Quale delle funzioni elencate ha il grafico in figura? 1) f(x)=x 3-2 2) f(x)= x 3-2x 2 -(x-2) 3) f(x)= x 3-2x 2 + x-2 4) f(x)= x 4 -x 2-2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Quale delle funzioni elencate ha il grafico in figura? 1) f(x)=x 3-2 2) f(x)= x 3-2x 2 -(x-2) 3) f(x)= x 3-2x 2 + x-2 4) f(x)= x 4 -x 2-2"

Transcript

1 Quale delle funzioni elencate ha il grafico in figura? 1) f(x)=x 3-2 2) f(x)= x 3-2x 2 -(x-2) 3) f(x)= x 3-2x 2 + x-2 4) f(x)= x 4 -x 2-2

2 SOLUZIONE: Si esclude subito la funzione 2) perché per x=0 vale 2 e non -2 come mostra il grafico; Si esclude la 4) perché è una funzione pari, quindi il suo grafico è simmetrico rispetto all asse y; si esclude la 1) perché vale 0 per x=2 1/3 La funzione che ha il grafico in fig. è la 3) si ha infatti f(2)=0 e tutte le altre caratteristiche mostrate dal grafico

3 Quale delle funzioni elencate ha il grafico in figura? 1) f(x)=1/x + 2 2) f(x)= 1/(x+1) + 2 3) f(x)=1/(x-1) + 2 4) f(x)= -1/(x+1) + 2

4 SOLUZIONE:Il grafico in figura è relativo ad una funzione che non è definita per x= -1, dunque si escludono subito le funzioni 1) e 3). Il grafico mostra che la funzione in 0 vale 3, mentre la funzione 4) in 0 vale 1. Controllando la funzione 2) si vede che essa soddisfa a tutte le proprietà evidenziate dal grafico (insieme di def.x -1, limiti.., segno, f(0)=3 )

5 Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2)

6 SOLUZIONE: Si esclude la 4) perché non è definita per x=2 e la 2) perché definita solo per x>0. Si esclude la 1) perché il suo limite per x - è 1. La funzione 3) ha tutte le proprietà evidenziate dal grafico compreso il limite per x - uguale a 0.

7 Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= logx/x 2) f(x)= 2log(x-1)/(x+1) 3) f(x)= 5log(x+1)/(x-1) 4) f(x)= logx 2 /(x+1) + 1

8 SOLUZIONE: si esclude la funzione 1) perché definita per x>0; si esclude la funzione 2) perché definita per x>1; si esclude la 4) perché è definita nel punto x=1 al contrario di quanto appare nel grafico; La funzione 3) va bene perché soddisfa a tutte le proprietà evidenziate dal grafico (insieme di def dato da x>-1 con x 1, ecc )

9 1- Scrivi l espressione analitica di una funzione f(x) continua, definita e crescente su tutto R, che abbia limite per x + uguale a 3 e sia f(0)= -2. SOLUZIONE: Tra le tante funzioni possibili, una volta disegnato un grafico compatibile con le richieste, si può pensare, ad esempio ad una funzione del tipo f(x)=aexp(-x) +B, dove A e B sono opportune costanti che si determinano in base alla condizione di limite B=3 (infatti exp(-x) tende a 0 per x che tende a + ) e alla condizione f(0)=-2 che ci da A+ B=-2, vale a dire A+3=-2, da cui A=-5, quindi abbiamo ottenuto la funzione f(x)=-5exp(-x)+3; Altro esempio Ragionando in modo analogo si potrebbe cercare una funzione f(x)=aarctanx+b, imponendo le condizioni assegnate si otterrebbe A(π/2) +B=3, B=-2, da cui f(x)=(10/π)arctanx-2

10 2- Scrivi l espressione analitica di una funzione f(x) continua, definita e decrescente su tutto R, che sia limitata tra i valori -2 e 1. SOLUZIONE: Ci sono molte funnzioni che soddisfano alla richiesta, ad esempio una funzione limitata del tipo f(x)= A+ Barctanx, dove A e B sono opportune costanti da determinare in base alle richieste dell esercizio, in particolare ricordando che la funzione arctanx tende a π/2 per x +, mentre tende a -π/2 per x -, si pone A (π/2)b = 1 A+(π/2)B = -2 da cui otteniamo A= -1/2, B= -3/π e quindi f(x)= -1/2 3/π arctanx

11 3- Scrivi l espressione analitica di una funzione f(x) continua, definita per x>1, tale che f(x)<0 per 2<x<3; inoltre si abbia lim x 1+ f(x) = +, lim x + f(x)= + SOLUZIONE: Il fatto che la funzione debba essere definita per x>1, può far pensare a ln(x-1), ma bisogna sistemare il segno, in quanto ln(x-1)>0 per x>2, possiamo quindi pensare di moltiplicare ln(x-1) per una funzione che sia positiva per x>3 e negativa per x<3, dunque ad esempio f(x)=(x-3)ln(x-1) soddisfa ai requisiti richiesti. Altro esempio: Per essere definita per x>1 possiamo anche pensare a 1/ (x-1), per aggiustare il segno e i limiti possiamo mettere al numeratore un polinomio che sia negativo per 2<x<3 e positivo all esterno, quindi ad esempio f(x)=(x-2)(x-3) / (x-1) soddisfa ai requisiti richiesti.

12 1- A partire dalla conoscenza della funzione lnx e del suo grafico, disegna il grafico della funzione f(x)= 2 - lnx/x. Determina per f(x): 1) Dominio 2) Eventuali intersezioni con gli assi coordinati 3) per quali x si ha, eventualmente, f(x) 0 4) limiti ai bordi del dominio 5) Insieme immagine SOLUZIONE:Al punto 1) si risponde facilmente: dominio x>0; Per il resto conviene fare riferimento al grafico di lnx/x, si osserva che lnx/x è positiva per x>1, ha un punto di max relativo per x=e dove vale 1/e, tende a - per x che tende a 0+, e tende a 0 per x che tende a + ; la funzione opposta -lnx/x, avrà quindi valore minimo in x=e e varrà -1/e, sarà positiva per 0<x<1, tenderà a 0 per x che tende a +, e a + per x che tende a 0+;

13 Se sommiamo per 2, la funzione f(x)=2-lnx/x avrà limite + per x che tende a 0+, limite 2 per x che tende a +, e punto di minimo per x=e, in cui vale 2-1/e, dunque f(x) risulta sempre positiva e non ci sono intersezioni con l asse delle ascisse (con quello delle ordinate non ci possono essere in quanto il dominio è dato da x>0); infine l insieme immagine è la semiretta [2-1/e, + ); Vedi slide successivo per il grafico

14

15 2- A partire dalla conoscenza della funzione arctanx e del suo grafico, disegna il grafico della funzione f(x)= 1/(arctanx + π/4), e determina per f(x): 1) Dominio 2) Eventuali intersezioni con gli assi coordinati 3) per quali x si ha, eventualmente, f(x) 0 4) limiti ai bordi del dominio 5) insieme immagine SOLUZIONE: 1) Dominio R/{-1}; 2) f(0)= 4/π, mentre non ci sono intersezioni con l asse delle ascisse (f(x) 0 per ogni x ); 3) si ha f(x)>0 per x>-1; 4) limite per x - uguale a 4/π, limite per x + uguale a 4/(3π), limite sinistro per x che tende a 1 uguale a -, limite destro uguale a + ; l insieme immagine è dato dall unione delle seguenti semirette (-, 4/π) (4/(3π), + )

