Tutorato di AM210. A.A Docente: Prof. G.Mancini Tutore: Andrea Nardi Soluzioni 3-25 Ottobre Si sta chiedendo di vedere che

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tutorato di AM210. A.A Docente: Prof. G.Mancini Tutore: Andrea Nardi Soluzioni 3-25 Ottobre Si sta chiedendo di vedere che"

Transcript

1 Uiversitá degli Studi Roma Tre - Corso di Laurea i Matematica Tutorato di AM20 AA Docete: Prof GMacii Tutore: Adrea Nardi Soluzioi 3-25 Ottobre 203 Si sta chiededo di vedere che J g f = J gf J f ove J é la matrice Jacobiaa Vediamo le due parti dell'uguagliaza separatamete Abbiamo che g fx, y = gxy, x 2, y 6 = e xy, cosx 3 y 7 := h x, y, h 2 x, y = hx, y, hx,y J h = h 2x,y h x,y y h 2x,y y ye = xy xe xy 3x 2 y 7 six 3 y 7 7y 6 x 3 six 3 y 7 Adiamo ora a calcolare J g : e J g = u 0 0 vz siuvz uz siuvz uv siuvz e J gf = xy 0 0 x 2 y 6 six 3 y 7 xy 7 six 3 y 7 x 3 y six 3 y 7 z Ie y x J f = 2x 0 0 6y 5 Per cui abbiamo che ye J gf J f = xy xe xy 3x 2 y 7 six 3 y 7 7x 3 y 6 six 3 y 7 che é eettivamete J h 2 Essedo ft, gt = 0 t R, allora, deedo γt C R, R 2 come γt := t, gt, si ha che γ t =, g t e duque, per la regola di derivazioe di fuzioi composte, si ha che: 0 = d dt 0 = d dt ft, gt = d dt fγt = ft, gt, γ t = = ft, gt + ft, gt g t t R y Duque preso t = 0 si ottiee che: da cui otteiamo l'asserto 0 = f0, 0 + f0, 0 g 0 y

2 3 Presa fx, y si ha che fx, y = f f x, y, y x, y := f x x, y, f y x, y Passiamo a coordiate polari: sia g, θ := f cosθ, siθ Abbiamo che: g = f x cosθ + f y siθ g θ = siθf x + cosθf y per la regola di derivazioe di fuzioi composte A partire da queste due relazioi, per trovare f x e f y, dobbiamo combiare i maiera opportua le derivate parziali di g, θ I particolare per trovare f x bisogerá sottrarre i maiera opportua le derivate parziali di g, θ i maiera che f y si aulli e viceversa per calcolare f y Duque: da cui g siθ Aalogamete da cui Quidi g cosθ + f cosθ, siθ = g θ cosθ = f xcotθ + taθ = f x f x = g cosθ g θ siθ g θ siθ = f ycotθ + taθ = f y f y = g siθ + g θ cosθ g, θ cosθ g θ, θ siθ siθ cosθ siθ cosθ Passiamo a coordiate polari: sia g, θ := f cosθ, siθ Abbiamo che: g = f x cosθ + f y siθ g θ = siθf x + cosθf y g = f xx cos 2 θ + f xy si2θ + f yy si 2 θ g θθ = cosθf x + 2 si 2 θf xx 2 si2θf xy siθf y + 2 cos 2 θf yy Dobbiamo ora, i maiera opportua, trovare ua combiazioe lieare che ci isoli le derivate secode di f cosθ, siθ Sommiamo le derivate secode di g, θ per togliere le derivate miste di f cosθ, siθ Abbiamo che g θθ 2 A questo puto otiamo che + g = f xx + f yy cosθf x siθf y g θθ, θ 2 + g, θ + g, θ = f cosθ, siθ, g, θ siθ + g θ, θ cosθ 2

3 Adiamo ad usare la formula otteuta per calcolare i Laplaciai delle fuzioi richieste: a Vediamo prima chi é P x, y: P x x, y = x2 + y 2 P y x, y = y x2 + y 2 perció 2 P 2 x, y = y 2 x 2 + y P y 2 x, y = x 2 x 2 + y P x, y = x2 + y 2 Essedo g, θ = si ha che g θθ, θ = 0 = g, θ g, θ = P cosθ, siθ = Essedo = x 2 + y 2 l'uguagliaza é provata b Abbiamo che: perció F 2x x, y = + x 2 + y 2 F 2y x, y = y + x 2 + y 2 2 F 2 x, y = 2 2x2 + 2y 2 + x 2 + y F y 2 x, y = 2 2y2 + 2x 2 + x 2 + y 2 2 F x, y = + x 2 + y 2 Essedo h, θ = log + 2 si ha che h θθ, θ = 0 h, θ = h, θ =

4 che é quello che volevamo F cosθ, siθ = I puti stazioari di ua fuzioe fx, y soo quei puti che aullao il suo gradiete Ua volta otteuti essi, per sapere se soo massimi o miimi bisoga trovare la matrice Hessiaa di fx, y data da H f x, y = 2 f x, y 2 x, y 2 f y 2 f y x, y 2 f y 2 x, y ove 2 f y = 2 f y per la teoria Ua volta trovata la matrice Hessiaa, calcoliamo quato vale il suo determiate i ogi puto stazioario Possoo accadere le segueti cose: Se deth f x 0, y 0 < 0 allora x 0, y 0 é u puto di sella; Se deth f x 0, y 0 > 0 allora x 0, y 0 é: u massimo se 2 f 2 x 0, y 0 < 0; u miimo se 2 f 2 x 0, y 0 > 0; Se deth f x 0, y 0 = 0 o possiamo dire ulla ed occorrerá fare u ulteriore aalisi per dedurre se x 0, y 0 é u puto di massimo, di miimo o di sella Detto questo partiamo co la risoluzioe degli esercizi: a f x, y = x 3 x, y y 3 x 3 = x = 0, 0 y 3 = y x = 0, ± y = 0, ± Quidi f x, y ha 9 puti stazioari: P =,, P 2 =, 0, P 3 =,, P = 0,, P 5 = 0, 0, P 6 = 0,, P 7 =,, P 8 =, 0, P 9 =, La matrice Hessiaa el ostro caso é 2x H f x, y = y 2 Notiamo che: H f P = H f P 3 = H f P 7 = H f P 9 = 0 H f P = H f P 6 = ; H f P 2 = H f P 8 = ; 0 0 H f P 5 = ; 0 8

5 Il determiate della matrice Hessiaa ei puti P, P 3, P 5, P 7 e P 9 é egativo, idi tali puti soo di sella; Il determiate della matrice Hessiaa egli altri puti é positivo, soo puti di massimo o di miimo Per i puti P e P 6 si ha che 2 f < 2 0, soo puti di massimo Ivece per i puti P 2 e P 8 si ha che 2 f > 0, soo puti di miimo 2 b f 2 x, y = 3x 2 y+y 3 y, x 3 +3xy 2 x = 0, 0 y3x 2 + y 2 = 0 xx 2 + 3y 2 = 0 Se y = 0 ella prima riga abbiamo che xx 2 = 0 ella secoda Duque otteiamo i puti P =, 0, P 2 = 0, 0, P 3 =, 0 3x 2 + y 2 = 0 Se y 0 il sistema diveta xx 2 + 3y 2 = 0 Se x = 0 ella secoda riga otteiamo che y 2 =, otteiamo i puti P = 0,, P 5 = 0, Se x 0 il sistema diveta 3x 2 + y 2 = 0 x 2 + 3y 2 = 0 y 2 = 3x 2 y 2 = x 2 = x x 2 = 0 y = ± 2 x 2 = ± 2 3x 2 + y 2 = 0 x 2 = Quidi abbiamo otteuto i puti: P 6 = 2, 2, P7 = 2, 2, P8 = 2, 2, P9 = 2, 2 Ora: 6xy 3x H f2 x, y = 2 + 3y 2 3x 2 + 3y 2 6xy Facedo i coti troviamo che il determiate dell'hessiaa ei puti P i, i =,, 5, é egativo, essi soo puti di sella Nei macati puti il determiate é ivece positivo Per i puti P 6 e P 9 si ha che 2 f 2 = 3 2 > 0, tali puti soo miimi Per i puti P 7 e P 8 si ha che 2 f 2 = 3 2 < 0, tali puti soo massimi c f 3 x, y = 3x 2 3y 2, 6xy = 0, 0 x 2 = y 2 xy = 0 x = y = 0 Pertato l'uico puto stazioario é P = 0, 0 abbiamo che 6x 6y H f3 x, y = 6y 6x I questo caso Duque il determiate dell'hessiaa é ullo se calcolato i P Notiamo che f 3 0, 0 = 0 Se cosideriamo puti vicii all'origie del tipo, si ha che f 3, = 2 < 3 0 Cosiderati i puti vicii all'origie del tipo, si ha che f 3, = 2 3 > 0 5

