Specifica, progetto e verifica della correttezza di algoritmi iterativi. Ragionamenti su di un algoritmo. Il metodo delle asserzioni (Floyd)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Specifica, progetto e verifica della correttezza di algoritmi iterativi. Ragionamenti su di un algoritmo. Il metodo delle asserzioni (Floyd)"

Transcript

1 Specfca, progetto e verfca della correttezza d algortm teratv Il metodo delle asserzon Ragonament su d un algortmo Ragonare sulla specfca d un algortmo data con pre e post-condzon serve a: (a posteror) verfcare la correttezza dell algortmo (a pror) costrure un algortmo, a partre da un dea crca la soluzone, n modo che sa corretto Il metodo delle asserzon (Floyd) Dvsone (n, m) Pre. n 0, m > 0 Post. rtorna q, r t.c. n = m q + r, 0 r < m r n q 0 { n = m q + r, 0 r } whle r m do { n = m (q+1) + r m, 0 r m} r r m q q + 1 { n = m q + r, 0 r < m} return q, r Asserzon: descrvono relazon tra valor delle varabl, che devono valere quando l controllo raggunge un certo punto del codce

2 Le trple d Hoare Un comando ha la forma C ::= x E C ; C f B then C f B then C else C whle B do C Se ϕ e ψ sono asserzon allora ϕ Cψ se valor delle varabl soddsfano ϕ prma d C e C termna, allora soddsfano ψ dopo C trpla Le trple d Hoare Le trple d Hoare sono espresson della logca formale, ma vo potete usare asserzon nformal, purché non ambgue!!! Asserzon per gl assegnament { x + > 0 } x x + { x > 0 } {ϕ (E)} (E può contenere x) x E {ϕ (x)} { ϕ( E) } x E { ϕ( x) } Assoma

3 Asserzon per le sequenze {y z} y y z {y 0} x y {x 0} {ϕ} C 1 {χ} (oppure χ se χ χ ) C 2 {ψ} { ϕ} C1{ χ} { χ} C2{ ψ } { ϕ} C ; C { ψ } 1 2 premesse concluson ϕ ϕ { ϕ } C{ ψ } ψ ψ { ϕ} C{ ψ} Asserzon per la selezone f x 0 then z x {z = x } else {x < 0} z x {z = x } {z = x } {ϕ} f B then {ϕ B} C 1 {ψ} else {ϕ B} C 2 {ψ} {ψ} { ϕ B } C1{ ψ } { ϕ B} C 2{ ψ } { ϕ} f B then C else C { ψ } 1 2 Asserzon per le terazon whle y > 0 do {??????? } z z + x 2 y y 1 Cosa mettere n un punto attraversato tante volte?

4 Asserzon per le terazon {n = m q + r, 0 r} whle r m do {n = m (q+1) + r m, 0 r m} r r m q q + 1 {n = m q + r, 0 r < m} Qualcosa che, pur cambando valor delle varabl, rest sempre vero! Asserzon per le terazon {n = m q + r 0 r} nvarante whle r m do {n = m (q+1) + r m 0 r r m} r r m q q + 1 {n = m q + r 0 r r< m } {ϕ} whle B do {ϕ B} C {ϕ} {ϕ B} { ϕ B} C{ ϕ} { ϕ} whle B do C { ϕ B} Gl nvarant d cclo nvarante: asserzone vera prma d ogn esecuzone del corpo dell terazone l nvarante deve essere vero anche prma d entrare nel cclo, dopo ogn esecuzone del corpo, all uscta dal cclo L nvarante è unco?

5 Gl nvarant d cclo Un cclo ha molt (nfnt) nvarant, per lo pù trval: {0 = 0} è nvarante d ogn cclo Qual è allora quello che m serve? Gl nvarant d cclo Un nvarante è nteressante se fa capre cosa avrà fatto l cclo dopo la termnazone Qund occorre che mplch la post-condzone del cclo che desdero dmostrare A posteror, trovare un nvarante senza conoscere l dea su cu s basa l algortmo è una strada n salta! (R)-costrure un algortmo La va maestra per trovare un nvarante: partre dall dea su cu s basa l algortmo e rcostrurlo Molto spesso l nvarante non è che una formulazone precsa d quest dea

6 5 1. Defnsc l problema Pre-condzon: l vettore è ordnato Input: l valore cercato è Post-condzon: rtorna l ndce del valore cercato (se presente) Indvdua l nvarante, pensando alla generca terazone: Inv. : La rcerca è lmtata ad un sottovettore t.c. se l valore cercato è presente, allora s trova n quel sottovettore Valore cercato: Cerca un modo per avvcnare la soluzone mantenendo vero l nvarante Passo: dvd l sottovettore n due part (quas) ugual; Se s trova nel punto ntermedo: stop Valore cercato: Punto ntermedo

7 5. Cerca un modo per avvcnare la soluzone mantenendo vero l nvarante Passo: dvd l sottovettore n due part (quas) ugual; Se l valore cercato è < d quello nel punto ntermedo, può essere solo nella parte snstra Valore cercato: Punto ntermedo Cerca un modo per avvcnare la soluzone mantenendo vero l nvarante Passo: dvd l sottovettore n due part (quas) ugual; Se l valore cercato è > d quello nel punto ntermedo, può essere solo nella parte destra Valore cercato: Punto ntermedo Defnsc n quale momento la computazone s deve fermare Quando s sa trovato l valore nel punto ntermedo, Valore cercato: 25 Punto ntermedo

8 4. Defnsc n quale momento la computazone s deve fermare. oppure quando l sottovettore cu lmtamo la rcerca sa rdotto al vettore vuoto Dovrebbe essere qu n Valore cercato: 2 mezzo: ma questo ntervallo è vuoto Defnsc le condzon nzal della rcerca Il sottovettore cu la rcerca è lmtata concde con l ntero vettore Valore cercato: Stablsc dettagl della codfca Il sottovettore cu la rcerca è lmtata è compreso tra le poszon e j ncluse j Il punto medo ha ndce: ( + j) dv 2 Se > j allora l sottovettore è vuoto

9 7. Proced alla pseudocodfca, usando le asserzon, e prncpalmente l nvarante, come comment RcercaBnara (V, n) Pre. V è un vettore ordnato, n l valore cercato Post. Rtorna m n [1..lunghezza(V)] se V[m] = n, 0 altrment 1, j lunghezza(v) trovato false whle j and not trovato do {Inv. Se n n V allora n n V[..j], se trovato = true allora V[m] = n } m (+j) dv 2 sottovettore consderato f n = V[m] then trovato true else f n < V[m] then {consdero V[.. m 1]} j m 1 else {n > V[m]} {consdero V[m + 1..j]} m + 1 f trovato then return m else return 0 Costrure un algortmo n modo che sa corretto La va maestra: formulare precsamente l dea su cu s basera l algortmo Molto spesso la formulazone precsa d quest dea è propro l nvarante Come s nventa un cclo? 1 nzalzzazone 2 whle condzone do corpo dell terazone L ordne gusto è l opposto! 1. Per scrvere l nzalzzazone s deve sapere cosa deve fare l cclo 2. Per scrvere la condzone (guarda) s deve conoscere cosa farà l corpo

10 La generca terazone Per ndvduare correttamente l nvarante non c s deve porre agl estrem (nzo o fne del cclo) ma n un deale punto medo: la generca terazone Ordnamento per selezone Idea ndce del prmo elemento della parte da ordnare parte ordnata tutt gl el. d questa parte sono maggor d quell nella parte ordnata Ordnamento per selezone Invarante V [1.. 1] ordnato se x n V [.. n] ed y n V [1.. 1] allora x y

11 Ordnamento per selezone Passo V [k] sa l mnmo valore n V [.. n] k Scambando V[] con V[k] l nvarante s mantene con + 1: Ordnamento per selezone Passo V [k] sa l mnmo valore n V [.. n] k Scambando V[] con V[k] l nvarante s mantene con + 1: V [1.. ] ordnato se x n V [ n] ed y n V [1.. ] allora x y Ordnamento per selezone Passo +1 Inoltre la lunghezza della porzone ordnata è aumentata, mentre la lunghezza d quella da ordnare è dmnuta

12 Ordnamento per selezone Guarda (test d controllo) L terazone deve prosegure fntanto che < n. Quando = n, V[] è l massmo n V[1..n] Ordnamento per selezone Inzalzzazone = 1 La parte gà ordnata è vuota: V[1.. 0] Ordnamento per selezone Pseudocodfca SelectSort (V) Pre. V[1..n] vettore d valor su un nseme lnearmente ordnato (es. gl nter) Post. permuta sul posto gl element d V n ordne non decrescente 1 whle < n do {nv. V[1.. 1] ordnato, gl el. n V[..n] maggorzzano quell n V[1.. 1]} k ndce del mnmo n V[..n] scamba V[] con V[k] + 1

13 Ordnamento per nserzone Idea ndce del prmo elemento della parte da ordnare parte ordnata Nessuna assunzone! Ordnamento per nserzone Invarante V [1.. 1] ordnato Ordnamento per nserzone Passo Cercherò l posto n cu V[] dovrebbe stare Come fare per mantenere l nvarante?

14 Ordnamento per nserzone Passo k V[1] V[], V[2] V[], V[k 1] V[] V[k] > V[] qund k n 2.. è l massmo ndce t.c. V[k 1] V[] & k < V[k] > V[] Ordnamento per nserzone Passo temp V[] Salvamo l valore d V[] k Ordnamento per nserzone Passo k Faccamo slttare V[k.. 1] su V[k + 1..]

15 Ordnamento per nserzone Passo k V[k] temp Ponamo n V[k] l valore salvato d V[] Ordnamento per nserzone Guarda Prosegu fntanto che n Ordnamento per nserzone Inzalzzazone = 2 Il vettore V[1..1] è trvalmente ordnato è l ndce del prmo elemento della parte da ordnare: dunque = 2

16 Ordnamento per nserzone Pseudocodfca InsertSort (V) Pre. V[1..n] vettore d valor su un nseme lnearmente ordnato (es. gl nter) Post. permuta sul posto gl element d V n ordne non decrescente 2 whle n do {nv.: V[1.. 1] ordnato, sa U= V[1.. 1]} temp V[], k I whle k 2 and V[k-1] > temp do {nv.: V[1..k-1] V[k+1..] = U, V[k+1..] sono > d temp} V[k] V[k 1], k k 1 V[k] temp {V[1..] ordnato} + 1 Accumulator ed nvarant Quello teratvo è un metodo d calcolo ncrementale: c s avvcna al rsultato un passo dopo l altro Un accumulatore è una varable l cu valore rappresenta l approssmazone corrente L nvarante deve allora spegare n che senso l accumulatore approssma l rsultato Moltplcazone per somme successve Moltplcazone (x, n) Pre. n ntero postvo Post. rtorna x n z 0, y n whle y > 0 do z z + x y y 1 return z A scuola: moltplcand e moltplcator 2 X =

17 Moltplcazone per somme successve x + L+ x + x + x + L+ x z x y x + L+ x + x + x + L+ x z + x x (y 1 ) Moltplcazone per somme successve accumulatore Moltplcazone (x, n) Pre. n ntero postvo Post. rtorna x n z 0, y n whle y > 0 do {nv. x n = z + x y} z z + x z + x y = (z + x) + x (y 1) y y 1 return z contatore Moltplcazone alla russa 1 56 dv = Rsultato = somma val. della seconda colonna quando quell sulla prma sono dspar raddoppo

18 Moltplcazone alla russa 2k a = 2k + 1 se a par se a dspar a = 2k a b = 2k b = k ( b + b) a = 2k + 1 a b = (2k + 1) b = k ( b + b) + b z + ( a dv 2) ( b + b) z + a b = ( z + b) + ( a dv 2) ( b + b) a par a dspar Moltplcazone alla russa MoltRussa (m, n) Pre. n, m nter postv Post. rtorna n m a n, b m, z 0 whle a > 0 do {nv. n m = z + a b} f a dspar then z z + b a a dv 2 b b + b return z contatore accumulatore Rassumendo Il metodo delle asserzon Invarant d cclo Come verfcare la correttezza d un algortmo teratvo Come costrure un algortmo teratvo n modo che sa corretto Accumulator (e contator) n rapporto agl nvarant

19 Domande Domanda: l algortmo d ordnamento per selezone e mglore dell algortmo d ordnamento per nserzone? Perche? Domanda: l algortmo MoltRussa e mglore dell algortmo Moltplca? Perche? Rsposte: TRA QUALCHE LEZIONE

Specifica, progetto e verifica della correttezza di algoritmi iterativi

Specifica, progetto e verifica della correttezza di algoritmi iterativi Specifica, progetto e verifica della correttezza di algoritmi iterativi Il metodo delle asserzioni Ragionamenti su di un algoritmo Ragionare sulla specifica di un algoritmo data con pre e post-condizioni

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Scrivere programmi corretti

Scrivere programmi corretti Scrvere programm corrett L esempo della rcerca bnara o dcotomca J. Bentley, Programmng Pearls, Addson Welsey. 1 Schema processo produzone funzone teratva Algortmo n pseudo-codce Indvduazone nvarante Codfca

Dettagli

Problemi e algoritmi

Problemi e algoritmi Problemi e algoritmi Specifica, progetto e verifica della correttezza di algoritmi iterativi Il che cosa ed il come Problema: 1. dati x, y, z, così e così istanza Il che cosa ed il come Problema: 1. dati

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Algoritmi basati sulla tecnica Divide et Impera

Algoritmi basati sulla tecnica Divide et Impera Qucksort Algortm basat sulla tecnca Dvde et Impera In questo corso: Rcerca bnara Mergesort (ordnamento) Qucksort (ordnamento) Moltplcazone d nter Moltplcazone d matrc (non n programma) NOTA: nonostante

Dettagli

Il problema dell'ordinamento. Algoritmi e Laboratorio a.a Lezioni. prof. Elio Giovannetti

Il problema dell'ordinamento. Algoritmi e Laboratorio a.a Lezioni. prof. Elio Giovannetti Unverstà d Torno Facoltà d Scenze MFN Corso d Stud n Informatca Currculum SR (Sstem e Ret) Algortm e Laboratoro a.a. 25-6 Lezon prof. Elo Govannett Parte 7 Algortm d ordnamento elementar (quadratc). versone

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi Unverstà degl Stud d Roma Tor Vergata Facoltà d Ingegnera Corso d Laurea n Ingegnera Medca Algortm Rev.2.2 of 2016-04-20 Elaborazone dat Problem che s presentano spesso sono 1. rcorsvo (es. successone

Dettagli

Algoritmi di Ordinamento. Fondamenti di Informatica Prof. Ing. Salvatore Cavalieri

Algoritmi di Ordinamento. Fondamenti di Informatica Prof. Ing. Salvatore Cavalieri Algortm d Ordnamento Fondament d Informatca Prof. Ing. Salvatore Cavaler 1 Introduzone Ordnare una sequenza d nformazon sgnfca effettuare una permutazone n modo da rspettare una relazone d ordne tra gl

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

Allora v = v2 =

Allora v = v2 = Problema: a partre da due sequenze ordnate v1 e v2 d element voglamo costrurne una ordnata v con tutt gl element d v1 e v2 Algortmo rcorsvo: Se le due sequenze contengono element confronta prm due element

Dettagli

Laboratorio di Matematica e Informatica 1

Laboratorio di Matematica e Informatica 1 Laboratoro d Matematca e Informatca 1 Matteo Mondn Antono E. Porreca matteo.mondn@gmal.com porreca@dsco.unmb.t Dpartmento d Informatca, Sstemstca e Comuncazone Unverstà degl Stud d Mlano - Bcocca 10 Gennao

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

egg bi b l ibile ibil nom di variabili bili e bili funzi on D EVONO DEVONO avere DEVONO Facile comprensione nomi autoesplicativi pippo pluto

egg bi b l ibile ibil nom di variabili bili e bili funzi on D EVONO DEVONO avere DEVONO Facile comprensione nomi autoesplicativi pippo pluto Programmare è un arte S tratta d mettere nseme tant pccol element nel mglore de mod possble per ottenere un rsultato che soddsf le specfche Dato un problema, c sono vrtualmente nfnt programm n grado d

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 28/0/2008 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 20 soggett. Soggetto Età Resdenza

Dettagli

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta Metod ad un passo esplct con passo adattvo Metod Runge - Kutta Scrvere un programma che approssm l problema d Cauchy: u (t) = f(t, u), t 0 t T, u R d, u(t 0 ) = v per un sstema d equazon dfferenzal ordnare

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Elementi di calcolo numerico

Elementi di calcolo numerico Element d calcolo numerco Molto sesso nel calcolo scentco sorge la necesstà d calcolare l valore numerco d ntegral che non ossono essere calcolat analtcamente oure occorre calcolare l valore del mnmo d

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 7/0/006 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 0 soggett. Soggetto Sesso Età Reddto

Dettagli

Lezione 3 Codifica della informazione (2)

Lezione 3 Codifica della informazione (2) Lezone Codfca della nformazone () Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Un rpasso Un quadro della stuazone: dove samo, dove stamo andando e perché Una rvstazone:

Dettagli

Errata corrige del libro Fondamenti di Informatica in Java

Errata corrige del libro Fondamenti di Informatica in Java corrge del lbro Fondament d Informatca n Java Emlo D Gacomo, Walter Ddmo Captolo 1 R1 R2 R3 Rn PC IR PSW Untà d controllo Pag. 23, Fgura 1.2 Bus nterno ALU MAR MDR al bus dat al bus ndrzz al bus d controllo

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 1 =103 2 2 =97 3 3 =90 4 4 =119

Dettagli

Code a priorità (Heap) Definizione Heapify (mantenimento coda a priorità) Costruire un Heap Insert, Maximum e Extract-Max

Code a priorità (Heap) Definizione Heapify (mantenimento coda a priorità) Costruire un Heap Insert, Maximum e Extract-Max Code a prortà (Heap) Defnzone Heapfy (mantenmento coda a prortà) Costrure un Heap Insert, Maxmum e Extract-Max Coda a prortà (Heap) Una coda a prortà può essere rappresentato da un albero bnaro completo.

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Prima prova di gruppo

Prima prova di gruppo Prma prova d gruppo Es. Una metodologa d anals produce fals postv nel 3% de cas e fals negatv nell % de cas. Calcolate quale è l esto pù probable (postvo o negatvo se due anals consecutve esegute sullo

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Misure dirette utilizzate per il calcolo della misura indiretta X:

Misure dirette utilizzate per il calcolo della misura indiretta X: Propagazone degl error Msure drette utlzzate per l calcolo della msura ndretta X: ( ) a a a = ± Δ b = ( b ± Δ b) Il calcolo dell errore assoluto X ( espresso nella stessa untà d msura della grandezza X

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

θ 2 i r 2 r La multifunzione f (z) = z z i

θ 2 i r 2 r La multifunzione f (z) = z z i 1-19 1.4 1.4.1. La multfunone f () = + 1 3 è l prodotto d 2 multfunon Z Z e W 3 W. È qund ragonevole supporre che Z =, coè = 1 e W =, coè = sano punt d dramaone d f. Con rfermento alla fgura a lato, e

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 27 Aprile 2004

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 27 Aprile 2004 B Fondament d Informatca Ingegnera Meccanca, Elettrca, Gestonale Prova scrtta del 7 Aprle 4 NOME MATRICOLA Eserczo 1 Dato l seguente programma n lnguaggo C: #nclude #nclude vod man (vod)

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 22 settembre Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 22 settembre Attenzione: Cognome.. Nome.... Archtettura degl Elaborator Classe 3 Prof.ssa Anselmo Appello del 22 settembre 2017 Attenzone: Inserre propr dat nell apposto spazo sottostante e n testa a questa pagna. Preparare un

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale STATISTICA PSICOMETRICA a.a. 004/005 Cors d laurea Scenze e tecnche neuropscologche Modulo 3 Statstca Inferenzale Probabltà Dstrbuzon d probabltà Dstrbuzon camponare Stma ntervallare Verfca delle potes

Dettagli

Algoritmi euristici: III Ricerca Locale

Algoritmi euristici: III Ricerca Locale Algortm eurstc: III Rcerca Locale Danele Vgo D.E.I.S. - Unverstà d Bologna dvgo@des.unbo.t rev. 1.0 - dcembre 2003 Algortm d Rcerca Locale partono da una soluzone (ammssble) cercano teratvamente d mglorarla

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Analisi Class info sul corso Lezione 1 22 settembre 2014

Analisi Class info sul corso Lezione 1 22 settembre 2014 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 22 settembre 2014 professor Danele Rtell danele.rtell@unbo.t 1/27? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 17 Luglio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 17 Luglio Attenzione: Cognome... Nome.. Archtettura degl Elaborator Classe 3 Prof.ssa Anselmo Appello del 17 Luglo 2014 Attenzone: Inserre propr dat nell apposto spazo sottostante e n testa a questa pagna. Preparare un documento

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Unverstà degl Stud d Napol Federco II CdL Ing. lettrca Corso d Laboratoro d Crcut lettrc Introduzone a MATLAB Lezone n.5 Dr. Carlo Petrarca Dpartmento d Ingegnera lettrca e Tecnologe dell Informazone Unverstà

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 03-4, lez.9) Matematca Computazonale, Ottmzzazone,

Dettagli

OPERAZIONI E INSIEMI NUMERICI

OPERAZIONI E INSIEMI NUMERICI OPERAZIONI E INSIEMI NUMERICI Per rcordare H Un'operazone bnara n un nseme non vuoto A eá una legge ce ad ogn coppa d element a,b A assoca un elemento c A. Gl element a e b s camano operand o termn dell'operazone,

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro NUMERI GRANDI DI FIBONACCI come trovare velocemente loro esatt valor numerc Crstano Teodoro crstanoteodoro@vrglo.t Sommaro: n questo artcolo vene proposto, n alternatva al metodo classco per l calcolo

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. La

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

La logica nell informatica

La logica nell informatica La logca nell nformatca La logca goca un ruolo mportante nell nformatca Logc plays a smlar role n computer scence to that played by calculus n the physcal scences and tradtonal engneerng dscplnes (M. Vard,

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Analisi Matenatica Lezione 1 23 settembre 2013

Analisi Matenatica Lezione 1 23 settembre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 1 23 settembre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/24? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del docente www.danelertell.name

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Support Vector Machines. Macchine a vettori di supporto

Support Vector Machines. Macchine a vettori di supporto Support Vector Machnes Macchne a vettor d supporto Separator Lnear Percettrone La classfcazone bnara può essere vsta come un problema d separazone d class nello spazo delle feature m b b b > 0 b 0 b

Dettagli

Lezione n La concentrazione

Lezione n La concentrazione 1 La concentrazone Corso d Laurea: Economa Azendale Nello studo de fenomen economc e socal descrtt attraverso caratter quanttatv d tpo trasferble può essere nteressante analzzare la cosddetta concentrazone

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Sommario. Calcolatori Elettronici Prof. Gian Luca Marcialis

Sommario. Calcolatori Elettronici Prof. Gian Luca Marcialis Calcolator Elettronc Prof. Gan Luca Marcals Corso d Laurea d Ingegnera Elettronca Captolo 6 Untà d Centrale d Elaborazone Artmetca de Calcolator Sommaro L untà artmetco-logca (ALU) Rappresentazone degl

Dettagli

Lezione 2 le misure di sintesi: le medie

Lezione 2 le misure di sintesi: le medie Lezone le msure d sntes: le mede Cattedra d Bostatstca Dpartmento d Scenze spermental e clnche, Unverstà degl Stud G. d Annunzo d Chet-Pescara Prof. Enzo Ballone Lezone a- Statstca descrttva per varabl

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 16: 9 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? 2/25? Caso partcolare, ma molto mportante α

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplfcator operazonal Parte 3 www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-5-) Confgurazone nvertente generalzzata Se nella confgurazone nvertente s sosttuscono le resstenze R e R con due mpedenze

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli