Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120"

Transcript

1 Uiversitá degli Studi Roma Tre - Corso di Laurea i Matematica Tutorato di AM20 A.A Docete: Prof. G.Macii Tutore: Matteo Bruo ed Emauele Padulao Soluzioi 5-2 Marzo 204. Al solito specificheremo gli sviluppi utilizzati per lo svolgimeto dei iti esercizio per esercizio : e x + l x+ e a : Gli sviluppi che ci iteressa utilizzare soo 2coshx sihx e x x + x2 2 x3 6 + ox3 l + x x x2 2 + x3 3 + ox3 Utilizzadoli abbiamo che e x + l x+ e 2coshx sihx coshx + x2 2 + ox3 sihx x + x3 6 + ox3 x + x2 2 x3 6 + x x2 2 + x3 3 + ox3 2 + x2 2 + ox3 x + x3 6 + ox3 x3 6 + x3 3 + ox3 x 2 + ox 3 x + x3 6 + ox3 6 + o + o 6 ; [ ] 4 cos2x + si 2 2x b 2 xe 2x : Gli sviluppi che dobbiamo utilizzare soo cosh2x 2x e x + x + x2 2 + x3 6 + ox3 cosx x2 2 + x ox4 cosí da otteere che [ ] 4 cos2x + si 2 2x 2 xe 2x cosh2x 2x [ 4 [ 4 coshx + x2 2 + ox3 six x x3 6 + ox4 2x ] 2 3 x4 + 2x 2 3 x3 + ox 3 + ox 4 x + 2x + 2x x3 2x 2 2x + ox 4 ] 2x x4 + 2x x4 + ox o o 2 ; 3 x4 + ox 4 6 cosh x 6 cos x tax 3 c 5 si 2 x 5 arcsi 2 : Gli sviluppi che dobbiamo utilizzare x soo arcsix x + x3 6 + ox4 tax x + ox cosx x2 2 + ox3 six x x3 6 + ox3 coshx + x2 2 + ox3

2 2 per cocludere che 6 cosh x 6 cos x tax 3 5 si 2 x 5 arcsi 2 x d 6 + x 2 + ox 6 x 2 + ox x 3 + ox x x3 6 + ox3 5 x + x3 6 + ox3 6x + oxx 3 + ox 3 6x 4 + ox 4 5 x 2 x4 3 x2 x4 3 + ox4 0x 4 + ox o 0 + o 3 5 ; arctasix x cosx + x 6 α, α R : Gli sviluppi da utilizzare soo arctacosx arctax x x3 3 + x5 5 + ox5 six x x3 6 + x ox5 cosx x2 2 + x ox5 e Applicadoli abbiamo che arctasix x cosx + x 6 α arctacosx arcta x x3 6 + x x x2 2 + x ox5 x 6 α arctacosx x x x x3 6 + x ox5 + 5 x 3 3 x ox5 x x3 6 + x ox5 5 + ox 5 x 6 α arctacosx x 3 x5 2 + ox5 + x5 5 + ox5 x 6 α arctacosx + 0 se α,, + 4 3π se α ± + se α, + x α + ox α 3 arctacosx x ox5 x 6 α arctacosx NB. I questo esercizio, fermado gli sviluppi prima del quito ordie avremmo semplicemete scoperto che il umeratore é u o-piccolo di x 4. Soo cose come queste a doverci far capire che dobbiamo aggiugere termii allo sviluppo, perché altrimeti o giugiamo ad ua determiazioe precisa del ite. x + e 2 si x abbiamo che x 3 x x + [ l + 4x x ] : Essedo l + [ x x + 4x l + ] 4x 4 x + 4x e 2 si x x 3 x [ l + x ] 4x 4 x + e 2 4 x 3. si x x ;

3 3 Applicado il cambio di variabile x y abbiamo che x + e 2 si x x 3 x [ l + x ] 4x 4 y 0 A questo puto utilizziamo gli sviluppi di Taylor e 2y3 siy y. e y + y + oy siy y y3 6 + oy3 per otteere che x + e 2 si x x 3 x f sil2x + e 2x + tax 2 e x + x + x2 2 + ox2 six x + ox Tramite essi troviamo che [ l + x ] 4x 4 y 0 2y 3 + oy 3 y3 6 + oy3 4 y 0 : Gli sviluppi che ci servoo soo 2 + o 3 ; + o 6 l + x x x2 2 + ox2 tax x + ox sil2x + e 2x + si 2x 2x 2 + ox 2 2x 2x 2 + ox 2 + tax 2 x 2 + ox 2 2x 2x 2 2x 2x 2 + ox o x 2 + ox 2 + o a Come giá visto ell esercizio 3. d del tutorato 3 abbiamo che + x l tah x x 2k+ x 2k +. k 0 Il ostro scopo é calcolare l3, cioé tah 4 5 essedo + x x 3 + x x 9 + x 9 9x x 4 5. I questo caso é arduo capire chi é f + ξ, ξ approccio umerico. Essedo per trovare l tale che k 0 k0 4 2k+, 098 2k + 52k+ 4 2k+, 09? 2k + 52k+ 0, 4 5, perció teteremo u possiamo procedere aumetado via via il valore di fio a giugere al valore desiderato.

4 4 Procededo i tale maiera scopriremo che il miimo che soddisfa quato richiesto é 6. Per tale valore di abbiamo che 6 k0 4 2k+, 093 2k + 52k+ metre per 5 il valore della serie é, 088 ; b x six x 2 abbiamo che : Essedo six k 0 k 2k +! x2k+ x six x 2 x six x 2 x k 0 k 2k +! x2k x x k 2k +! x2k k cioé x six x 2 k k+ 2k +! x2k Ovviamete dal risultato otteuto, per calcolare si2 ci basta iazitutto ritorare alla formula dello sviluppo i serie di McLauri di six per otteere che si2 k 0 k 2k +! 22k+ k0 k 2k +! 22k+ + R 2. Procededo i maiera aaloga a quato fatto el tutorato scorso adiamoci a stimare R 2 : Ora R 2 [ d 2+3 dx 2+3 ] six xξ 2 + 3! , ξ 0, ! ! 2 + 3! Vediamo se il risultato é soddisfacete : 3 k0 k 2k +! 22k , e poiché si2 0, 909 abbiamo svolto il ostro lavoro correttamete. 3. Il raggio di covergeza r di ua serie di poteze 0 a x é pari a r sup a a a +. Trovato il valore di tale ite avremo che la serie coverge per x < r. Per vedere cosa accade sul bordo dell itervallo di covergeza r, r bisoga studiare la serie co x ±r e vedere se coverge.

5 5 a x : Abbiamo che la serie coverge x R i quato r sup sup ; b x e x per gli sviluppi i serie di McLauri, ergo la serie coverge! x R ; c + x : Sia x3 y cosí da avere che + x y Calcoliamo il raggio di covergeza di questa serie : r quidi la serie coverge per y 3, 3. Torado alla variabile di parteza possiamo cocludere che la serie coverge per x 3 3, 3 3. Vediamo il comportameto al bordo dell itervallo di covergeza : Se x 3 3 abbiamo che o coverge i quato il termie -esimo o tede a 0 per. Se x 3 3 abbiamo che o coverge i quato il termie -esimo o ammette ite per. d x! : Pare evidete che se x la serie o puó covergere. Se x 0, abbiamo che x! < x < + i quato, tolti i primi due termii che soo uguali, per il resto la serie di destra cotiee tutti i termii della serie di siistra piú molti altri e poiché la serie di destra coverge, o puó o covergere ache quella di siistra. Se x 0 ovviamete la serie é ulla, metre se x, 0 la serie coverge per il criterio di Leibiz. Duque la serie coverge se x < ; e! x : Abbiamo che r ergo la serie coverge solo per x 0 ;! +! + 0

6 6 f x α, α R+ : Essedo r sup α sup α sup Duque la serie coverge per x < α R +. Vediamo cosa accade per x ± : Se Duque Se x g x : Essedo x x α < per e α l α < α > ; α. α < α R + per il criterio di Leibiz. r sup sup x [, se α 0, ] x [, ] se α > sup e l ; abbiamo che la serie coverge per x <. Sul bordo dell itervallo di covergeza abbiamo che se x e l ; se x. Duque la serie o coverge per x ± i quato i etrembi i casi il termie -esimo o tede a 0 ; h x l + : Essedo r sup l + abbiamo che la serie coverge per x <. Vediamo cosa accade per x ± : se x possiamo dire che la serie coverge per il criterio di Leibiz ; Se x possiamo otare che, essedo l + <, abbiamo che. Essedo le serie a termii positivi possiamo cocludere che l+ > e quidi la serie o coverge. l + > Duque la serie coverge per x [,.

7 7 i [ll3]x : Al solito usado il criterio della radice -esima scopriamo che r. Ache i questo caso, possiamo usare le stesse argometazioi dell esercizio g per cocludere che la serie diverge sul bordo dell itervallo di covergeza ; j x : Abbiamo che r duque la serie coverge per x <. Per x la serie coverge per il criterio di Leibiz. Essedo abbiamo che ergo la serie o coverge per x, e quidi possiamo cocludere che la serie coverge per x [, ; x k : La serie coverge per x per quato visto ell esercizio f ; 2 l + x x + x : α + β : Aalizziamo le due serie distitamete : α : Per l esercizio f la serie coverge per x [, ; β : Essedo r sup abbiamo che la serie coverge per x <. Aalizziamo il comportameto sul bordo dell itervallo di covergeza : Per x la serie coverge per il criterio di Leibiz ; Per x la serie diverge baalmete. Duque β coverge per x, ]. Duque la serie α + β covergerá per gli x per cui covergoo etrambe le serie, ergo per x < ; m x 2 x + 3 x : α + β : Ache i questo caso aalizziamo le due serie separatamete :

8 8 α : Essedo 2 r abbiamo che la serie coverge per x < 2. Essedo per x ± la serie pari a e rispettivamete abbiamo che la serie o coverge per x ± ; β : Essedo 3 r abbiamo che la serie coverge per x < 3. Essedo per x ± la serie pari a e rispettivamete abbiamo che la serie o coverge per x ±. Duque la serie α + β covergerá per gli x per cui covergoo etrambe le serie, ergo per x < 3 ; x : Essedo r abbiamo che la serie coverge per x < 2. Sul bordo dell itervallo di covergeza abbiamo che la serie coverge perché per x ±2 la serie é pari a e rispettivamete e che coverge ; coverge per il criterio di Leibiz. + 2 Duque la serie coverge per x 2 ; o x, β > 0 : Effettuiamo la sostituzioe x y e studiamo la serie β Essedo r sup y β. β sup β abbiamo che la serie coverge per y <. Per vedere cosa accade sul bordo distiguiamo i piú casi :

9 9 Se β 0, abbiamo che Se y la serie coverge per il criterio di Leibiz ; Se y la serie coverge i quato β o, difatti 2 quidi β 2 β < 2 β 0 2 <. Duque, per β 0, la serie coverge per y ; Se β la serie o coverge per y ± per gli stessi motivi dell esercizio m ; Se β > la serie o coverge per y ± per le stesse argometazioi dell esercizio g. Duque y β < per y [, ] se β 0, y, se β Toriamo ora alla serie di parteza : essedo x y + abbiamo duque che. x β < per x [0, 2] se β 0, x 0, 2 se β. 4. Seguiremo la stessa scaletta presetata elle soluzioi dello scorso tutorato : a f x e ex : La fuzioe o ha puti di discotiuitá. Ioltre, essedo l espoeziale sempre positivo, avremo che f x > 0 x R. Poiché la fuzioe o ha puti di discotiuitá, o ha emmeo asitoti verticali. Poiché x eex y é u asitoto orizzotale per f x. Ioltre e ex x + eex + x + x duque la fuzioe va a + per x + seza avviciarsi u asitoto obliquo. Essedo f x f xe x > 0 x R la fuzioe é strettamete crescete e poiché f x f xex + f xe x f xe x e x + > 0 x R la fuzioe é sempre covessa. Nella Figura. possiamo vedere il grafico tracciabile mediate le iformazioi otteute ; b f 2 x x 3 2 x : La fuzioe o ha puti di discotiuitá, idi D R. Studiamoe il sego : f 2 x 0 x 0 2 x 0 x [, 2]. Quidi ell itervallo [, 2] la fuzioe é positiva, aulladosi agli estremi dell itervallo, e fuori da tale itervallo é egativa.

10 0 Figura : Grafico della fuzioe f x e ex. Essedo D R la fuzioe o ha asitoti verticali. Ioltre f f 2 x 2x x ± x + x e f 2 x + x x ergo la fuzioe o ha emmeo asitoti orizzotali/obliqui. Studiamo la derivata : f 2x 7 4x x 2 0 x 7 4 quidi la fuzioe ha u massimo per x 7 4. Vediamo ache il sego di f 2 x : f 2 x 4x 0 4x x x > 0 2 < x 5 2. Duque quado x 2 la fuzioe ha u flesso a tagete verticale vedere esercizio. c dello scorso tutorato, metre quado x 5 2 ha u puto di flesso. Tra tali valori di x la fuzioe é covessa, altrove é cocava. I Figura 2. é possibile vedere il grafico della fuzioe ; Figura 2: Grafico della fuzioe f 2 x x 3 2 x. c f 3 x 2 l lx l2 + x : La fuzioe ha u problema se x i quato il logaritmo o é defiito per tali valori di x. Ioltre deve essere lx altrimeti il primo dei due logaritmi esplode. Quidi la fuzioe

11 ha u puto di discotiuitá i x. Mettedo isieme queste iformazioi possiamo cocludere che D 2,, +. Il sego della fuzioe o é facilmete visibile, quidi cercheremo di trarre iformazioi al riguardo mediate lo studio dei puti successivi della scaletta. Passiamo a vedere gli asitoti della fuzioe : essa ha be 2 asitoti verticali, cioé x 2 ed x i quato f 3x f 3x x 2 + x ± metre o ha asitoti orizzotali/obliqui giacché f f 3 x 3x + e 0. x + x + x Passiamo allo studio della derivata : f 3x 2 + lx + 2 lx + 2 > 0 x + 2 lx lx x 2+e 2 x > quidi per x 2 + e 2 la fuzioe ha u massimo, metre dopo l asitoto x risulta essere strettamete crescete. Essedo f 3 x l2 x lx x l 2 < 0 x D x + 2 possiamo cocludere che la fuzioe é sempre cocava. Notiamo che f e 2 2l2 < 0 per affermare che la fuzioe é sempre egativa tra i due asitoti, quidi diveterá positiva da u certo x α, + i poi. Mettedo isieme tutte le iformazioi otteute possiamo tracciare il grafico i Figura 3. ; Figura 3: Grafico della fuzioe f 3 x 2 l lx l2 + x. l 3 x d f 4 x l3 x se x > 0 x x x 2 : Il puto x 0 é da escludere dal l3 x se x < 0 x 2 domiio i quato i esso il logaritmo esplode ed il deomiatore o é

12 2 defiito. Duque D R 0}. Notiamo che la fuzioe é dispari, quidi possiamo itarci a studiarla per x > 0 e per tracciare il grafico di f 4 x basterá ribaltare i risultati otteuti. Cosideriamo duque solamete f 4 + x l3 x. x 2 Partiamo dal sego : f + 4 x 0 lx 0 x > 0 x. Duque f 4 x 0 se x [, 0 [, +. x 0 é u asitoto verticale, difatti f 4x ± e y 0 é u asitoto orizzotale i quato f 4x 0. x ± No vi soo, duque, asitoti obliqui. Studiamo la derivata di f 4 x: D[f + 4 x] l2 x 3 2 lx x lx 0 x e 3 2. Pertato per x e 3 2 la fuzioe ha u massimo. Per simmetria i x e 3 2 ha u miimo. Derivado acora scopriamo che D[D[f + 4 x]] 3 lx2 l2 x 5 lx + 2 x 4 0 lx 0 2 l 2 x 5 lx x x e x e 2 x [, e] [e 2, + quidi, quado x, e, e 2 abbiamo che f 4 + x ha u puto di flesso i particolare i x vi é u flesso a tagete orizzotale i quato D[f 4 + ] 0, ma i tal puto la derivata o cambia sego. Complessivamete duque la fuzioe ha 6 puti di flesso quado x ±, ± e, ±e 2. Dall aalisi effettuata possiamo cocludere che f 4 x é covessa se x [ e 2, e] [, 0 [, e] [e 2, + e cocava altrove. Duque il grafico di f 4 x é quello visibile i Fiugura 4.. NB. I puti di flesso o soo be visibili i quati i valori i cui la fuzioe cambia cocavitá soo tutti molto vicii tra di loro. Figura 4: Grafico della fuzioe f 4 x l3 x x x.

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 18.9.17 TEMA 1 Esercizio 1 Si cosideri la fuzioe fx) := 3x log x. i) Determiare il domiio D e studiare le evetuali simmetrie ed il sego

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) =

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) = Tutoraggio AM1 17/12/2015 Per la parte teorica sui if e sup vedi le ote su iti iferiori e superiori di fuzioi. A) Date due successioi a },b }, mostrare le segueti proprietà (escludere i casi i cui si abbia

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza (Viee dato u ceo di soluzioe del Tema. I Temi, 3 e 4 possoo essere svolti i modo del tutto simile) TEMA cos(3x) + π cos(3x) + 3. (a) Determiare il domiio di f, evetuali simmetrie, periodicità e sego. (b)

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

Esercizi sulle Serie numeriche

Esercizi sulle Serie numeriche AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Serie umeriche Esercizio svolto. Discutere il comportameto delle segueti serie umeriche: a +! b [ ] log c log+ d log + e arcta f g h i l log log! 3! 4

Dettagli

(x log x) n2. (14) n + log n

(x log x) n2. (14) n + log n Facoltà di Scieze Matematiche Fisiche e Naturali- Aalisi Matematica A (c.l.t. i Fisica) Prova parziale del 8 Novembre 20 Svolgere gli esercizi segueti. Studiare il domiio ed il comportameto della serie

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9 Esercizi di Aalisi - Alberto Valli - AA 5/6 - Foglio. Calcolate tramite cambiameto di variabile ciascuo dei segueti itegrali : i / six + dx ii log log e 6x e x dx iii / π/ cos 5 xsix cos x dx. Soluzioe.

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Tutorato di AM210. A.A Docente: Prof. G.Mancini Tutore: Andrea Nardi Soluzioni 3-25 Ottobre Si sta chiedendo di vedere che

Tutorato di AM210. A.A Docente: Prof. G.Mancini Tutore: Andrea Nardi Soluzioni 3-25 Ottobre Si sta chiedendo di vedere che Uiversitá degli Studi Roma Tre - Corso di Laurea i Matematica Tutorato di AM20 AA 203-20 - Docete: Prof GMacii Tutore: Adrea Nardi Soluzioi 3-25 Ottobre 203 Si sta chiededo di vedere che J g f = J gf J

Dettagli

Foglio di esercizi N. 1. (Il logaritmo si intende in base naturale e dove non specificato. Il risultato comunque non dipende dalla scelta della base)

Foglio di esercizi N. 1. (Il logaritmo si intende in base naturale e dove non specificato. Il risultato comunque non dipende dalla scelta della base) Foglio di esercizi N. 1 (Il logaritmo si itede i base aturale e dove o specificato. Il risultato comuque o dipede dalla scelta della base) 1. Determiare il domiio della fuzioe 2. Determiare il domiio della

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Svolgimento degli esercizi del Capitolo 4

Svolgimento degli esercizi del Capitolo 4 4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) )

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) ) Esercizi di Aalisi - Alberto Valli - AA 05/06 - Foglio 8. Fatevi veire u idea per calcolare log48 alla secoda cifra decimale. Lo sviluppo di Taylor di log( + ) è covergete per solo per (,]. Duque bisoga

Dettagli

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1 SOLUZIONI COMPITO del /0/07 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio i Osserviamo che effettuado la divisioe si ottiee w = 9+4α iα +iα +iα = i α Poiché 9+4α 9+4α w = 9+4α + α 9+4α =, si

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 008/009 Docete: R Argiolas Cogome Matricola 6 Geaio 009 ore 9 Aula C Nome Corso voto Esercizio Assegata la uzioe a Si determii il suo

Dettagli

1 ottobre Foglio di esercizi N. 1

1 ottobre Foglio di esercizi N. 1 1 ottobre 2003 - Foglio di esercizi N. 1 (Il logaritmo si itede i base aturale e dove o specificato. Il risultato comuque o dipede dalla scelta della base) 1. Determiare il domiio della fuzioe 2. Determiare

Dettagli

Analisi Matematica I Soluzioni del tutorato 2

Analisi Matematica I Soluzioni del tutorato 2 Corso di laurea i Fisica - Ao Accademico 07/08 Aalisi Matematica I Soluzioi del tutorato A cura di Davide Macera Esercizio Abbiamo che x 3 + si(log(x)) + cosh(x) x3 + si(log(x)) + e x ( + x 6 ) / + log(e

Dettagli

SUCCESSIONI SERIE NUMERICHE pag. 1

SUCCESSIONI SERIE NUMERICHE pag. 1 SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle

Dettagli

SERIE NUMERICHE. Test di autovalutazione. 1+a 2

SERIE NUMERICHE. Test di autovalutazione. 1+a 2 SERIE NUMERICHE Test di autovalutazioe. E data la serie: dove a R. Allora: ( ) 3a +a (a) se a = la serie coverge a (b) se a = 3 la somma della serie vale 5 (c) se a = 5 la serie diverge a (d) se a 0 la

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n ANALISI VETTORIALE COMPITO IN CLASSE DEL 22//23 Esercizio Calcolare la 2esima derivata del logaritmo el puto. Risposta Si tratta di calcolare d 2 dx 2 log( + x) x= = a 2 2! dove a 2 è il termie di idice

Dettagli

Esercizi proposti. x 2 + log 3 x e x. lim x + e x sin (e x sin x) f) lim. h) lim x x 4 4 x + 3 x x + ( x 2 + 2x + 3. sin 2 x l) lim 1 log(cosx) x + x

Esercizi proposti. x 2 + log 3 x e x. lim x + e x sin (e x sin x) f) lim. h) lim x x 4 4 x + 3 x x + ( x 2 + 2x + 3. sin 2 x l) lim 1 log(cosx) x + x Esercizi proposti 1. Calcolare i segueti iti: a) ( ) 1 0 + si c) 10 e) 0 + log si 5 + g) h) 4 4 + + b) + log e + e + 5e 10 d) ( + ) 1 + + + e si (e si ) f) + ( + + + 1 i) ( cos ) 1 log (1 + ta 4 ) si l)

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

4 - Le serie Soluzioni. n + 3. n + 3. n + 2

4 - Le serie Soluzioni. n + 3. n + 3. n + 2 4 - Le serie Soluzioi Esercizio. Studiare la covergeza delle serie: + + 2 + cos!) 2 cosπ). Per la prima serie si ha 0 + + 2 + = 2. Dal mometo che la serie di termie geerico 2 è covergete serie armoica

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016 omada ) ) 4 cos si = 0 + e 4 C) 0 ) + omada La fuzioe f : (0, + ) R defiita da f() = si ( ) cos ) ha sia massimo che miimo ) è itata ma o ha é massimo é miimo C) o è itata e o ha asitoti ) ha u asitoto

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Capitolo Successioi e serie di fuzioi Ultimo aggiorameto: 23 aprile 28 Cosiderazioi geerali: o esiste u metodo geerale (cioè u modo meccaico che valga i ogi situazioe) per studiare la covergeza uiforme.

Dettagli

lim x 1 x + *** La forma indeterminata può essere rimossa determinando un fattore razionalizzante. In generale, se ( 1) k+1 N p (x) N k q (x) k 1

lim x 1 x + *** La forma indeterminata può essere rimossa determinando un fattore razionalizzante. In generale, se ( 1) k+1 N p (x) N k q (x) k 1 Esercizio Calcolare: ) Risulta: ) = La forma idetermiata può essere rimossa determiado u fattore razioalizzate. I geerale, se il fattore razioalizzate è: Per f ) = r ) = f ) = N p ) ± N q ), N k= ) k+

Dettagli

Esercizi di approfondimento di Analisi IA

Esercizi di approfondimento di Analisi IA Esercizi di approfodimeto di Aalisi IA 4 geaio 017 1 Estremo superiore/iferiore, classi cotigue, archimedeità 1.1. Mostrare che A = {x R : x > 0, x < } ha u estremo superiore ξ, ed è ξ =. 1.. Siao A, B

Dettagli

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A SOLUZIONI COMPITO del 0/0/06 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo

Dettagli

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE Igegeria Aerospaziale. Corso di Aalisi Matematica. Compito del 3 giugo 8 SOLUZIONE. Se a := 3 + 3 domada. idicare quali delle segueti affermazioi soo vere puti /- a a a è itata; b a ha ite; c a ha ua sottosuccessioe

Dettagli

DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI

DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI I questa scheda soo proposte alcue domade teoriche sul cocetto di ite e alcui esercizi sul calcolo di iti proposti a temi d esame egli scorsi ai.

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Tutorato Analisi 1 Ing. Edile - Architettura 16/17 Tutor: Irene Rocca

Tutorato Analisi 1 Ing. Edile - Architettura 16/17 Tutor: Irene Rocca Tutorato Aalisi Ig Edile - Architettura 6/7 Tutor: Iree Rocca 0//206 - Limiti di successioe e iti di fuzioe Calcolare i segueti iti di successioe: ( ) (a) (b) (c) (d) (e) (f) (g) 3 2 e (d) + 2 log 3 3

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

Soluzioni prova scritta del

Soluzioni prova scritta del Soluzioi prova scritta del 5.09.07 Esercizio : Calcolare il ite log Ñ 8? plog q? plog q e? plog q? p q log e? e plog q 4? plog q. Soluzioe. Cosideriamo il umeratore. Si ha??? log plog q plog q p plog q

Dettagli

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1 Sapieza Uiversità di Roma - Corso di Laurea i Igegeria Eergetica Aalisi Matematica II - A.A. 06-07 prof. Cigliola Foglio. Serie di fuzioi Esercizio. Calcolare, se possibile, la somma delle segueti serie

Dettagli

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

2.1 f : 6 π, 5 ] 2.2 f : [1, 4) R definita da f(x) = x f : [0, 2) [ 1, 1] definita da. 3.1 f 1 (x) = f( x). 3.2 f 2 (x) = f(3 x).

2.1 f : 6 π, 5 ] 2.2 f : [1, 4) R definita da f(x) = x f : [0, 2) [ 1, 1] definita da. 3.1 f 1 (x) = f( x). 3.2 f 2 (x) = f(3 x). c Adrea Dall Aglio - Esercizi di Aalisi Matematica - October, 6 Avverteze Questi esercizi soo i gra parte tratti da testi di esame di vari corsi Aalisi Matematica I per Matematica, Fisica, Iformatica,

Dettagli

Universitá di Roma Tor Vergata

Universitá di Roma Tor Vergata Uiversitá di Roma Tor Vergata Prof. A. Porretta ) Calcolare i segueti iti: ( ) + + 3 ( ) cos π + log 4 log( 3 + ) +! e + log ( ) si 3 + 3 5 e si + 3 4 + 3 log + ( ) 3 ( ) arctg + log ( ) + 5 + 3! si (log

Dettagli

SECONDO ESONERO DI AM1 10/01/ Soluzioni

SECONDO ESONERO DI AM1 10/01/ Soluzioni Esercizio. Calcolare i segueti iti: Razioalizzado si ottiee SECONDO ESONERO DI AM 0/0/2008 - Soluzioi 2 + 2, 2 + 2 = 2 + 2 + 2 + 2 = Per il secodo ite ci soo vari modi, e mostro tre. Ora ( ) ( + si = +

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

Esecitazione AM2 n.1-a.a /10/06. Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni: 1.

Esecitazione AM2 n.1-a.a /10/06. Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni: 1. Esecitazioe AM.-A.A. 006-007- 0/0/06 Successioi di fuzioi Studiare la covergeza putuale ed uiforme delle segueti successioi di fuzioi:. f (x) = x +, x A R.. f (x) = si(x) +, x R. 3. f (x) = xe x, x [0,

Dettagli

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a.

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a. Esercizi -. Determiare il domiio di deizioe delle segueti fuzioi a. () = log jj p (jj ) b. () = µ 5 c. d. e. f. g. h. i. j. () =log jj () = 4p j j! Ã () =arcsi () = log 3 + () =log(jj ) p jj () =log(jcos

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Capitolo Successioi e serie di fuzioi Covergeza putuale ed uiforme Ultimo aggiorameto: 8 febbraio 27 Differeza tra covergeza putuale ed uiforme: Si suppoga di avere ua successioe di fuzioi f : D R tali

Dettagli

Esercizi su serie numeriche - svolgimenti

Esercizi su serie numeriche - svolgimenti Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze

Dettagli

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha:

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha: www.matefilia.it Scuole italiae all estero (Caledario australe) 005 QUESITO Prova che fra tutti i cilidri iscritti i u coo circolare retto ha volume massimo quello la cui altezza è la terza parte di quella

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006 Igegeria Elettroica, Iformatica e delle Telecomuicazioi Prova scritta di ANALISI B - 23/06/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere ome e cogome ache su

Dettagli

Per approssimare la funzione, occorre determinare la derivata prima e seconda:

Per approssimare la funzione, occorre determinare la derivata prima e seconda: Esercizi sul Poliomio di Taylor Approssimare lafuzioe f() = l(+si) coilpoliomio di Taylor di ordie = e puto iiziale 0 = 0. Soluzioe Per approssimare la fuzioe, occorre determiare la derivata prima e secoda:

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 7

Esercizi di Calcolo delle Probabilità Foglio 7 Esercizi di Calcolo delle Probabilità Foglio 7 David Barbato Esercizio. Siao Y e X } N variabili aleatorie idipedeti e co distribuzioe espoeziale di parametro λ =. Siao ioltre: W := maxy, X } N T := miw

Dettagli

Esercitazione n 4. 1 Serie di Taylor. Esercizio 1: Verificare che la funzione. f(x) = 0 se x = 0

Esercitazione n 4. 1 Serie di Taylor. Esercizio 1: Verificare che la funzione. f(x) = 0 se x = 0 Esercitazioe 4 1 Serie di Taylor Esercizio 1: Verificare che la fuzioe f(x) { e 1/x se x 0 0 se x 0 pur essedo C o è sviluppabile i serie di Taylor i x 0. Sol.: Determiiamo le derivate di f: 0 f (0) lim

Dettagli

4 - Le serie. a k = a k. S = k=1

4 - Le serie. a k = a k. S = k=1 4 - Le serie E veiamo ad uo degli argometi più ostici (ma ache più iteressati) dell aalisi: le serie. Ricordiamo brevemete cos è ua serie e cosa vuol dire covergeza per ua serie. Defiizioe 1. Data ua successioe

Dettagli

Prova scritta del 9/1/2003

Prova scritta del 9/1/2003 Prova scritta del 9//00 Soluzioe degli esercizi N. Le quattro serie proposte soo a termii positivi. Per studiare la covergeza delle serie a termii positivi è possibile utilizzare uo dei segueti criteri

Dettagli

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica A: soluzioi Es. Esercizi di Aalisi Matematica A utili per la preparazioe all esame scritto. File co soluzioi. PSfrag replacemets a.5.5.5.5 PSfrag replacemets 5 5 a b 4 3.5

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X. Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +

Dettagli

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3 SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1 Igegeria per l Ambiete e il Territorio - III appello, 11 luglio 212 Riportiamo lo svolgimeto dei temi 3 e 4 e le sole soluzioi dei temi 1 e 2. I temi pari

Dettagli

Analisi Matematica II

Analisi Matematica II Corso di Laurea i Matematica Aalisi Matematica II Esercizi sulla covergeza uiforme e sulle serie di fuzioi/poteze Versioe del 28//206 Esercizi tratti dal Giusti Esercizio Giusti 3. e 3.3) Calcolare il

Dettagli

I Compendi OpenSource di Giacomo Marciani Analisi Matematica Teoria, Formulario e Suggerimenti Pratici dalle dispense del professor Roberto Tauraso 1

I Compendi OpenSource di Giacomo Marciani Analisi Matematica Teoria, Formulario e Suggerimenti Pratici dalle dispense del professor Roberto Tauraso 1 I Compedi OpeSource di Giacomo Marciai Aalisi Matematica Teoria, Formulario e Suggerimeti Pratici dalle dispese del professor Roberto Tauraso Foglio di esercizi N. 7 ottobre 5. Rappresetare l isieme {

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Ingegneria Elettronica Prima prova in itinere di Analisi Matematica I (LL-Z) del giorno C1. n(n + 1) 2(2n + 1)

Ingegneria Elettronica Prima prova in itinere di Analisi Matematica I (LL-Z) del giorno C1. n(n + 1) 2(2n + 1) Prima prova i itiere di Aalisi Matematica I (LL-Z) del gioro 01-12-2006. C1 1) Usare il Pricipio di Iduzioe per provare che k=1 k 2 4k 2 1 = ( + 1) 2(2 + 1) N 2) Usado la defiizioe di ite stabilire la

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott.

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott. e Uiversità di Trieste Facoltà d Igegeria. Esercizi sulle serie umeriche e sulle successioi e serie di fuzioi Dott. Fraco Obersel Esercizio Rispodere alle segueti questioi: a) Siao a 0 + a + a +... b 0

Dettagli

Siamo interessati a studiare la convergenza della serie e porremo come al solito:

Siamo interessati a studiare la convergenza della serie e porremo come al solito: SERIE DI POTENZE Soo particolari serie di fuzioi, i cui termii soo moomi, evetualmete traslati: f (x) co f (x) =a (x x 0 ), a R, x 0 R, ossia dove a (x x 0 ) = a 0 + a 1 (x x 0 )+a 2 (x x 0 ) 2 +... x

Dettagli

1. ESERCIZI sui NUMERI REALI. Determinare l estremo superiore e inferiore, il massimo e il minimo, se esistono, dei seguenti insiemi.

1. ESERCIZI sui NUMERI REALI. Determinare l estremo superiore e inferiore, il massimo e il minimo, se esistono, dei seguenti insiemi. . ESERCIZI sui NUMERI REALI Determiare l estremo superiore e iferiore, il massimo e il miimo, se esistoo, dei segueti isiemi.. A = { R }. B = { < }. C = { + N {0}} 4. D = { k k Z} Provare di ciascua delle

Dettagli

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015 Correzioe del primo compitio di Aalisi e 2 A.A. 20/205 Luca Ghidelli, Giovai Paolii, Leoardo Tolomeo 5 dicembre 20 Esercizio Testo. Calcolare, se esiste, + 3 + 5 + + (2 ). 2 + + 6 + + 2 Soluzioe. Al deomiatore

Dettagli