6 Essedoci puti prossimi all'origie i cui la fuzioe é positiva ed altri i cui la fuzioe é egativa, abbiamo che P é u puto di sella d f x, y = x 3 3x 2 siy, x 3 x 3 = 3 cosy = 0, 0 x2 siy x 3 cosy = 0 Se x = 0 il sistema é valido y, i puti P y = 0, y soo stazioari Se x 0 il sistema diveta x = 3 siy y = π 2 + kπ cosy = 0 x = 3 k Notiamo che se k = 2s abbiamo i puti P 2s = 3, π 2 + 2sπ e se k = 2s + abbiamo i puti P 2s+ = 3, π 2 + 2s + π L'Hessiaa di f x, y é 2x H f x, y = 2 6x siy 3x 2 cosy 3x 2 cosy x 3 siy Abbiamo che H f P 2s = H f P 2s+ = Essedo il suo determiate positivo e 2 f 2 > 0, abbiamo che soo tutti puti di miimo L'Hessiaa calcolata ei puti P y é ulla Notiamo che i puti del tipo 0, kπ soo miimi, perché f x, kπ = x > 0 = f0, kπ x 0 Tutti gli altri puti soo di sella: i puti del tipo 0, π 2 + kπ soo tali che, presi itori destri e siistri dell'asse y ad altezza π 2 + kπ si ottiee u cambio di sego, metre f 0, y = 0 y Ad esempio se y = π 2 si ha che f, π 2 = 3 < 0 metre f, π 2 = 3 + > 0 Co lo stesso ragioameto si puó estedere il discorso a tutti i puti che o siao del tipo 0, kπ e f 5 x, y = 2xy 2, 2yx 2 = 0, 0 xy 2 = 0 yx 2 = 0 Se x = 0 e cosegue che ache y = 0 e otteiamo il puto P = 0, 0 Se ivece x 0 si ha che y = ± ella prima riga e che x = ± ella secoda Pertato otteiamo i puti: P 2 =,, P 3 =,, P =,, P 5 =, Essedo 2y H f5 x, y = 2 xy xy 2x 2 abbiamo che il suo determiate ei puti ±, ± é egativo, idi soo puti di sella Nel puto P ivece il determiate é positivo, ed essedo 2 f 5 2 P = 2 < 0 si ha che é u puto di massimo 6

7 f f 6 x, y = x 3 2x 2 +8x, y 3 y = 0, 0 x = 0,, 2 xx x 2 = 0 y = 0, ± = abbiamo 9 puti: y = 0, ± P = 0, 0, P 2 = 0,, P 3 = 0,, P =, 0, P 5 =,, P 6 =,, P 7 = 2, 0, P 8 = 2,, P 9 = 2, Ora: 2x H f6 x, y = 2 2x y 2 H f6 P = H f6 P 7 = 8 0 = puti di sella H f6 P 2 = H f6 P 3 = = puti di miimo H f6 P 5 = H f6 P 6 = = puti di sella H f6 P 8 = H f6 P 9 = = puti di miimo H f6 P = = puto di massimo 0 g f 7 x, y = y 3 six, y 3 3y 2 y 3 six = 0 cosx = 0, 0 y 3 = 3 y2 cosx Come per f x, y otteiamo puti del tipo P x = x, 0, P 2s = 2sπ, 3 e P2s+ = 2s + π, 3 Svolgedo coti aaloghi otteiamo che i puti P 2s = 2sπ, 3 e P 2s+ = 2s + π, 3 soo di miimo Ache i tal caso H f7 x, 0 ha determiate ullo e co coti idetici π a sopra si ha che i puti del tipo 2 + kπ, 0 soo miimi e gli altri puti di sella h f 8 x, y = 2xy 2, 2x 2 y y = 0, 0 xy 2 = 0 xy 2 = mai = Quidi la fuzioe o ha puti critici x x i f 9 x, y =, y +2y = 0, 0 = 0 x 2 +y 2 x 2 +y 2 y + 2 = 0 y 2 cioé soltato se x = y = 0 0, 0 o é u puto dove o esiste f 9, dove la fuzioe o é parzialmete derivabile Noostate ció la fuzioe ha u miimo assoluto i 0, 0 j f 0 x, y = x 3 x + e x e x y 3, e x y 3 = 0, 0 y = e x x = 0, ± x 3 = x y = e x, otteiamo i puti: 7

8 P = 0,, P 2 =, e e P 3 =, e Essedo y = e x el calcolo dell'hessiaa omettiamo i termii che cotegoo e x y essedo ulli i tutti e tre i putiovviamete el calcolo delle derivate soo ecessari!!! Duque H f0 x, y = 2x e il determiate dell'hessiao é ullo i tutti e 3 i puti Comiciamo co l'aalisi del puto P : abbiamo che f 0 P = 0 Notiamo che i puti del tipo 0, ± la fuzioe assume valori positivi, metre cosiderato il puto, si ha che f 0, = 2 + e = 2 2 < 0 2 Quidi P é u puto di sella Procediamo co l'aalisi di P 2 : abbiamo che f 0 P 2 = f 0, e ± = + > ; f 0 +, e e > ; f 0, e e + > ; f 0 +, e + = ee e > ; f 0, e e > ; f 0 +, e e > ; f 0, e e > I tutte i puti prossimi a P 2 si ha che la fuzioe assume valori piú gradi di, P 2 é u puto di miimo Cocludiamo co l'aalisi di P 3 : abbiamo che f 0 P 3 = Possiamo be credere che per P 3 valga u discorso aalogo a quello che é valso per P 2 Chiamata gx = x 2x 2 si ha che f 0 x, y = gx + e x y Notiamo che g + = > e g = > Essedo e x y 0 x, y abbiamo che f 0 x, y i u itoro di P 3 sará sempre piú grade di Quidi ache P 3 é u puto di miimo NB Nelle scorse soluzioi alla e della prima stima relativa all'esercizio 7c del tutorato u x 3 diveta x 3 Pare chiaro che é solo u errore di battitura If you have a problem Better Call Fra 8

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A SOLUZIONI COMPITO del 0/0/06 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo

Dettagli

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) =

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) = Tutoraggio AM1 17/12/2015 Per la parte teorica sui if e sup vedi le ote su iti iferiori e superiori di fuzioi. A) Date due successioi a },b }, mostrare le segueti proprietà (escludere i casi i cui si abbia

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 8.8.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9 Esercizi di Aalisi - Alberto Valli - AA 5/6 - Foglio. Calcolate tramite cambiameto di variabile ciascuo dei segueti itegrali : i / six + dx ii log log e 6x e x dx iii / π/ cos 5 xsix cos x dx. Soluzioe.

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

Per approssimare la funzione, occorre determinare la derivata prima e seconda:

Per approssimare la funzione, occorre determinare la derivata prima e seconda: Esercizi sul Poliomio di Taylor Approssimare lafuzioe f() = l(+si) coilpoliomio di Taylor di ordie = e puto iiziale 0 = 0. Soluzioe Per approssimare la fuzioe, occorre determiare la derivata prima e secoda:

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120 Uiversitá degli Studi Roma Tre - Corso di Laurea i Matematica Tutorato di AM20 A.A. 203-204 - Docete: Prof. G.Macii Tutore: Matteo Bruo ed Emauele Padulao Soluzioi 5-2 Marzo 204. Al solito specificheremo

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1 Sapieza Uiversità di Roma - Corso di Laurea i Igegeria Eergetica Aalisi Matematica II - A.A. 06-07 prof. Cigliola Foglio. Serie di fuzioi Esercizio. Calcolare, se possibile, la somma delle segueti serie

Dettagli

Esercitazione due: soluzioni

Esercitazione due: soluzioni Esercitazioe due: soluzioi. Sia il ricavo r i pk i ti, p, k, t i > applicado la defiizioe di media di Chisii il tempo medio t che lascia ivariato il ricavo totale é quel valore tale che pk i ti pk i t

Dettagli

Analisi Matematica II

Analisi Matematica II Uiversità degli Studi di Udie Ao Accademico 016/017 Dipartimeto di Scieze Matematiche, Iformatiche e Fisiche Corso di Laurea i Matematica Aalisi Matematica II Prova parziale del 6 febbraio 017 NB: scrivere

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Analisi Matematica I Soluzioni del tutorato 2

Analisi Matematica I Soluzioni del tutorato 2 Corso di laurea i Fisica - Ao Accademico 07/08 Aalisi Matematica I Soluzioi del tutorato A cura di Davide Macera Esercizio Abbiamo che x 3 + si(log(x)) + cosh(x) x3 + si(log(x)) + e x ( + x 6 ) / + log(e

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

Prove d'esame a.a

Prove d'esame a.a Prove d'esame aa Adrea Corli dicembre Soo qui raccolti i testi delle prove d'esame assegati ell'aa, relativi al Corso di Aalisi Matematica I (semestrale, crediti), Laurea i Igegeria Civile e Ambietale,

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Tutorato Analisi 1 Ing. Edile - Architettura 16/17 Tutor: Irene Rocca

Tutorato Analisi 1 Ing. Edile - Architettura 16/17 Tutor: Irene Rocca Tutorato Aalisi Ig Edile - Architettura 6/7 Tutor: Iree Rocca 0//206 - Limiti di successioe e iti di fuzioe Calcolare i segueti iti di successioe: ( ) (a) (b) (c) (d) (e) (f) (g) 3 2 e (d) + 2 log 3 3

Dettagli

Esecitazione AM2 n.1-a.a /10/06. Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni: 1.

Esecitazione AM2 n.1-a.a /10/06. Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni: 1. Esecitazioe AM.-A.A. 006-007- 0/0/06 Successioi di fuzioi Studiare la covergeza putuale ed uiforme delle segueti successioi di fuzioi:. f (x) = x +, x A R.. f (x) = si(x) +, x R. 3. f (x) = xe x, x [0,

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 6 Settembre Risoluzione a cura di N. Fusco & G. Floridia

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 6 Settembre Risoluzione a cura di N. Fusco & G. Floridia PROVA SCRIA DI ANALISI MAMAICA Corso di laurea i Matematica 6 Settembre 6 Risoluzioe a cura di N. Fusco & G. Floridia ) Discutere la covergeza putuale e uiforme della serie π arctg )). ) Svolgimeto ):

Dettagli

Analisi Matematica 1 Matematica

Analisi Matematica 1 Matematica Aalisi Matematica 1 Matematica Secodo Compitio Luedì 30 Geaio 01 VERSIONE A Esercizio 1 (8 puti) Sia α R u parametro e si cosideri la serie di poteze complessa z. i) Calcolare il raggio di covergeza R

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Seconda Prova Intermedia 28 Maggio 2019 Elementi di Probabilità e Statistica, Laurea Triennale in Matematica, M. Romito, M.

Seconda Prova Intermedia 28 Maggio 2019 Elementi di Probabilità e Statistica, Laurea Triennale in Matematica, M. Romito, M. Secoda rova Itermedia 8 Maggio 09 Elemeti di robabilità e Statistica, Laurea Trieale i Matematica, 08-9 M. omito, M. ossi roblema 0. Sia X, Y ) ua v.a. a valori i co desità dove N è u parametro fissato.

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso ISTITUZIONI DI ANALISI SUPEIOE 2-2 Esercizi di metà corso Silvia Ghiassi 22 ovembre 2 Esercizio Diamo u esempio di fuzioe u: tale che u 6, u 6, u 6. se x

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 giugno SOLUZIONI - (a n ) 1 + n ha limite + 1 = cos(πn) 1 cos(πn) )

Matematica - Ingegneria Gestionale - Prova scritta del 25 giugno SOLUZIONI - (a n ) 1 + n ha limite + 1 = cos(πn) 1 cos(πn) ) Matematica - Igegeria Gestioale - Prova scritta del 5 giugo 007 - SOLUZIONI -. Si idichio le frasi corrette PUNTI: /-/0 per ogi domamda). se a := + cosπ) a ) è limitata iferiormete cosπ) se a := a ) è

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

1 Esercizi tutorato 27/5

1 Esercizi tutorato 27/5 Esercizi tutorato 7/5 Esercizi tutorato 7/5 Esercizio.. Si cosideri u compoete elettroico costituito da compoeti collegate i serie. Ogi compoete ha u tempo di vita T i Expλ), i =,..., idipedete. Sia X

Dettagli

Esercizi sull estremo superiore ed inferiore

Esercizi sull estremo superiore ed inferiore AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sull estremo superiore ed iferiore Esercizio svolto. Dire se i segueti isiemi soo limitati iferiormete o superiormete ed, i caso affermativo, trovare l estremo

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 18.9.17 TEMA 1 Esercizio 1 Si cosideri la fuzioe fx) := 3x log x. i) Determiare il domiio D e studiare le evetuali simmetrie ed il sego

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

17. Funzioni implicite

17. Funzioni implicite 17. Fuzioi implicite 17.a Fuzioi defiite implicitamete Sia data l equazioe lieare implicita i R 2 ax + by = 0. Se b 0, si puo ricavare la variabile y i fuzioe della x come y = ( a/b)x. Equivaletemete possiamo

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

FUNZIONI A PIU' VARIABILI. R, si definisce distanza tra A e B il numero. = +. La definizione si può estendere nello A B A B

FUNZIONI A PIU' VARIABILI. R, si definisce distanza tra A e B il numero. = +. La definizione si può estendere nello A B A B Dati due puti A( x, y ) e (, ) A A FUNZIONI A PIU' VARIABILI B x y del piao reale o egativo d( A B) ( x x ) ( y y ) B, A B A B B La stesura di queste dispese vata il cotributo dei miei carissimi amici

Dettagli

Esercitazione di AM310

Esercitazione di AM310 Uiversità degli Studi Roma Tre - Corso di Laurea i Matematica Esercitazioe di AM3 A.A. 8-9 - Esercitatore: Luca Battaglia Soluzioi dell esercitazioe 6 del Dicembre 8 Argometo: Misure prodotto, operatori

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza (Viee dato u ceo di soluzioe del Tema. I Temi, 3 e 4 possoo essere svolti i modo del tutto simile) TEMA cos(3x) + π cos(3x) + 3. (a) Determiare il domiio di f, evetuali simmetrie, periodicità e sego. (b)

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

EQUAZIONI ALLE DERIVATE PARZIALI ING. AEROSPAZIALE prof. Daniele Andreucci Prova tecnica del 12/1/2009

EQUAZIONI ALLE DERIVATE PARZIALI ING. AEROSPAZIALE prof. Daniele Andreucci Prova tecnica del 12/1/2009 I.1 EQUAZIONI ALLE DERIVATE PARZIALI ING. AEROSPAZIALE prof. Daiele Adreucci Prova tecica del 1/1/009 1. Trovare co il metodo di Fourier la soluzioe di u t Du xx = Cu, 0 < x < π,t > 0, u0,t = 0, t > 0,

Dettagli

Correzione Esercitazione 5. Esercizio 1. Per determinare l intervallo di confidenza scegliamo come quantità. x 2) I 2 (0,θ) (x), da cui 1 F X (x θ) =

Correzione Esercitazione 5. Esercizio 1. Per determinare l intervallo di confidenza scegliamo come quantità. x 2) I 2 (0,θ) (x), da cui 1 F X (x θ) = Correzioe Esercitazioe 5 Esercizio 1. Per determiare l itervallo di cofideza scegliamo come quatità pivotale 1 F X θ) che ha distribuzioe U0, 1). Nel ostro caso, F X θ) = θ 1 θ ) I 0,θ) ), da cui 1 F X

Dettagli

Esercizi settimana 10

Esercizi settimana 10 y = = 0 0,5 0,5,5 x Esercizi settimaa 0 Esercizi applicati Esercizio. Siao X ) i.i.d. tali per cui X U0, ), si dimostri che X 0. Soluzioe. Per calcolare la covergeza i legge dobbiamo usare la fuzioe di

Dettagli

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3 Fuzioi cotiue Defiizioe di limite e di fuzioe cotiua Esercizio. Dire quali delle segueti fuzioi soo cotiue. f : 0,, 3, f 0,, 3 Plot Piecewise,,,,, 0, 3.0 0.8 0.6 0.4 0. f è cotiua. Ifatti, fissiamo y [0,].

Dettagli

(x log x) n2. (14) n + log n

(x log x) n2. (14) n + log n Facoltà di Scieze Matematiche Fisiche e Naturali- Aalisi Matematica A (c.l.t. i Fisica) Prova parziale del 8 Novembre 20 Svolgere gli esercizi segueti. Studiare il domiio ed il comportameto della serie

Dettagli

SOLUZIONI COMPITO del 5/06/2014 ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A

SOLUZIONI COMPITO del 5/06/2014 ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A SOLUZIONI COMPITO del 5/6/ ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è a termii di sego arbitrario (i fuzioe del parametro reale

Dettagli

Soluzioni quarta esercitazione

Soluzioni quarta esercitazione Soluzioi quarta esercitazioe. (a) Dobbiamo calcolare il valor atteso dei due stimatori T e T 2 per verificare la o distorsioe. Partiamo col calcolare il valor atteso per la variabile X. E(X) = 3 x 3 dx

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016 omada ) ) 4 cos si = 0 + e 4 C) 0 ) + omada La fuzioe f : (0, + ) R defiita da f() = si ( ) cos ) ha sia massimo che miimo ) è itata ma o ha é massimo é miimo C) o è itata e o ha asitoti ) ha u asitoto

Dettagli

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha:

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha: www.matefilia.it Scuole italiae all estero (Caledario australe) 005 QUESITO Prova che fra tutti i cilidri iscritti i u coo circolare retto ha volume massimo quello la cui altezza è la terza parte di quella

Dettagli

ANALISI 2 ESERCITAZIONE DEL 15/11/2010 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI

ANALISI 2 ESERCITAZIONE DEL 15/11/2010 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI ANALISI ESERCITAZIONE DEL 15/11/1 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI Nel corso dell esercitazioe della settimaa scorsa abbiamo utilizzato diverse volte il calcolo di lim cos, si L i modo uiorme, cioè,

Dettagli

DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI

DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI I questa scheda soo proposte alcue domade teoriche sul cocetto di ite e alcui esercizi sul calcolo di iti proposti a temi d esame egli scorsi ai.

Dettagli

Esercizi: lezione I.

Esercizi: lezione I. Aalisi matematica I, ICI Esercizi: lezioe I. Federica Dragoi Massimi e miimi di isiemi umerici. Esercizio 1. Calcolare l estremo superiore e l estremo iferiore dei segueti isiemi e dire i quali casi esistoo

Dettagli

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo.

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo. AM110 - ESERCITAZIONI V - VI 16-18 OTTOBRE 2012 Esercizio svolto 1. Dimostrare che ogi isieme fiito ha u massimo ed u miimo. Sia A = {a 1,..., a } R. Dimostriamo che A ha u massimo si procede i maiera

Dettagli

Analisi II. Foglio di esercizi n.3 1/11/2018. se max 1 i n x i > 1. + se x = 0. se x = 0. Stabilire se f è misurabile, argomentandone la risposta.

Analisi II. Foglio di esercizi n.3 1/11/2018. se max 1 i n x i > 1. + se x = 0. se x = 0. Stabilire se f è misurabile, argomentandone la risposta. Aalisi II Foglio di esercizi 3 //2 sercizi sull itegrazioe di più variabili Provare che le fuzioi f R R, defiita come f(x) = e g R 2 R, defiita come g(x, y) = soo etrambe misurabili se max i x i e x se

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

11 IL CALCOLO DEI LIMITI

11 IL CALCOLO DEI LIMITI IL CALCOLO DEI LIMITI Il calcolo di u ite spesso si ricodurrà a trattare separatamete iti più semplici, su cui poi si farao operazioi algebriche. Dato che uo o più di questi iti possoo essere ±, bisoga

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Soluzione CPS 22/6/04. I parte. (1). Chiamiamo C l evento l individuo scelto ha il colesterolo alto, V, O e NL rispettivamente

Soluzione CPS 22/6/04. I parte. (1). Chiamiamo C l evento l individuo scelto ha il colesterolo alto, V, O e NL rispettivamente Soluzioe CPS 22/6/04 I parte 1. Chiamiamo C l eveto l idividuo scelto ha il colesterolo alto, V, O e NL rispettivamete è vegetariao, è oivoro e o magia latticii. I dati soo: P C = 0.4, P O C = 0.75, P

Dettagli

Correzione Esercitazione 6

Correzione Esercitazione 6 Correzioe Esercitazioe 6 Esercizio. Poiché vogliamo usare il test del rapporto di verosimigliaza per u ipotesi ulla semplice, dobbiamo calcolare Λ(x) L(θ 0 x) supl(θ x) quidi al umeratore ci basta sostituire

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

x 1 + x 2 + x 3 = 0 (a) 2x 2 + x 3 = 1 x 1 + x 2 = 2 Poichè la matrice incompleta 1 1 1

x 1 + x 2 + x 3 = 0 (a) 2x 2 + x 3 = 1 x 1 + x 2 = 2 Poichè la matrice incompleta 1 1 1 Uiversità degli Studi Roma Tre Corso di Laurea i Ottica ed Optometria Tutorato di Istituzioi di Matematica - AA206/207 Docete: Profssa E Scoppola Tutore: Giaclaudio Pietrazzii Esercizio Risolvere i segueti

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Igegeria delle Telecomuicazioi Prova scritta del -2-27 Esercizio. puti) Sia = {, y) R 2 :, y 3 + }. a) 3 puti) Utilizzare il teorema di Stokes o Poicaré-Carta) per calcolare d dy

Dettagli

EQUAZIONI E DISEQUAZIONI IRRAZIONALI. Prof.ssa Maddalena Dominijanni

EQUAZIONI E DISEQUAZIONI IRRAZIONALI. Prof.ssa Maddalena Dominijanni EQUAZIONI E DISEQUAZIONI IRRAZIONALI EQUAZIONI IRRAZIONALI U equazioe i cui l icogita compare almeo ua volta sotto il sego di radice si dice equazioe irrazioale Soo irrazioali le segueti equazioi: 3 x

Dettagli

Siamo interessati a studiare la convergenza della serie e porremo come al solito:

Siamo interessati a studiare la convergenza della serie e porremo come al solito: SERIE DI POTENZE Soo particolari serie di fuzioi, i cui termii soo moomi, evetualmete traslati: f (x) co f (x) =a (x x 0 ), a R, x 0 R, ossia dove a (x x 0 ) = a 0 + a 1 (x x 0 )+a 2 (x x 0 ) 2 +... x

Dettagli

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) )

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) ) Esercizi di Aalisi - Alberto Valli - AA 05/06 - Foglio 8. Fatevi veire u idea per calcolare log48 alla secoda cifra decimale. Lo sviluppo di Taylor di log( + ) è covergete per solo per (,]. Duque bisoga

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

SECONDO ESONERO DI AM1 10/01/ Soluzioni

SECONDO ESONERO DI AM1 10/01/ Soluzioni Esercizio. Calcolare i segueti iti: Razioalizzado si ottiee SECONDO ESONERO DI AM 0/0/2008 - Soluzioi 2 + 2, 2 + 2 = 2 + 2 + 2 + 2 = Per il secodo ite ci soo vari modi, e mostro tre. Ora ( ) ( + si = +

Dettagli

Metodi numerici PROCESSI ITERATIVI PER VALORI SCALARI. Ivan Zivko. Metodi numerici. Docente: Ivan Zivko 1

Metodi numerici PROCESSI ITERATIVI PER VALORI SCALARI. Ivan Zivko. Metodi numerici. Docente: Ivan Zivko 1 Iva Zivko PROCESSI ITERATIVI PER VALORI SCALARI Docete: Iva Zivko Processi umerici: puti ulli Immagiiamo ua fuzioe y f ( ), a., b Spesso è utile saper determiare tutti i suoi puti ulli, cioè tutti i puti

Dettagli

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi Esercizi sui umeri complessi per il dodicesimo foglio di esercizi 6 dicembre 2010 1 Numeri complessi radici ed equazioi Ricordiamo iazitutto che dato u umero complesso z = x + iy, il suo coiugato, idicato

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Uiversità degli Studi di Udie Ao Accademico 00/0 Facoltà di Scieze Matematiche Fisiche e Naturali Corso di Laurea i Iformatica Esercizi di Aalisi Matematica Dott. Paolo Baiti Esercizi del 5 Ottobre 00.

Dettagli

Capitolo 5. Successioni numeriche

Capitolo 5. Successioni numeriche Capitolo 5 Successioi umeriche Ua successioe è ua fuzioe avete domiio N o u suo sottoisieme del tipo A = { N > 0, 0 N} e come codomiio R e che associa a ogi umero aturale u umero reale a. La legge di ua

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

1. ESERCIZI sui NUMERI REALI. Determinare l estremo superiore e inferiore, il massimo e il minimo, se esistono, dei seguenti insiemi.

1. ESERCIZI sui NUMERI REALI. Determinare l estremo superiore e inferiore, il massimo e il minimo, se esistono, dei seguenti insiemi. . ESERCIZI sui NUMERI REALI Determiare l estremo superiore e iferiore, il massimo e il miimo, se esistoo, dei segueti isiemi.. A = { R }. B = { < }. C = { + N {0}} 4. D = { k k Z} Provare di ciascua delle

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Esercizi sulle Serie numeriche

Esercizi sulle Serie numeriche AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Serie umeriche Esercizio svolto. Discutere il comportameto delle segueti serie umeriche: a +! b [ ] log c log+ d log + e arcta f g h i l log log! 3! 4

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Esercitazioni di Geometria II

Esercitazioni di Geometria II Esercitazioi di Geometria II Letizia Perigotti - perigotti@sciece.uit.it 20 aprile 2012 Esercizio 1. Dimostrare che la famiglia degli itervalli chiusi e limitati B 1 = {[a, b] R : a < b} o è base di alcua

Dettagli