16 2-

17 3- A partire dalla conoscenza della funzione e x e del suo grafico, disegna il grafico della funzione f(x)= 1/(e x - 2), e determina per f(x): 1) Dominio 2) Eventuali intersezioni con gli assi coordinati 3) per quali x si ha, eventualmente, f(x) 0 4) limiti ai bordi del dominio 5) insieme immagine SOLUZIONE: Dominio: R/{ ln2}, dovendo essere e x - 2 0; Disegnando il grafico di e x - 2 (ottenuto da quello di e x abbassando di 2 unità parallelamente all asse delle ordinate), si costruisce facilmente il grafico della funzione reciproco, infatti anch essa sarà positiva per x>ln2 e negativa per x<ln2; si avrà una intersezione con l asse delle ordinate nel punto (0,-1), infatti per x=0 dove f(0)= -1, non ci sono intersezioni con l asse delle ascisse, infatti f(x) non assume mai valore 0, vale a dire f(x) 0

18 SOLUZIONE (continua ): il limite destro per x che tende a ln2 è +, il limite sinistro è -, il limite di f(x) per x che tende a + è 0, il limite di f(x) per x che tende a - è -1/2; l insieme immagine è dato dall unione delle semirette (-,-1/2) (0, + )

19 1- Studia la monotonia, eventuali punti di massimo o minimo relativi o assoluti, concavità, convessità ed eventuali punti di flesso della funzione f(x)= (3+2xlnx)/2x SOLUZIONE: La funzione è definita solo per x>0; si ha f (x)=[(2lnx+2)2x-(3+2xlnx)2]/4x 2 = (4x-6)/4x 2 Dunque f (x)=0 per x=3/2, poiché f (x)>0 per x>3/2 e quindi f(x) è crescente per x>3/2, mentre f (x)<0 per x<3/2 e quindi f(x) è decrescente per x<3/2, il punto singolare x=3/2 è un punto di minimo relativo per la funzione, che risulta anche essere di minimo assoluto, essendo i limiti sia per x che tende a 0 da destra che per x che tende a + uguali a + 2- Studia la monotonia, eventuali punti di massimo o minimo relativi o assoluti, concavità, convesità ed eventuali punti di flesso della funzione f(x)= 2sinx -x 3- Studia la monotonia, eventuali punti di massimo o minimo

20 1- Studia la monotonia, eventuali punti di massimo o minimo relativi o assoluti, concavità, convessità ed eventuali punti di flesso della funzione f(x)= (3+2xlnx)/2x SOLUZIONE: La funzione è definita solo per x>0; si ha f (x)=[(2lnx+2)2x-(3+2xlnx)2]/4x 2 = (4x-6)/4x 2 Dunque f (x)=0 per x=3/2, poiché f (x)>0 per x>3/2 e quindi f(x) è crescente per x>3/2, mentre f (x)<0 per x<3/2 e quindi f(x) è decrescente per x<3/2, il punto singolare x=3/2 è un punto di minimo relativo per la funzione, che risulta anche essere di minimo assoluto, essendo i limiti sia per x che tende a 0 da destra che per x che tende a + uguali a + ; calcoliamo f (x)= (3-x)/x da cui si ottiene f (x)=0 per x=3, f (x)>0 per x<3 e quindi f(x) convessa per x<3, mentre f (x)<0 per x>3, dunque f(x) concava per x>3, x=3 è quindi un punto di flesso.

21 2- Studia la monotonia, eventuali punti di massimo o minimo relativi o assoluti, concavità, convesità ed eventuali punti di flesso della funzione f(x)= 2sinx -x SOLUZIONE: La funzione è definita su tutti i numeri reali, f (x)= 2cosx -1, f (x)=0 per x=π/6 +2kπ oppure per x=-π/6 +2kπ per ogni k Z e si ha per tutti i punti singolari x=π/6 +2kπ f (x)<0, e quindi f(x) decrescente, in un opportuno intorno sinistro della singolarità, mentre f (x)>0, e quindi f(x) crescente, in un opportuno intorno destro, quindi i punti sono punti di minimo relativo (non ci sono minimi assoluti poiché la funzione tende a - per x che tende a + ); mentre per i punti x= - π/6 +2kπ si ha f (x)>0 in un opportuno intorno sinistro e f (x)<0 in un opportuno intorno destro quindi tali punti sono di massimo relativo (non ci sono massimi assoluti poiché la funzione tende a + per x che tende a - ); calcoliamo f (x)= -2sinx

22 SOLUZIONE (continua ): poiché f (x)= -2sinx, avremo f (x)=0 per x=2kπ oppure per x=(2k+1) π che sono punti di flesso in quanto in un intorno opportuno di ciascuno di questi punti f (x) cambia segno, in particolare per x=2kπ si ha che f (x)>0 in un opportuno intorno sinistro e quindi f(x) è convessa, e a destra f (x)<0 e quindi f(x) diventa concava, viceversa per i punti x=(2k+1) π si ha f(x) concava in un opportuno intorno sinistro e convessa nell intorno destro.

23 3- Studia la monotonia, eventuali punti di massimo o minimo relativi o assoluti, concavità, convessità ed eventuali punti di flesso della funzione f(x)= e -x (3x-1) SOLUZIONE: la funzione è definita per ogni x reale; calcoliamo f (x)= (4-3x)/e x quindi f (x)=0 per x=4/3, inoltre f (x)>0, e quindi f(x) crescente, per x<4/3 e f (x)<0, e quindi f(x) decrescente, per x>4/3, quindi x=4/3 è un punto di massimo relativo, calcolando il limite di f(x) per x che tende a - si ha -, mentre f(x) tende a 0 per x che tende a +, dunque il punto x=4/3 è di massimo assoluto; calcoliamo f (x) = (3x-7)/e dunque f (x)=0 per x=7/3, inoltre f (x)>0 per x>7/3, f (x)<0 per x<7/3, x=7/3 è perciò un punto di flesso e f(x) è concava per x<7/3 e convessa per x>7/3

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2)

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2) Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2) SOLUZIONE: Si esclude la 4) perché non è definita per x=2 e la 2) perché definita

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno), 6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

3. Quale affermazione è falsa?

3. Quale affermazione è falsa? 1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

Studio di una funzione ad una variabile

Studio di una funzione ad una variabile Studio di una funzione ad una variabile Lo studio di una funzione ad una variabile ha come scopo ultimo quello di pervenire a un grafico della funzione assegnata. Questo grafico non dovrà essere preciso

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Studio grafico analitico delle funzioni reali a variabile reale y = f(x)

Studio grafico analitico delle funzioni reali a variabile reale y = f(x) Studio grafico analitico delle funzioni reali a variabile reale y = f() 1 Ecco i passi utili allo studio di una funzione reale: Determinare il dominio della funzione Ricercare l eventuale intersezione

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Definizione: Si chiama successione numerica una funzione definita su IN a valori in IR, cioè una legge che associa ad ogni intero n un numero reale a n. Per abuso di linguaggio, si

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali. 1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013 Tempo massimo 2 ore. Consegnare solamente la bella copia. Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 212/213 12 febbraio 213 1. Disegnare il grafico della funzione: [1

Dettagli

G6. Studio di funzione

G6. Studio di funzione G6 Studio di funzione G6 Come tracciare il grafico di una funzione data Nei capitoli precedenti si sono svolti tutti gli argomenti necessari per tracciare il grafico di una funzione In questo capitolo

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un

Dettagli

DOMINIO = R INTERSEZIONI CON ASSI

DOMINIO = R INTERSEZIONI CON ASSI STUDIO DELLA FUNZIONE CUBICA a cura di Maria Teresa Bianchi La funzione è razionale intera ed è espressa in forma normale da: #1: y = a x + b x + c x + d I coefficienti del polinomio di grado a secondo

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

7 - Esercitazione sulle derivate

7 - Esercitazione sulle derivate 7 - Esercitazione sulle derivate Luigi Starace gennaio 0 Indice Dimostrare il teorema 5.5.3.a................................................b............................................... Dimostrazioni.a

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

Soluzione del tema d esame di matematica, A.S. 2005/2006

Soluzione del tema d esame di matematica, A.S. 2005/2006 Soluzione del tema d esame di matematica, A.S. 2005/2006 Niccolò Desenzani Sun-ra J.N. Mosconi 22 giugno 2006 Problema. Indicando con A e B i lati del rettangolo, il perimetro è 2A + 2B = λ mentre l area

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Esercizi sugli integrali impropri

Esercizi sugli integrali impropri Esercizi sugli integrali impropri Esercizio. Studiare 2 x4 dx. Svolgimento: è un integrale improprio, in quanto f(x) =, x (, 2] ha una singolarità in : x4 lim x + x4 = +. Osserviamo che f è positiva, quindi

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

FUNZIONI ESPONENZIALE E LOGARITMICA

FUNZIONI ESPONENZIALE E LOGARITMICA FUNZIONI ESPONENZIALE E LOGARITMICA Le potenze con esponente reale La potenza a x di un numero reale a è definita se a>0 per ogni x R se a=0 per tutti e soli i numeri reali positivi ( x R + ) se a

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N. 6 ARGOMENTO: Grafici di funzioni sottoposte a trasformazioni elementari.

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

Esame di Analisi Matematica prova scritta del 23 settembre 2013

Esame di Analisi Matematica prova scritta del 23 settembre 2013 Esame di Analisi Matematica prova scritta del 23 settembre 2013 1. Determinare dominio, limiti significativi, intervalli di monotonia della funzione f (x) = (2x + 3) 2 e x/2 e tracciarne il grafico. In

Dettagli

Programma di Matematica

Programma di Matematica Programma di Matematica Modulo 1. Topologia in R 2. Funzioni in R 3. Limite e continuità di una funzione Unità didattiche Struttura algebrica di R Insiemi reali limitati e illimitati Intorno di un punto

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Corso di Matematica per CTF Appello 15/12/2010

Corso di Matematica per CTF Appello 15/12/2010 Appello 15/12/2010 Svolgere i seguenti esercizi: 1) Calcolare entrambi i limiti: a) lim(1 x) 1 e x 1 ; x 0 x log 2 x b) lim x 1 1 cos(x 1). 2) Data la funzione: f(x) = x log x determinarne dominio, eventuali

Dettagli

Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it

Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it Esempio 1 y= f (x)= x 1 x 2 9 a Dominio: D= R { 3,3} Il denominatore deve

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

f(x) = x3 2x 2x 2 4x x 2 x 3 2x 2x 2 4x =, lim lim 2x 2 4x = +. lim Per ricavare gli asintoti obliqui, essendo lim

f(x) = x3 2x 2x 2 4x x 2 x 3 2x 2x 2 4x =, lim lim 2x 2 4x = +. lim Per ricavare gli asintoti obliqui, essendo lim Esercizi 0//04 - Analisi I - Ingegneria Edile Architettura Esercizio. Studiare la seguente funzione e disegnarne il graco. Soluzione: f(x) = x3 x x 4x La funzione è denita dove il denominatore risulta

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

Svolgimento 1 Scriviamo la funzione f(x) che rappresenta la spesa totale in un mese: Figura 2 Il grafico di f(x).

Svolgimento 1 Scriviamo la funzione f(x) che rappresenta la spesa totale in un mese: Figura 2 Il grafico di f(x). Problema 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto di conversazione. Indicando con

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006 Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere nome e cognome

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI Il criterio più semplice è il seguente. CRITERI DI CONVERGENZA PER LE SERIE Teorema(condizione necessaria per la convergenza). Sia a 0, a 1, a 2,... una successione di numeri reali. Se la serie a k è convergente,

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli