utilizzar la scrittura: lim ak k ch si lggrà "il limit, al tdr di k a ifiito, di ak, è "

3 Esmpio Cosidriamo la succssio il cui trmi gral è + 1 c, co 1,,3,... I primi lmti dlla succssio valgoo: c1 ; c 1,5; c3 1, ; Cosa accad al umro c quado divta molto, ma molto grad? E b facil rispodr: c si avvicia al valor 1. Ifatti c , la quatità 1, al crscr di, si fa smpr più piccola ( td a zro), pr cui il umro c 1 + assumrà, s vi prso gradissimo, valori molto, ma molto prossimi a 1. Possiamo sprimr qusto fatto scrivdo 1 1 lim c lim + lim Esmpio 3 s Cosidriamo la fuzio y f( ) dov idica la misura i radiati di u arco. Ad smpio, l arco il cui agolo al ctro corrispodt è di 30 misura, i radiati, ; 3 1 s s 3 3 co si ha 0, , Acora: l arco, il cui agolo al ctro corrispodt misura 18 (i radiati, /10 ), ha pr so la mtà dl lato dl dcagoo rgolar iscritto lla circofrza goiomtrica. Ma dalla Gomtria si coosc ch il lato dl dcagoo rgolar iscritto i ua circofrza è ugual alla szio aura dl raggio (ch, l caso dlla circofrza goiomtrica, è uitario); 5 1 la szio aura di u sgmto si otti moltiplicado il sgmto stsso pr il fattor Prtato co avrmo s s, da cui s s , , , Pr valori piccoli ( prossimi a 0) dll arco, il sgmtio s quasi si cofod co l archtto : il valor di s è lggrmt ifrior, ma molto vicio, al valor di. Prtato, co molto piccolo, il valor dl rapporto s è molto prossimo a 1.

4 4 Ad smpio, co 0,001 (l arco è u millsimo di radiat, ossia: l arco, rttificato, dà luogo ad u sgmtio ch è sattamt la millsima part dl raggio), si ha s s 0,001 s s 0,001 0, da cui 0, ,001 s Il fatto ch la fuzio y assuma valori molto prossimi a 1 quado l arco è molto prossimo a 0, si può sprimr attravrso la scrittura s lim 1 0 ch si lgg s il limit, pr ch td a zro, di, è ugual a 1. Ossrviamo ch, mtr gli smpi 1 riguardavao il limit di ua succssio ( squza) umrica, qui abbiamo ivc cosidrato il limit di ua fuzio di variabil ral. Riprdrmo il discorso succssioi alla fi dl capitolo, coctradoci di qui i avati sull fuzioi di variabil ral (poco cambia pr l succssioi, ch possoo ssr cosidrat fuzioi co domiio o * ). s S tracciamo (vdi figura sottostat) il grafico dlla fuzio y f( ), avrmo ch, quado si avvicia (stiamo viaggiado sull ass dll asciss) al valor 0, la y corrispodt si avvicia al valor 1. s Ossrviamo ch co 0 la fuzio y o è dfiita. s Acora co rifrimto alla fuzio y f( ), possiamo rilvar, com ci suggriscoo tato l ossrvazio dl grafico quato smplici cosidrazioi quatitativ, ch quado ci spostiamo sull ass molto a dstra ( tdt all ifiito positivo) oppur molto a siistra ( tdt all ifiito gativo), la y corrispodt cotiua ad adar su giù itoro all ordiata 0, avviciadosi allotaadosi priodicamt da ssa, ma co oscillazioi smorzat, la cui ampizza divta piccola a piacr. E allora dl tutto spotao utilizzar l scrittur s s lim 0; lim 0 + Poiché il tdr a 0 dlla fuzio s, quado td all ifiito positivo o gativo, avvi pr oscillazioi, NON sarbb corrtto affrmar ch quato più è grad i valor assoluto, tato più il valor di s è prossimo a 0. Al crscr di i valor assoluto, abbiamo ua y corrispodt ch si avvicia GLOBALMENTE a 0, ma il suo avviciarsi a 0 NON ha u carattr mootòo. Ossrvazioi com qusta soo molto importati: quado, più avati, ttrmo di dscrivr il coctto di limit i modo gral prciso, il ostro compito sarà tutt altro ch smplic, i quato dovrmo laborar ua dfiizio lla qual possao ritrar ach situazioi dl tipo di qulla appa cosidrata, i cui la y, pur prstado qulla ch oi stiamo ssr ua tdza a limit, o mostra u comportamto uidirzioal.

5 Esmpio 4 5 La figura sottostat mostra il diagramma dlla fuzio + 3 y g( ) ( ) : L ossrvazio dl grafico, accompagata da cosidrazioi di carattr quatitativo, ci suggrisc ch valgoo i limiti sguti: + 3 lim g ( ) lim + ( ) il limit di g( ), pr ch td a, è +, val a dir: quado è viciissimo a, il valor di g( ), ossia dlla y corrispodt, td a + l sso ch si fa altissimo, tato alto da sfodar, all isù, qualuqu ttto prfissato. U po di umri: + 3 lim g ( ) lim ( ) + 3 y g( ) ( ),5 37,1 741,05 881,03 791,, il limit di g( ), pr ch td a +, è 1, val a dir: quado divta gradissimo (ci stiamo spostado, sull ass dll asciss, molto a dstra), allora la y corrispodt si avvicia moltissimo a lim g ( ) lim 1 ( ) il limit di g( ), pr ch td a, è 1, val a dir: quado divta gativo ma molto grad i valor assoluto (ci stiamo spostado, sull ass dll asciss, molto a siistra), allora la y corrispodt si avvicia moltissimo a 1.

6 Esmpio 5 Cosidriamo la fuzio 3 y h( ) 3 tracciamo il diagramma. L ossrvazio dl grafico (accompagata da cosidrazioi umrich) ci suggrisc ch: 3 lim h ( ) lim lim h ( ) lim lim h ( ) lim lim h ( ) lim 0+ 3 dov scrivr 0+ sigifica ch si psa a tdt a 0 da dstra, pr valori positivi dov scrivr 0 sigifica ch si psa a tdt a 0 da siistra, pr valori gativi dov scrivr ch il limit è 0 + sigifica idicar ch la fuzio ( la y) td a 0 dall alto Esmpio E vramt bizzarra la fuzio dfiita l modo sgut: s è razioal ( ) L ( ) { s è irrazioal ( ) Poiché qualsiasi itrvallo dlla umbr li coti sia ifiiti umri razioali, ch ifiiti umri irrazioali, il grafico dlla L( ), ch è distribuito su du rtt, si prsta tutto frammtato : s facciamo variar sull ass dll asciss, assistrmo ad u frtico saltllar dlla y corrispodt, da ua rtta all altra. Cosa possiamo affrmar riguardo al comportamto dlla fuzio, pr ch td a 0? Facdo tdr a 0, i saltlli dlla y soo smpr più miuscoli com ampizza : la y saltlla tro ua fascia di ordiat smpr più ristrtta, itoro all ordiata 0. Ach i qusto caso particolarmt strambo, appar duqu ragiovol accttar com corrtta la scrittura lim L ( ) 0 0 Quado duqu ci dcidrmo, al trmi di qusta splorazio prlimiar, a dar ua dfiizio gral, prcisa rigorosa, dl coctto di limit, dovrmo far i modo ch tal dfiizio o scluda l situazioi com qulla appa proposta.

7 Esmpio 7 y m( ) s Il domiio di qusta fuzio è { } 7 * 0 (,0) (0, + ). I valori dll ordiata y o possoo scofiar all stro dll itrvallo [ 1,1]. Pr disgar il grafico dlla fuzio è util crcar l itrszioi co l ass dll asciss, ossia risolvr l quazio y y 0 s 0; k ( k ); k ( k ); ( k *); ± 1, ±, ±, ±... k 3 4 Quidi la y si aulla ifiit volt, azi si aulla ifiit volt ll itrvallo fra l ascissa 1 l ascissa 1. L asciss i corrispodza dll quali la y si aulla si addsao itoro all ascissa 0. Sguiamo ora il variar dlla y, quado varia da 1 fio a 0. S facciamo variar da 1 a 1/, la quatità varirà da a 1 1 prciò, l frattmpo, y S facciamo variar da 1/ a 1/3, la quatità varirà da a prciò, l frattmpo, y S facciamo variar da 1/3 a 1/4, la quatità varirà da 3 a prciò, l frattmpo, y così via s dovrà assumr ua volta il valor 1. s dovrà assumr ua volta il valor + 1. s dovrà assumr ua volta il valor 1 Isomma, facdo dcrscr a partir dal valor 1, la y corrispodt assumrà, succssivamt, i valori: 0, 1, 0, + 1, 0, 1, 0, + 1,... Il grafico sarà prciò il sgut (è chiaro ch il prossimità dll ascissa 0 possiamo solo immagiarclo!): Di frot ora alla scrittura lim s... 0 com rimpirmo i putii? Poiché, al tdr di a 0, la y corrispodt cotiua ad oscillar (co frquza dll oscillazioi smpr più frtica) prcorrdo ad ogi oscillazio tutta la bada di ordiat tra 1 1, ssa o si approssima a ssua spcifica ordiata: appar ragiovol covir ch il limit proposto NON ESISTE.

8 Esmpio 8 y ( ) s 8 Pr tracciar il grafico di qusta fuzio, si può psar di partir dai grafici di y di y s. Prso u valor di, l ordiata corrispodt si ottrrà moltiplicado l du ordiat s. Ma com si modifica l ordiata, allorquado vi moltiplicata altrativamt pr i valori 0, 1, 0, + 1, 0, 1, 0, + 1,..., oché pr tutti i valori itrmdi tra 1 + 1? Facil: quado l ordiata vi moltiplicata pr + 1, rsta ivariata quado vi moltiplicata pr u umro comprso fra 0 1, dimiuisc quado vi moltiplicata pr 0, divta ugual a 0 quado vi moltiplicata pr 1, cambia di sgo divtado quado vi moltiplicata pr u umro comprso fra 0 1, cambia di sgo dimiuisc i valor assoluto. Oppur, si può psar a com si modifica l ordiata s, allorquado vi moltiplicata pr : quado l ordiata origiaria è ugual a 1, dopo la moltiplicazio divta ugual a ; quado l ordiata origiaria è ugual a 0, dopo la moltiplicazio rsta ugual a 0; quado l ordiata origiaria è comprsa fra 0 1, dopo la moltiplicazio risulta comprsa fra 0 ; quado l ordiata origiaria è ugual a 1, dopo la moltiplicazio divta ugual a ; quado l ordiata origiaria è comprsa fra 0 1, dopo la moltiplicazio risulta comprsa fra 0 Possiamo ach cosidrar il fatto ch co > 0: s 1 s 1 co < 0: s o i altrativa: 1 s 1 s 1 s s Il grafico sarà prciò qullo qui sotto raffigurato (è chiaro ch i prossimità dll origi possiamo solo immagiarclo co gli occhi dlla mt ): Di frot ora alla scrittura lim s... 0 è dl tutto spotao covir ch il limit valga 0.. Ifatti si ossrva ch al tdr di a 0, la y corrispodt cotiua ad oscillar (co frquza crsct), ma l oscillazioi hao ampizza smpr più piccola, cosicché fiiscoo pr circoscrivrsi i fasc di ordiat smpr più ristrtt, i prossimità dll ordiata 0.

9 9 Esmpio 9a y "part itra di " it ( ) [ ] E( ) Qusta fuzio è dfiita com sgu: E ( ) il massimo itro rlativo ch o supra Esmpi: E(7,59) 7; E(1/ 3) 5; E( 3) 1; E( ) 3; E(5) 5; E( 0,) 1; E( ) 4; E( ) ; E( 7) 7 Quado facciamo tdr l ascissa ad u valor itro, tato pr far u smpio a 3, dobbiamo distigur fra limit siistro ( 3, td a 3 matdosi <3) limit dstro ( 3+, td a 3 matdosi >3) lim E( ) lim E( ) Esmpio 9b y "matissa di " m( ) è dfiita com sgu: m ( ) E ( ) Esmpi: m(7,59) 0,59; m(1/3) m(3, ) 0, ; m( 3) 0, ; m( ) 0, ; m(5) 0; m( 0,) 0,8; m( ) 0, ; m( ) 0, ; m( 7) 0 lim E( ) 3 lim E( ) lim m( ) 1 3 lim m( ) Esmpio 9c y "sigum " è dfiita com sgu: + 1 s > 0 sigum( ) 1 s < 0 o sist co 0 Si può ach scrivr, quivaltmt: sigum( ) lim sigum( ) 1 0 lim sigum( ) Esmpio 10 La fuzio di Dirichlt è dfiita com sgu: 1 s è razioal ( ) D ( ) lim D( ) NON ESISTE 0 s è irrazioal ( ) 0 lim D( ) NON ESISTE

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

g ( x )dx e se ne dia l interpretazione geometrica.

g ( x )dx e se ne dia l interpretazione geometrica. ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 9 PIANO NAZIONALE INFORMATICA Problma Sia f la fuzio dfiita da Dov è u itro positivo....!! I. Si vrifichi ch la drivata di è:!. Si dica s la fuzio f ammtt

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: AALISI DI FOURIER Sgali Tmpo Discrti: - Trasformata Discrta di Fourir -Squza priodica - Taratura dgli assi frquziali - TDF di ua squza fiita - Campioamto i Frquza - Algoritmi fft: srcitazioi Matlab -Zro

Dettagli

e k Queste sono funzioni oscillanti, periodiche di periodo N/k.

e k Queste sono funzioni oscillanti, periodiche di periodo N/k. Vr.. ot pr Aalisi di Fourir di Squz co l ausilio dl Matlab Cosidriamo ua squza ifiita priodica di priodo, x[t] tal pr cui x[t+t]x[t]. Pr rapprstar tal squza si possoo utilizzar fuzioi complss dl tipo jπ

Dettagli

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1 ENUNCIATI DI ESAMI DI ANALISI MATEMATICA ENUNCIATI DI ESAMI DI ANALISI MATEMATICA Euciar dimostrar il torma di Lagrag Dir s è f ( ) applicabil alla fuzio ( ) ll itrvallo [,] motivado la risposta Euciar

Dettagli

ln( t + ) dt, calcolare i punti critici di F(x) e

ln( t + ) dt, calcolare i punti critici di F(x) e Prova scritta di Aalisi Matmatica I (VO) or 6/0/0 ) Dfiizio di fuzio cotiua i u puto classificazio di puti di discotiuità Utilizzado la dfiizio dir pr quali valori di k è cotiua i =0 la sgut fuzio l 0

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: ANALISI DI FOURIER Sgali mpo Discrti: - Ci alla rasormata di Fourir di ua squza - Rlazio co la CF - Codizio di Nyquist - Etto dl trocamto dl Sgal sulla F Cosidriamo ua squza x[]: l sguito cosidrrmo la

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 21/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 21/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Uivrsità i Cassio Corso i Statistica Esrcitazio l /0/008 Dott. Alfoso Piscitlli Esrcizio Il sgut ata st riporta la rilvazio i alcui carattri su u collttivo i 0 soggtti. Soggtto Età Rsiza Rito (Migliaia

Dettagli

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI Esrcizio ( (i + + + Razioalizziamo: ( + + + ( + + + + ( + + + + [ ( ( ] ( + ( + + + + + + + [ ( + [( + ] ( ] + ( + ( + + + + ( + [( + ] ( + + + ( + ( + Dividiamo

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PRVA D ESAME SESSINE RDINARIA Lico scitifico comuicazio opzio sportiva Il cadidato risolva uo di du problmi rispoda a qusiti dl qustioario Durata massima dlla prova: 6 or È costito l uso dlla calcolatric

Dettagli

Il diagramma di dispersione è

Il diagramma di dispersione è y Statistica - o caal (P-Z) - Prof.ssa M. Barbiri - a.a. 005-006 Il diagramma di disprsio L rlazioi tra variabili quatitativ possoo ssr mss i vidza attravrso ua opportua rapprstazio grafica. U diagramma

Dettagli

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni Sri umrich sri di fuzioi Sri Numrich Covrgza Putual di Sri di Fuzioi Suto- Il lavoro coti la risoluzio di alcui srcizi sullo studio dl carattr di sri umrich sulla covrgza putual di sri di fuzioi. Gli srcizi

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

APPUNTI DI FISICA. Gli errori

APPUNTI DI FISICA. Gli errori APPUNTI DI FISICA Gli rrori Abbiamo misurato la larghzza dllo stsso baco più prso d ogua più volt. Dall' sprimto ffttuato abbiamo costatato ch l misur ottut soo diffrti, ciò ci fa comprdr ch o riuscirmo

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari Appdic 1. Matrici I qusta Appdic richiamrmo brvmt alcui coctti fodamtali riguardati l matrici, ch sarao impigati durat il Corso. Essi riguardao sostazialmt la diagoalizzazio la dcomposizio a valori sigolari

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 00 - SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO SPERIMENTALE RISOLUZIONI PROBLEMA Il domiio dlla fuzio l s f ( ) a s D 0; è l isim [ ] > 0 0

Dettagli

M. Usai Circuiti digitali 7_3 1

M. Usai Circuiti digitali 7_3 1 Stima dllo spttro I molt applicazioi si è itrssati al calcolo dllo spttro di u sgal campioato: spttro di dsità di rgia o; spttro di dsità di potza. La FFT può ssr utilizzata a qusto scopo. Occorr cosidrar

Dettagli

Capitolo 11 Regressione con variabile dipendente binaria

Capitolo 11 Regressione con variabile dipendente binaria Capitolo Rgrssio co variabil dipdt biaria.. (a) La statistica t pr il cofficit di Expric è 0,03/0,009 3,44, sigificativa al livllo dll %. (b) z 0,72 0,030,022; (,022) 0,847 Matthw (c) z 0,72 0,03 0 0,72;

Dettagli

Segnali e sistemi tempo discreto

Segnali e sistemi tempo discreto Trasformata di ourir Sgali sistmi tmpo discrto TEORIA DEI SEGALI LAUREA I IGEGERIA DELL IORAZIOE Sommario Sgali tmpo discrto priodici Sri di ourir Sgali tmpo discrto apriodici Trasformata di ourir Proprità

Dettagli

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti)

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti) Colti di Idrologia Allo dl Fbbraio 0 Probla (8 uti. Si cosidri la fuzio =l(. La variabil è distribuita scodo ua oral N(,. Qual è la distribuzio di il suo doiio di dfiizio?. Posto ch = l + l = ( l, drivar

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO Sssio straordiaria 8 Lico di ordiamto ESAME DI STATO DI LICEO SCIENTIFICO Corso di ordiamto sssio straordiaria 8 Sssio straordiaria 8 Lico di ordiamto PROBLEMA Puto. Il passaggio pr A(-) comporta la codizio

Dettagli

Illustrare il teorema di de L Hôpital e applicarlo per dimostrare che: 4

Illustrare il teorema di de L Hôpital e applicarlo per dimostrare che: 4 Matatica pr la uova aturità scitifica A. Brardo M. Pdo 99 Qustioario Qusito Illustrar il tora di d L Hôpital applicarlo pr diostrar ch: 4 li = a +. Tora di D L Hôpital S l fuzioi f() g() soo drivabili

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO su sistmi liari discrti Prof. Carlo Rossi DEIS - Uivrsità di Bologa l: 5 29324 mail: crossi@dis.uibo.it Sistmi mpo-discrti I qusti sistmi i sgali hao com bas

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici pr il corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì SOLLECITZIOI COPOSTE GGIORETO 14/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì FLESSIOE DEVIT Si ha flssio dviata quado

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1 ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 7 PIANO NAZIONALE INFORMATICA Problma Puo Pr sudiar la moooia dlla fuzio I g( ) g ( ) a la a la l a (a a ). Essdo, pr iposi, a >, occorr disigur i sgui

Dettagli

Registro delle attività Analisi 1 _ elettronici _ Lorenzetti Elisabetta _ settembre - dicembre

Registro delle attività Analisi 1 _ elettronici _ Lorenzetti Elisabetta _ settembre - dicembre Rgistro dll attività Aalisi _ lttroici _ Lorztti Elisabtta _ sttmbr - dicmbr 5 Corso di Aalisi Doct Prof. ssa Elisabtta Lorztti Part torica applicativa. Gli isimi. Rlazioi tra gli isimi. L'isim vuoto l'isim

Dettagli

SCHEDA DI LABORATORIO

SCHEDA DI LABORATORIO SEDA DI LABORATORIO LA ARIA ELETTRIA ORSO DI PERFEZIONAMENTO PERORSI DIDATTII DI FISIA E MATEMATIA II DIPARTIMENTO DI FISIA UNIERSITÀ DEGLI STUDI DI SIENA Σιλϖια Χασινι A.A. 2005/06 Schda di laboratorio

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

x x e o 1 < x < e 3 ; log x DISEQUAZIONI ESPONENZIALI E LOGARITMICHE 21 + ; 2) ; 8) 9 ) 3logx - < 5 ; DISEQUAZIONI IRRAZIONALI:

x x e o 1 < x < e 3 ; log x DISEQUAZIONI ESPONENZIALI E LOGARITMICHE 21 + ; 2) ; 8) 9 ) 3logx - < 5 ; DISEQUAZIONI IRRAZIONALI: DISEQUAZIONI ESPONENZIALI E LOGARITMICHE ) 5 5 < ) > (8) (6) ) log( ) log( 6) 5. 5) < log ( ) 6) log < 7) < 8) 7 7 < 7 9 ) log - < 5 log RISULTATI: ) > - / ) < - o > ) / < o 5 5) / 6) < - o > 7)

Dettagli

svolto correttamente vale 8 punti (per un totale massimo Scritto: 4 esercizi a scelta sui 6 proposti. Ogni esercizio

svolto correttamente vale 8 punti (per un totale massimo Scritto: 4 esercizi a scelta sui 6 proposti. Ogni esercizio Statistica a.a. /3 Orario ludì 4:-6: F martdì 4:-6: Libitz giovdì :-3: Libitz vrdì :-3: 4:-6: F Ricvimto giovdì 6:-8: i Dipartimto Matrial didattico I lucidi utilizzati a lzio, l srcitazioi ogi vtual altro

Dettagli

Distillazione in corrente di vapore, flash e differenziale

Distillazione in corrente di vapore, flash e differenziale istillazio i corrt di vapor, flash diffrzial istillazio i corrt di vapor, flash diffrzial osidriamo u sistma liquido trario, formato dall sostaz,, i cui costituiscoo ua soluzio idal mtr il compot è immiscibil

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

SISTEMI DINAMICI DEL SECONDO ORDINE

SISTEMI DINAMICI DEL SECONDO ORDINE SISTEMI DINAMICI DEL SECONDO ORDINE I sistmi diamici dl scodo ordi soo sistmi diamici SISO rapprstati da quazioi diffrziali liari a cofficiti costati di ordi : a d y(t dy(t d x(t dx(t + a + ay(t b + b

Dettagli

La formula di Taylor

La formula di Taylor La rmula di Taylr R.Argilas!! K I qusta dispsa prstiam il calcl di iti utilizzad gli sviluppi di Taylr Mac Lauri. N riprcrrrm la tria rlativa all apprssimazi di ua uzi i quat qusta è artata i maira sddisact

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

Una ED ordinaria è una equazione in cui l incognita è una funzione y = y(x)

Una ED ordinaria è una equazione in cui l incognita è una funzione y = y(x) EQUAZIONI DIFFERENZIALI ORDINARIE La stsura di qust disps vata il cotributo di mii carissimi amici Giulia 5 Matto Fracsco ch rigrazio Ua ED ordiaria è ua quazio i cui l icogita è ua fuzio () ch compar

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 21/07/ P1 pag.1. (B) Approssimazione dell ottimo con semplice filtro a parametri costanti

Sensori Segnali Rumore - Prof. S. Cova - appello 21/07/ P1 pag.1. (B) Approssimazione dell ottimo con semplice filtro a parametri costanti sori gali Rumor - Pro.. Cova - allo /07/04 - P ag. PROBLEM Quadro di dati gal: P amizza da misurar P 5 µs costat di tmo dll sozial R ms itrvallo tra u imulso il succssivo Rumor: u 50 /(Hz) / (uilatra)

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni Esrcitazioi di Calcolo dll Probabilità (4/4/) Soluzioi Esrcizio. Si trovi il valor dlla costat pr cui f, (>,

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

spettroscopie ottiche

spettroscopie ottiche spttroscopi ottich Itrazio dl campo lttrico co il momto di dipolo lttrico molcolar assa dgli lttroi molto più piccola dlla massa di ucl i sparazio di moti uclari da qulli lttroici spttroscopi rotazioali

Dettagli

ϕ (non necessariamente in numero finito), e in

ϕ (non necessariamente in numero finito), e in Spazi di uzioi ll sciz gograich, i particolar i godsia, vgoo studiat dll gradzz isich uzioi di puto sulla suprici trrstr, ad smpio il campo dlla gravità o l odulazio dl goid Qust uzioi soo i lia di pricipio

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

MACCHINE ELETTRICHE - ESERCIZI 26 gennaio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _

MACCHINE ELETTRICHE - ESERCIZI 26 gennaio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _ MCCHNE ELETTCHE - ESECZ 6 gaio 9 Cogom Nom: Matricola: Elttrotcica _ Ergtica _ Elttrica.O. _ 6 / 7 CFU _ 9 CFU _ ESECZO N. oasio dlla prova a vuoto su di u trasformator moofas vgoo misurati i sguti valori:

Dettagli

x ; sin x log 1 x ; 4 0 0,0.

x ; sin x log 1 x ; 4 0 0,0. .. Pr quli vlori dl prmtro l sri S (i uzio dl prmtro ). q ch covrg s solo s q. q Ricordimo ch pr q è q q q q q h soluzio pr tli vlori l sri covrg S E' u sri gomtric di rgio covrg? Pr tli vlori sprimi l

Dettagli

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1 CORRENI NE IOO Pr il calcolo dlla corrt l diodo i rsza di ua tsio di olarizzazio stra facciamo l sguti iotsi smlificativ: 1. i cotatti mtallo-smicoduttor co l zo d soo di tio ohmico, ovvrosia ad ssi è

Dettagli

1. UNA RAPIDA INTRODUZIONE 1 2. UNA RASSEGNA DI ESEMPI 2 3. QUANDO IL LIMITE E BANALE: LA CONTINUITÀ LA DEFINIZIONE RIGOROSA DI LIMITE 24 8

1. UNA RAPIDA INTRODUZIONE 1 2. UNA RASSEGNA DI ESEMPI 2 3. QUANDO IL LIMITE E BANALE: LA CONTINUITÀ LA DEFINIZIONE RIGOROSA DI LIMITE 24 8 I LIMITI. UNA RAPIDA INTRODUZIONE pag.. UNA RASSEGNA DI ESEMPI. QUANDO IL LIMITE E BANALE: LA CONTINUITÀ 4. IL LIMITE DAL PUNTO DI VISTA INTUITIVO: RICAPITOLIAMO 5. PSEUDO-UGUAGLIANZE E FORME DI INDECISIONE

Dettagli

Rappresentazione algebrica dei numeri complessi.

Rappresentazione algebrica dei numeri complessi. Rapprstazio algbrica di umri complssi. I umri complssi soo u'stsio di umri rali ata iizialmt pr costir di trovar tutt l soluzioi dll quazioi poliomiali. Ad smpio, l'quazio x - 1 o ha soluzioi rali, prché

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Definizione e proprietà dei numeri complessi

Definizione e proprietà dei numeri complessi umr complss Dfo proprtà d umr complss Rapprstao gomtrca d umr complss Espoal d u umro complsso Cougao d u umro complsso Radc -sm dll utà Dfo proprtà d umr complss U umro complsso é ua coppa ordata d umr

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

all equilibrio: = n diff drift

all equilibrio: = n diff drift ma d q d q diff drift diff drift ε µ ε µ all quilibrio: drift drift diff diff V > ε V bi V diff diff dcrsc dcrsc crsc crsc drift drift ivariata ivariata crsc crsc quidi è crsct co V, dirtta da s vrso V

Dettagli

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico.

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico. OODIODI La otorivlazio è basata sull tto otolttrico. I N Ua radiazio lumiosa icidt lla rgio itrisca di u diodo smicoduttor drogato IN polarizzato ivrsamt produc di portatori libri. Ogi coppia di portatori

Dettagli

Bisogna innanzitutto calcolare le variazioni annue: loro o per riassumere distribuzioni che hanno andamento

Bisogna innanzitutto calcolare le variazioni annue: loro o per riassumere distribuzioni che hanno andamento La mda omtrca Pr ua dstrbuzo utara d u carattr quattatvo d trm, la mda omtrca è dfta com: K usata pr sttzzar dat ch ha sso moltplcar fra loro o pr rassumr dstrbuzo ch hao adamto omtrco S applca pr dtrmar

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

Capitolo 2 - DFT (parte I)

Capitolo 2 - DFT (parte I) Apputi di Elaborazio umrica di sgali apitolo - DF (part I DF (Discrt im Fourir rasorm... DF (Discrt Fourir rasorm...5 Itroduzio...5 Formul di trasormazio atitrasormazio...9 Vriica dlla ormula di atitrasormazio...

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

4. Distribuzioni di probabilità discrete

4. Distribuzioni di probabilità discrete M. Gartto - Statistica. Distribuzioi di probabilità discrt. Distribuzio biomial o di Broulli Il coctto di variabil alatoria prmtt di formular modlli utili allo studio di molti fomi alatori. U primo importat

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

SISTEMI DINAMICI DEL SECONDO ORDINE

SISTEMI DINAMICI DEL SECONDO ORDINE SISTEMI DINAMICI DEL SECONDO ORDINE I sistmi diamici dl scodo ordi soo sistmi diamici SISO rarstati da quazioi diffrziali liari a cofficiti costati di ordi : d y(t dy(t d x(t dx(t a + a + ay(t b + b +

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

CAPITOLO I FISICA DELLO STATO SOLIDO. Dispositivi Elettronici Capitolo I: Richiami di Fisica dello Stato Solido I-1

CAPITOLO I FISICA DELLO STATO SOLIDO. Dispositivi Elettronici Capitolo I: Richiami di Fisica dello Stato Solido I-1 CAPITOLO I FISICA DELLO STATO SOLIDO Dispositivi Elttroici Capitolo I: Richiami di Fisica dllo Stato Solido I-1 I.1 L atomo La matria è costituita da atomi, uguali o divrsi, uiti tra loro da forz di lgam

Dettagli

Calcolo di aree. Calcolo di aree 1 / 12

Calcolo di aree. Calcolo di aree 1 / 12 Calcolo di aree Calcolo di aree 1 / 12 Quali proprietà soddisfa l'area? 1) rettagolo: A(R) = l 1 l 2 Calcolo di aree 2 / 12 Quali proprietà soddisfa l'area? 1) rettagolo: A(R) = l 1 l 2 2) ivariate per

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

ESPERIMENTO DELLA LENTE E DELLA CANDELA

ESPERIMENTO DELLA LENTE E DELLA CANDELA S.S.I.S. a.a. 003-004 RELAZIONE di Laboratorio di Didattica dlla Fisica (Esprimnto dlla lnt dlla candla) di MARIA LEPORE SARA MARSANO I anno, Classi 47-48-59 Pro.ssa Tuccio SSIS a.a. 003-004 Laboratorio

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

ESAME DI STATO 2009 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI)

ESAME DI STATO 2009 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI) 4 9 Archimd ESAME DI STATO 9 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI) ARTICOLO Il cadidato risolva uo di du problmi rispoda a 5 di qusiti dl qustioario. Sia f la fuzio

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

Errori e elaborazione statistica dei risultati

Errori e elaborazione statistica dei risultati Errori laborazio statistica di risultati Prssa Qust poch pagi soo stat scritt allo scopo di ttr ordi, raccoglir copltar ua sri di scritti prparati pr gli studti. Si fa otar co qust pagi ralizzio dll ot

Dettagli

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof)

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof) Critri dirttamnt basati sullo stato di tnsion!massima tnsion normal (Ranin-Lamé-Navir)!Massima tnsion tangnzial (Trsca-Gust)!Curva dlla rsistnza intrinsca (Coulomb-Mohr)!Massima tnsion tangnzial ottadral

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Pag. / Sssio ordiaria 6 Scoda prova scritta Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tma di: MATEMATICA Il cadidato risolva uo di du problmi 5 di qusiti

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli