MATEMATICA FINANZIARIA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA"

Transcript

1 TETI FINNZIRI. Defiizioi 2. Iteesse semplice 3. Iteesse composto cotiuo 4. Iteesse composto discotiuo auo Spostameto dei valoi el tempo ualità Peiodicità 5. Iteesse composto discotiuo covetibile atematica fiaziaia

2 DEFINIZIONE DI INTERESSE Pezzo d uso del ispamio sottofoma di capitale idiffeeziato (la moeta). DEFINIZIONE DI SGGIO DI INTERESSE Iteesse dell uità di capitale ( lia) ell uità di tempo ( ao) atematica fiaziaia 2

3 ODLIT DI DETERINZIONE DELL INTERESSE SEPLIE NNUO INTERESSE DISONTINUO OPOSTO ONVERTIBILE ONTINUO atematica fiaziaia 3

4 INTERESSE SEPLIE Gli iteessi matuati dal capitale i u dato tempo NON si sommao co il capitale, el calcolo degli iteessi del peiodo successivo. I alte paole, soo ifuttifei. I o I Iteesse matuato o apitale iiziale Saggio di iteesse peiodo i ai (gg/365 o m/2) atematica fiaziaia 4

5 INTERESSE SEPLIE Fomule deivate: I o I o I o atematica fiaziaia 5

6 DEFINIZIONE DI ONTNTE Il motate di u capitale è la somma del capitale e dei elativi iteessi matuati i u detemiato peiodo di tempo I Il motate uitaio è la somma di u capitale di lia e dei elativi iteessi matuati i u ao atematica fiaziaia 6

7 atematica fiaziaia 7 INTERESSE SEPLIE alcolo del motate: ) ( I o o o o ) ( o Fomule deivate: o o o

8 SONTO E la somma che si sottae ad u capitale futuo pe edelo attuale Scoto fiaziaio semplice Sc o Scoto commeciale Sc atematica fiaziaia 8

9 DIFFERENZ TR SONTO FINNZIRIO SEPLIE E SONTO OERILE Lo scoto fiaziaio è calcolato sul capitale: Sc Lo scoto commeciale è calcolato sul motate, uidi è più elevato: Sc Lo scoto commeciale può essee adottato solo pe bevi peiodi di tempo. atematica fiaziaia 9

10 INTERESSE OPOSTO Gli iteessi matuati dal capitale i u dato peiodo si sommao al capitale stesso e divegoo futtifei. L iteesse composto può essee: -otiuo -Discotiuo auo -Discotiuo covetibile atematica fiaziaia

11 INTERESSE OPOSTO ONTINUO Gli iteessi si covetoo i capitale ad ogi istate. Seppu teoicamete cocepibile, o tova alcua applicazioe ella patica estimativa. atematica fiaziaia

12 INTERESSE OPOSTO DISONTINUO NNUO Gli iteessi vegoo aggiuti al capitale che li ha podotti ua volta l ao I ( ) I iteesse matuato saggio d iteesse peiodo di ai capitale iiziale atematica fiaziaia 2

13 INTERESSE OPOSTO DISONTINUO NNUO alcolo del motate lla fie del pimo ao: I ( ) lla fie del secodo ao: 2 2 I2. ( ) ( )( ) ( ) I geeale pe l ao eesimo ( ). Fomule deivate I ) ( I iteesse matuato saggio d iteesse peiodo di ai capitale iiziale atematica fiaziaia 3

14 SONTO FINNZIRIO OPOSTO Sc atematica fiaziaia 4

15 INTERESSE OPOSTO DISONTINUO ONVERTIBILE Gli iteessi matuao più volte all ao (t) ma sempe i peiodi defiiti. L iteesse composto covetibile viee idicato mediate la fissazioe di u saggio auo omiale a cui coispode u saggio covetibile pai al saggio auo omiale diviso il umeo di volte che l iteesse matua ell ao: c Si applicao le fomule dell iteesse composto discotiuo auo co le segueti modifiche: ) c t t c t Dove: c saggio covetibile t umeo di volte i cui l iteesse si covete i u ao c umeo di volte i cui l iteesse covetibile matua ell iteo peiodo 2) atematica fiaziaia 5

16 INTERESSE OPOSTO DISONTINUO ONVERTIBILE alcolo del motate: Fomule deivate: I ( ) t t ( ) t ( t ) t t atematica fiaziaia 6 t t

17 INTERESSE OPOSTO DISONTINUO ONVERTIBILE alcolo del saggio di iteesse auo effettivo a patie dal saggio di iteesse omiale. Il saggio effettivo è sempe maggioe ispetto a uello omiale. Pe Lia ao I I t t effettivo omiale t ( ) t atematica fiaziaia 7

18 SPOSTENTO DEI PITLI NEL TEPO: POSTIIPZIONE E NTIIPZIONE NTIIPZIONE POSTIIPZIONE VLORE $ ONTNTE SONTTO NON SI POSSONO DDIZIONRE, SOTTRRRE O ONFRONTRE VLORI DIFFERENTI NEL TEPO OEFFIIENTI DI POSTIIPZIONE Regime a iteesse semplice: () Regime a iteesse composto: Regime a iteesse semplice: OEFFIIENTI DI NTIIPZIONE ( ) Regime a iteesse composto: atematica fiaziaia 8

19 INTERESSE OPOSTO DISONTINUO NNUO TEPO IPIEGTO D UN PITLE PER SGGIO 2% 3% 4% 5% 6% 7% 8% 9% % RDDOPPIRE ( 2) NNI atematica fiaziaia 9

20 SUGGERIENTI PRTII DI VERIFI ) ttaveso la posticipazioe si ottiee sempe u valoe supeioe al valoe dato (poiché il saggio è positivo): > > 2) ttaveso l aticipazioe si ottiee sempe u valoe ifeioe al valoe dato: < < atematica fiaziaia 2

21 VLORI PERIODII Si defiiscoo valoi peiodici uei valoi costati (icavi o costi) che si veificao ad itevalli di tempo egolai. Nomalmete essi soo distiti i: aualità e peiodicità Le aualità soo valoi che si ipetoo ad itevalli egolai di u ao. Le peiodicità soo valoi che si ipetoo ogi detemiato umeo di ai. I valoi peiodici possoo essee: -Rispetto alla scadeza, posticipati o aticipati, a secoda che si veifichio alla fie o all iizio di ogi peiodo. -Rispetto alla duata, limitati o illimitati a secoda che si veifichio pe u mometo fiito o idefiito di ai. atematica fiaziaia 2

22 PROBLEI UULZIONE INIZILE UULZIONE FINLE UULZIONE INTEREDI LIITTE X X X POSTIIPTE ILLIITTE X OSTNTI NNULIT E PERIODIIT NTIIPTE LIITTE ILLIITTE X X X X VRIBILI UULZIONE DEI VLORI ON IL ETODO DELLO SPOSTENTO DEI VLORI NEL TEPO atematica fiaziaia 22

23 NNULIT OSTNTI POSTIIPTE LIITTE Soo edite (o costi) di uguale valoe, che si ealizzao alla fie di ogi ao pe u detemiato umeo di ai. Te soo i poblemi elativi alle aualità costati posticipate limitate: -ccumulazioe Fiale Si ottiee posticipado alla fie del del peiodo le vaie aualità e sommadole assieme aualità umeo ai -ccumulazioe iiziale Si ottiee ifeedo le aualità all ao zeo del peiodo e sommadole assieme a -ccumulazioe itemedia Si ottiee ifeedo le aualità ad u ao itemedio m del peiodo m m Si può icavae dall' scotadol a all' attualità co il coefficie te oppue m m atematica fiaziaia 23

24 atematica fiaziaia 24 NNULIT OSTNTI POSTIIPTE LIITTE Detemiazioe dell accumulazioe fiale a a a a a a )... ( a a a a a a [si tatta di ua pogessioe geometica co agioe *, si isolve moltiplicado l ultimo temie pe la agioe meo il pimo temie e dividedo tutto pe la agioe meo uo] a a a a * La agioe i ua pogessioe geometica è data dal appoto ta u temie e uello successivo

25 NNULIT OSTNTI NTIIPTE LIITTE Soo edite (o costi) di uguale valoe, che si ealizzao all iizio di ogi ao pe u detemiato umeo di ai. che pe le aualità costati aticipate limitate te soo i poblemi: -ccumulazioe fiale Si ottiee posticipado alla fie del peiodo le vaie aualità e sommadole assieme a -ccumulazioe iiziale Si ottiee ifeedo le aualità dell ao zeo del peiodo e sommadole assieme a. -ccumulazioe itemedia Si ottiee ifeedo le aualità ad u ao itemedio del peiodo m m oppue m m atematica fiaziaia 25

26 NNULIT OSTNTI NTIIPTE LIITTE Detemiazioe dell accumulazioe fiale: Si icava co u pocedimeto matematico aalogo a uello utilizzato pe le aualità posticipate. Più facilmete si può ossevae che le aualità aticipate si veificao u ao pima di uelle posticipate. Basteà, uidi, posticipae di u ao l aualità mediate il coefficiete e applicae il coefficiete di accumulazioe già utilizzato pe le aualità posticipate. 2 a a a - a a atematica fiaziaia 26

27 NNULIT OSTNTI POSTIIPTE ILLIITTE Soo edite (o costi) di uguale valoe, che si ealizzao alla fie di ogi ao pe u tempo ifiitamete lugo. Pe le aualità costati posticipate illimitate sussiste solo u poblema: - ccumulazioe iiziale La fomula è aaloga alla I Tali fomule soo chiamate fomule di capitalizzazioe deiedditi aui, costati, posticipati, illimitati (ogi volta che si divide il eddito medio auo costate posticipato di u capitale pe il suo saggio di iteesse, si ottiee il valoe del capitale capace di geeae tale eddito). a atematica fiaziaia 27

28 atematica fiaziaia 28 NNULIT OSTNTI POSTIIPTE ILLIITTE Detemiazioe dell accumulazioe iiziale a a a a ) lim( lim lim

29 NNULIT OSTNTI NTIIPTE ILLIITTE Soo edite (o costi) di uguale valoe, che si ealizzao all iizio di ogi ao pe u tempo ifiitamete lugo. che pe le aualità costati aticipate illimitate si può palae solo di: - ccumulazioe iiziale a Si ottiee facilmete dall aaloga fomula elativa alle aualità posticipate illimitate, teedo coto che le aualità aticipate si veificao u ao pima di uelle posticipate. E sufficiete, uidi, posticipae di u ao l aualità aticipata. atematica fiaziaia 29

30 PERIODIIT (O POLINNULIT ) Simboli: umeo ai del peiodo (itevallo di tempo che itecoe ta il veificasi di due successivi valoi peiodici) t umeo dei peiodi Peiodicità costati posticipate limitate: accumulazioe fiale t t p p t Peiodicità costati posticipate limitate: accumulazioe iiziale Peiodicità costati aticipate limitate: accumulazioe fiale t p t t atematica fiaziaia 3

31 atematica fiaziaia 3 PERIODIIT (O POLINNULIT ) 2 Peiodicità costati aticipate limitate: accumulazioe iiziale t t p Peiodicità costati posticipate illimitate: accumulazioe iiziale p Peiodicità costati aticipate illimitate: accumulazioe iiziale p

32 LOLO DELL INTERESSE RELE IN PRESENZ DI INFLZIONE Il edimeto eale degli ivestimeti fiaziai si ottiee el seguete modo: Dove: tasso di edimeto eale tasso di edimeto omiale i tasso di iflazioe oetemete si usa ache la fomula: i i Tale fomula è scoetta ma foisce isultati appossimativamete simili alla pecedete se usata pe tassi d iflazioe bassi e peiodi bevi i atematica fiaziaia 32

33 atematica fiaziaia 33 LOLO DELL INTERESSE RELE DIOSTRZIONE La fomula pe il calcolo di edimeto eale può essee icavata da uella pe il calcolo del motate eale: ( ) i ( ) ( ) ( ) ( ) i ; ) ( Poiché: Possiamo scivee: Dividedo etambi i membi pe e facedo la adice -esima i i i i i i o: tasso eale; tasso omiale; i tasso d iflazioe; motate omiale; motate eale

34 STRUENTI PRTII DI LOLO Il tadizioale suppoto pe il calcolo fiaziaio soo le tavole fiaziaie. Le tavole fiaziaie cotegoo i valoi calcolati, pe divesi valoi di ed, dei picipali coefficieti usati el calcolo fiaziaio (vedi tavole). Uo stumeto più avazato soo le calcolatici fiaziaie. Le calcolatici fiaziaie cotegoo le picipali fuzioi fiaziaie. Pemettoo la iceca apida del valoe di paameti che ichiedeebbeo lughi calcoli mauali. d esempio il valoe di dati a, ed elle fomule delle aualità, che può essee tovato solo pe tetativi. I fogli elettoici (Excel) pemettoo l esecuzioe delle più comui opeazioi fiaziaie, mediate la scittua delle elative fomule o l uso delle fuzioi fiaziaie (vedi eleco fuzioi fiaziaie di Excel) atematica fiaziaia 34

CALCOLO FINANZIARIO DEFINIZIONE DI INTERESSE. Prezzo d uso del risparmio sotto forma di capitale indifferenziato (la moneta).

CALCOLO FINANZIARIO DEFINIZIONE DI INTERESSE. Prezzo d uso del risparmio sotto forma di capitale indifferenziato (la moneta). LOLO FINNZIRIO. Defiizioi 2. Iteesse semplice 3. Iteesse composto cotiuo 4. Iteesse composto discotiuo auo Spostameto dei valoi el tempo ualità Peiodicità 5. Iteesse composto discotiuo covetibile 6. pplicazioi

Dettagli

Matematica finanziaria applicata all estimo

Matematica finanziaria applicata all estimo Matematica fiaziaia applicata all estimo Pate Uità Nozioi di iteesse e di capitale Uità 2 Aualità costati Uità 3 Peiodicità o poliaualità Uità 4 Poblemi sui edditi tasitoi e pemaeti di u immobile Itoduzioe

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

UNIVERSITA DEGLI STUDI DI TRIESTE - A u r e l i o A m o d e o

UNIVERSITA DEGLI STUDI DI TRIESTE - A u r e l i o A m o d e o UNIVERSITA DEGLI STUDI DI TRIESTE - FAOLTA DI INGEGNERIA A u e l i o A m o d e o Elemeti didattici di matematica fiaziaia Dipatimeto di Igegeia ivile e Ambietale Tieste, settembe 5 La fialità di questi

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

Il teorema di Gauss e sue applicazioni

Il teorema di Gauss e sue applicazioni Il teoema di Gauss e sue applicazioi Cocetto di flusso Cosideiamo u campo uifome ed ua supeficie piaa pepedicolae alle liee di campo. Defiiamo flusso del campo attaveso la supeficie la uatità : = (misuata

Dettagli

Investimento. 1 Scelte individuali. Micoreconomia classica

Investimento. 1 Scelte individuali. Micoreconomia classica Investimento L investimento è l aumento della dotazione di capitale fisico dell impesa. Viene effettuato pe aumentae la capacità poduttiva. ECONOMIA MONETARIA E FINANZIARIA (5) L investimento In queste

Dettagli

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08 L ammortameto dei prestiti. Corsaro Matematica Fiaziaria a.a. 27/8 Prestiti idivisi Operazioi fiaziarie co due cotraeti mutuate o creditore: presta u capitale mutuatario o debitore: si impega a restituire

Dettagli

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015 BLOCCO TEMATICO DI ESTIMO Diritti reali: usufrutto CORSO PRATICANTI 2015 Usufrutto L'usufrutto è il diritto di godimeto da parte di ua persoa detta USUFRUTTUARIO di u bee altrui; il proprietario del bee

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

Quadro riassuntivo delle principali formule di matematica finanziaria

Quadro riassuntivo delle principali formule di matematica finanziaria uado iassuivo delle picipali foule di aeaica fiaziaia Ieesse seplice: aua i peiodi di epo ifeioi o uguali all ao ale che l ieesse auao sul capiale o divea fuifeo. epo d ipiego del capiale co ao (u ao)

Dettagli

Rendita perpetua con rate crescenti in progressione aritmetica

Rendita perpetua con rate crescenti in progressione aritmetica edita perpetua co rate cresceti i progressioe aritmetica iprediamo l'esempio visto ella scorsa lezioe di redita perpetua co rate cresceti i progressioe arimetica: Questa redita può ache essere vista come

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

(formula dello sconto composto convertibile)

(formula dello sconto composto convertibile) uado iassuivo delle picipali foule di aeaica fiaziaia Ieesse seplice: aua i peiodi di epo ifeioi o uguali all ao ale che l ieesse auao sul capiale iiziale o divea fuifeo. epo d ipiego del capiale ( ao!)

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Estimo rurale appunti 2005. Estimo rurale

Estimo rurale appunti 2005. Estimo rurale Estimo rurale apputi 2005 Estimo rurale L estimo rurale rietra ell ambito delle disciplie ecoomiche, ma metre l ecoomia si occupa della coosceza della realtà, esso si occupa della valutazioe dei bei. Compito

Dettagli

La stima per capitalizzazione dei redditi

La stima per capitalizzazione dei redditi La stima per capitalizzazioe dei redditi 24.X.2005 La stima per capitalizzazioe La capitalizzazioe dei redditi è l operazioe matematico-fiaziaria che determia l ammotare del capitale - il valore di mercato

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

CAPITOLO 10 La domanda aggregata I: il modello IS-LM

CAPITOLO 10 La domanda aggregata I: il modello IS-LM CAPITOLO 10 La domanda aggegata I: il modello IS-LM Domande di ipasso 1. La coce keynesiana ci dice che la politica fiscale ha un effetto moltiplicato sul eddito. Infatti, secondo la funzione di consumo,

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

VALORI PERIODICI O RENDITE

VALORI PERIODICI O RENDITE VALORI PERIODICI O RENDITE LE RENDITE SONO VALORI PERIODICI CHE SI RIPETONO AD INTERVALLI REGOLARI DI TEMPO POSSONO ESSERE: ATTIVE: I I PRODOTTI DI DI UNA AZIENDA IL IL CANONE DI DI AFFITTO GLI STIPENDI

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 18

McGraw-Hill. Tutti i diritti riservati. Caso 18 Mauale di Estimo Vittorio Gallerai, Giacomo Zai, Davide Viaggi Caso 18 Copyright 2005 The Compaies srl Stima del diritto di usufrutto e del valore della uda proprietà relativi ad u appartameto di civile

Dettagli

ESAME DI STATO 2005, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO-TECNOLOGICO "BROCCA")

ESAME DI STATO 2005, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO-TECNOLOGICO BROCCA) Achimede 00 ESAME DI STATO 00, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO-TECNOLOGICO "BROCCA") Il cadidato isolva uo dei due poblemi e dei 0 quesiti i cui

Dettagli

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

MATEMATICA ATTUARIALE

MATEMATICA ATTUARIALE TETI TTURILE ssicuazioi Risea ateatica TETI TTURILE Studio cobiato di eeti ceti (opeazioi fiaziaie) ed eeti aeatoi (ita o ote di u idiiduo). La ateatica attuaiae è stettaete egata a cacoo dee pobabiità

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Quadro riassuntivo delle principali formule di matematica finanziaria

Quadro riassuntivo delle principali formule di matematica finanziaria Quado iassuivo delle picipali foule di aeaica fiaziaia Ieesse seplice: aua i peiodi di epo ifeioi o uguali all ao ale che l ieesse auao sul capiale o divea fuifeo. epo d ipiego del capiale co ao (u ao)

Dettagli

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina)

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina) ITIS OMAR Dipartimeto di Meccaica APPUNTI DI ECONOMIA ELEMENTARE (tratti da A. MONTE Elemeti di Impiati Idustriali Cortia) Si defiisce iteresse il dearo pagato per l'uso di u capitale otteuto i prestito

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

Corso: Economia ed estimo forestale ed ambientale. S. Severini (Università della Tuscia, Viterbo)

Corso: Economia ed estimo forestale ed ambientale. S. Severini (Università della Tuscia, Viterbo) Corso: Ecoomia ed estimo forestale ed ambietale. S. Severii (Uiversità della Tuscia, Viterbo) 1 Saggio di iteresse C C I 0 I C r C C C 0 0 C C C r C 1 r M r 0 0 0 C C0 C C C C 0 0 % C capitale al periodo

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

FRAZIONI CONTINUE DISCENDENTI E ASCENDENTI

FRAZIONI CONTINUE DISCENDENTI E ASCENDENTI Bollettio dei Doceti di Matematica (995), 85-9 FRAZIONI CONTINUE DISCENDENTI E ASCENDENTI GIORGIO T. BAGNI L ALGORITMO DI EUCLIDE U efficace pocedimeto pe detemiae il massimo comue divisoe di due atuali

Dettagli

Francesca Sanna-Randaccio Lezione 8. SCELTA INTERTEMPORALE (continua)

Francesca Sanna-Randaccio Lezione 8. SCELTA INTERTEMPORALE (continua) Fancesca Sanna-Randaccio Lezione 8 SELTA INTERTEMPORALE (continua Valoe attuale nel caso di più peiodi Valoe di un titolo di cedito Obbligazioni Obbligazioni emesse dalla Stato. Relazione ta deficit e

Dettagli

DISPENSE DI MATEMATICA FINANZIARIA

DISPENSE DI MATEMATICA FINANZIARIA SPENSE MATEMATA FNANZAA 3 Piai di ammortameto. 3. osiderazioi geerali. U piao di ammortameto cosiste ella restituzioe di u importo preso a prestito mediate il versameto d'importi distribuiti el tempo.

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, [email protected] Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

2. Duration. Stefano Di Colli

2. Duration. Stefano Di Colli 2. Duraio Meodi Saisici per il Credio e la Fiaza Sefao Di Colli Tassi di ieresse e redimei La reddiivià di u obbligazioe è misuraa dal asso di redimeo o dal asso di ieresse U idicaore del redimeo deve

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:[email protected] http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n SERIE NUMERICHE Esercizi risolti. Applicado la defiizioe di covergeza di ua serie stabilire il carattere delle segueti serie, e, i caso di covergeza, trovare la somma: = + b) = + +. Verificare utilizzado

Dettagli

Un modello di ricerca operativa per le scommesse sportive

Un modello di ricerca operativa per le scommesse sportive Un modello di iceca opeativa pe le commee potive Di Citiano Amellini citianoamellini@aliceit Supponiamo di dove giocae una ceta omma di denao (eempio euo ulla patita MILAN- JUVE Le quote SNAI ono quelle

Dettagli

Formula per la determinazione della Successione generalizzata di Fibonacci.

Formula per la determinazione della Successione generalizzata di Fibonacci. Formula per la determiazioe della uccessioe geeralizzata di Fiboacci. A cura di Eugeio Amitrao Coteuto dell articolo:. Itroduzioe......... uccessioe di Fiboacci....... 3. Formula di Biet per la successioe

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

Disequazioni. 21.1 Intervalli sulla retta reale

Disequazioni. 21.1 Intervalli sulla retta reale Disequazioni 1 11 Intevalli sulla etta eale Definizione 11 Dati due numei eali a e b, con a < b, si chiamano intevalli, i seguenti sottoinsiemi di R: a, b) = {x R/a < x < b} intevallo limitato apeto, a

Dettagli

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi

Dettagli

Valore finanziario del tempo

Valore finanziario del tempo Finanza Aziendale Analisi e valutazioni pe le decisioni aziendali Valoe finanziaio del tempo Capitolo 3 Indice degli agomenti. Concetto di valoe finanziaio del tempo 2. Attualizzazione di flussi futui

Dettagli

Progressioni aritmetiche

Progressioni aritmetiche Progressioi aritmetiche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 7,, 5, 9, +4 +4 +4 +4 +4 La successioe è tale che si passa da u termie al successivo aggiugedo sempre +4. Si

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai [email protected] Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli