( )/4 ( )/3

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "0.06 100 + (100 100)/4 (100 + 2 100)/3"

Transcript

1 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza ytm di un obbligazion con l sgunti carattristich: - valor faccial F = ; - scadnza tra anni; - rimborso alla pari C = ; - cdol annu con tasso cdolar r = %; - corso P =.5. Si ffttui il calcolo prima snza la tassazion poi con la tassazion. Si dimostri poi ch s foss P =, avrmmo ytm = %. P + Ponndo F =, r =., C =, P =.5 n =, la formula pr una prima approssimazion dl tasso di rndimnto a scadnza fornisc ytm = rf + (C P )/n (C + P )/ =. + (.5)/ ( +.5)/ =.58. Considrando la tassazion indicando con γ l aliquota dl.5%, cioè γ =.5, la cdola ntta è rf ( γ) = 5.5. La tassazion non colpisc il capital in quanto il przzo di acquisto P =.5 supra il valor di rimborso C = quindi il rimborso ntto è Cn =. Prtanto ytm = rf ( γ) + (Cn P )/n (Cn + P )/ = (.5)/ ( +.5)/ =.75. È richisto infin di dimostrar ch s foss P =, avrmmo ytm = %. Anzitutto prciso ch non è accttabil qui l uso dlla formula approssimata usata in prcdnza, ch praltro fornirbb ytm = rf + (C P )/n (C + P )/ =. + ( )/ ( + )/ = =., in quanto si tratta pur smpr di una formula ch dà un valor approssimato quindi inadatta a dimostrar ch la soluzion è un valor particolar. Sostanzialmnt si tratta di provar ch l quazion ha pr soluzion i =.. Propongo du strad pr dimostrarlo. = a i + ( + i) () La prima è smplicmnt vrificar ch l quazion è soddisfatta da i =.: banalmnt si trova a. + ( +.) =. La sconda è risolvr algbricamnt l quazion, usando l sprssion di a i. L quazion () quival a cioè = ( + i) i ( ( + i) ) = + ( + i) ( + i) = ( + i) i ( + i) i i = quindi i =. Ricordo ch possiamo ssr crti dll unicità dlla soluzion poiché la quantità ch sta a dstra è dcrscnt al crscr dl tasso. Tma dl 5// (Prova conclusiva)

2 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ ESERCIZIO. Un B.T.P. dcnnal con scadnza il //7 paga cdol il / il / al tasso cdolar r =.5%. Vrrà rimborsato alla pari. Il 5// prsntava un tasso di rndimnto a scadnza ytm = %. Si dtrmini il przzo tl qul P tq il corso scco P s in qulla data. (Non si considri la tassazion si calcolino i giorni con l anno commrcial). Ipotizzando di avr acquistato il titolo in data 5//, di tnrlo fino alla scadnza di avr dato disposizion di rinvstir l cdol su un conto corrnt, dov il tasso di intrss a crdito è stato dl % fino al //5 d è ora dl.5%, si dtrmini il tasso ffttivo di rndimnto dll invstimnto nl B.T.P. La rapprsntazion qui sotto mostra l carattristich dl B.T.P. t Non c è tassazion quindi la cdola smstral è r F =.5 =.75. Il calcolo dl numro di cdol: in tutto sono n =. Il tmpo t tra la cdola prcdnt l acquisto: si ha t = = 75 giorni. Srv anch convrtir il tasso di rndimnto a scadnza nll quivalnt tasso smstral. Si ha ytm / = ( + ytm) / =. / = Il przzo tl qul dl titolo è dato da ( P tq =.75a ytm/ + ( + ytm / ) ) ( + ytm) 75/ =.7. Il rato è dato da quindi il corso scco P s è rato = =.7 P s = P tq rato =.7.79 =.97. Passiamo al calcolo dl rndimnto ffttivo a sguito dl rinvstimnto dll cdol. Dobbiamo uguagliar il valor dll importo invstito pr l acquisto dl titolo con il valor cumulato dgli importi incassati ( rinvstiti) dall cdol dal rimborso final. Riportiamo gli importi all istant final, cioè alla data dl //7, data di scadnza dl titolo. Indicando con i ff il tasso di rndimnto ffttivo su bas annua, il montant dll invstimnto è dato da P tq ( + i ff ) +5/. Faccio notar ch il tasso usato è su bas annua quindi anch i tmpi dvono ssr misurati in anni. Dal 5// al //7 sono anni 5 giorni (ma si potva anch far.5 anni mno 75 giorni). Ora i montanti dgli importi a crdito. Dato ch il tasso a crdito cambia il //5, dividiamo il calcolo in du parti, ossrvando ch ci sono 9 cdol da valutar al tasso i = % (montant M ) l rstanti cdol al tasso i =.5% (montant M ). Srvono i tassi smstrali quivalnti: i / =.9959 i / =.778. Quindi M =.75 a 9 i ( + i / / )9+9/8 ( + i ) +9/ =.9785 Tma dl 5// (Prova conclusiva)

3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ L quazion è prtanto Si trova M =.75 a i ( + i / / ) ( + i / ) = P tq ( + i ff ) +5/ = M + M +. i ff =.885. ESERCIZIO. Si considrino i du sgunti progtti finanziari: A. 5 B. dov gli importi sono sprssi in migliaia di uro. Si calcoli il REA di ntrambi, prima nll ipotsi di un tasso strno nullo poi di un tasso strno dl %, indicando anch qual progtto è prfribil, ni du casi. I du progtti sono ntrambi convninti risptto all invstimnto di dnaro al %? Si dica poi s il TIR di du progtti è maggior o minor dl %. Si dtrmini infin quali sono i tassi pr cui i du progtti sono quivalnti in bas al critrio dl REA. Mantniamo pr comodità la scrittura dgli importi in migliaia di uro. Nll ipotsi di un tasso strno nullo (i = ) non c è alcun fftto finanziario dl tmpo, quindi gli importi non subiscono variazioni. Prtanto I du progtti sono quindi quivalnti. Nll ipotsi di un tasso strno i = % si ha 5 REA A () = = REA B () = =. REA A (.) = =. REA B (.) = =.. In qusto caso i du progtti non sono quivalnti risulta convnint il progtto A. I du progtti sono comunqu smpr convninti risptto all invstimnto di dnaro, dato ch il REA è positivo in ntrambi i casi. Possiamo anch affrmar ch il TIR di ntrambi i progtti è maggior dl %, dato ch i REA sono positivi. Attnzion ch possiamo arrivar a qusta conclusion prché la funzion REA(i) è dcrscnt, dato ch c è un solo importo inizial ngativo poi soltanto importi positivi. Dobbiamo infin dtrminar i tassi pr cui i du progtti sono quivalnti in bas al critrio dl REA. Basta uguagliar l du funzioni REA: i + ( + i) + ( + i) + = 5 + ( + i) ( + i) + ( + i) + ( + i). Qui possiamo smplificar l sprssioni utilizzando il fattor di sconto v = +i. L quazion divnta cioè 5 + v + v + v + v = 5 + v + v + v v v v + v = v v v + v =. Ora, ricordando l tcnich lmntari dl raccoglimnto, si può scrivr v( v) v ( v) = v( v)( v ) =. L soluzioni algbrich dll quazion sono: v =, v =, v =. Non tutt hanno un significato finanziario, dato ch v = +i. La prima non è nmmno algbricamnt accttabil, la sconda porta a i = la trza a i = (cioè un tasso ngativo dl %). Chiaramnt solo i = può avr un snso concrto corrispond alla situazion dlla prima domanda. Tma dl 5// (Prova conclusiva)

4 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ ESAME di MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Voglio rstituir un prstito di in anni, i primi du anni mdiant rat bimstrali costanti posticipat di pr i rstanti du anni mdiant rat smstrali costanti posticipat. Nll ipotsi ch il tasso di intrss annuo applicato sia i = 5%, si dtrmini l ammontar dlla rata smstral. Nll ipotsi invc di potr pagar una rata mnsil posticipata di 5, con quant rat, allo stsso tasso, posso rstituir il prstito? R R R R L quazion ch sprim l quivalnza dgli importi è = a / + R a / ( + i), da cui si ricava R = ( + ( ) i) a a /. / Dato ch si ottin R = 5.. i / =.5 / =.88 i / =.5 / =.957, Con la rata mnsil di 5 pr potr rstituir il dbito occorr ch La disquazion quival a a n i/ ( + i /) n Da qusta, applicando i logaritmi, si ricava 5 a n i/. i / ( + i / ) n i /. n ln( + i / ) ln( i / ) n ln( i /) ln( + i / ) Quindi srvono rat mnsili (l ultima di importo infrior a 5 ). =.75. ESERCIZIO. Un prstito di 5 vin rstituito in 8 rat annu posticipat con un ammortamnto amricano a du tassi. Pr quanto riguarda gli intrssi, pagati anch ssi in via posticipata, il tasso di rmunrazion concordato è dl 7%. Pr la rstituzion dl capital, la banca prsso la qual vngono dpositat l quot di accumulazion offr un tasso dl %. Si dtrmini l ammontar dlla quota intrssi I dlla quota di accumulazion Q. Si calcoli il fondo di accumulazion dopo 5 anni mzzo. Si scriva l quazion ch, risolta, consnt di dtrminar il tasso di costo ffttivo dll ammortamnto si dica s qusto tasso è maggior o minor dl 7%. Indicando con S = 5 l ammontar dl prstito con i =.7 il tasso di rmunrazion, la quota intrssi I è costant d è ugual agli intrssi annui sull intro dbito. Quindi si ha I = =.7 5 = 5. Tma dl 5//

5 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ 5 5 Q Q Q Q Q Q Q Q t Indicando con Q la quota di accumulazion, anch ssa costant, con i =. il tasso di accumulazion, Q si dtrmina in modo ch il montant dll 8 quot sia ugual al capital mutuato. Quindi ssa dv soddisfar l quazion Qa 8 i ( + i ) 8 = S, da cui Q = S a 8 i ( + i ) 8 = 5 a 8. ( +.) 8 = 5.8. Prtanto la rata di ammortamnto (anch ssa costant) è R = Q + I = = 9.8. Il fondo di accumulazion F t dopo 5 anni mzzo è il valor dll quot di accumulazion già vrsat dopo 5 anni mzzo, cioè all poca t = 5.5. Dato ch all poca t sono stat vrsat 5 quot di accumulazion, si ha F t = Qa 5 i ( + i ) t = 5.8a 5. ( +.) 5.5 = L quazion ch, risolta, consnt di dtrminar il tasso di costo ffttivo i ff dll ammortamnto è S = Ra 8 iff cioè 5 = 9.8a 8 iff. Pr stabilir s il tasso ffttivo è maggior o minor dl 7% basta calcolar qual è il valor attual dll 8 rat dll ammortamnto al tasso dl 7% confrontarlo con 5. Si trova R a 8.7 = 9.8a 8.7 = Dato ch il tasso ffttivo sconta più dl tasso dl 7%, significa ch il tasso ffttivo è maggior dl 7%. ESERCIZIO. Un B.T.P. dcnnal con scadnza il //7 paga cdol il / il / al tasso cdolar r =.5%. Vrrà rimborsato alla pari. Il 5// prsntava un tasso di rndimnto a scadnza ytm = %. Si dtrmini il przzo tl qul P tq il corso scco P s in qulla data. (Non si considri la tassazion si calcolino i giorni con l anno commrcial). Ipotizzando di avr acquistato il titolo in data 5//, di tnrlo fino alla scadnza di avr dato disposizion di rinvstir l cdol su un conto corrnt, dov il tasso di intrss a crdito è stato dl % fino al //5 d è ora dl.5%, si dtrmini il tasso ffttivo di rndimnto dll invstimnto nl B.T.P. La rapprsntazion qui sotto mostra l carattristich dl B.T.P. t Non c è tassazion quindi la cdola smstral è r F =.5 =.75. Il calcolo dl numro di cdol: in tutto sono n =. Il tmpo t tra la cdola prcdnt l acquisto: si ha t = = 75 giorni. Tma dl 5//

6 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ Srv anch convrtir il tasso di rndimnto a scadnza nll quivalnt tasso smstral. Si ha ytm / = ( + ytm) / =. / = Il przzo tl qul dl titolo è dato da ( P tq =.75a ytm/ + ( + ytm / ) ) ( + ytm) 75/ =.7. Il rato è dato da quindi il corso scco P s è rato = =.7 P s = P tq rato =.7.79 =.97. Passiamo al calcolo dl rndimnto ffttivo a sguito dl rinvstimnto dll cdol. Dobbiamo uguagliar il valor dll importo invstito pr l acquisto dl titolo con il valor cumulato dgli importi incassati ( rinvstiti) dall cdol dal rimborso final. Riportiamo gli importi all istant final, cioè alla data dl //7, data di scadnza dl titolo. Indicando con i ff il tasso di rndimnto ffttivo su bas annua, il montant dll invstimnto è dato da P tq ( + i ff ) +5/. Faccio notar ch il tasso usato è su bas annua quindi anch i tmpi dvono ssr misurati in anni. Dal 5// al //7 sono anni 5 giorni (ma si potva anch far.5 anni mno 75 giorni). Ora i montanti dgli importi a crdito. Dato ch il tasso a crdito cambia il //5, dividiamo il calcolo in du parti, ossrvando ch ci sono 9 cdol da valutar al tasso i = % (montant M ) l rstanti cdol al tasso i =.5% (montant M ). Srvono i tassi smstrali quivalnti: i / =.9959 i / =.778. Quindi L quazion è prtanto Si trova M =.75 a 9 i ( + i / / )9+9/8 ( + i ) +9/ =.9785 M =.75 a i ( + i / / ) ( + i / ) = P tq ( + i ff ) +5/ = M + M +. i ff =.885. ESERCIZIO. Si considrino l sgunti du obbligazioni dcnnali: A. acquisto a, cdol annu di, rimborso a ; B. acquisto a 9, cdol annu di, rimborso a. Si faccia una valutazion dll du obbligazioni in bas al critrio dl REA, fissando un tasso di rinvstimnto (annuo) i = %. Nll ipotsi ch il przzo dll obbligazion B diminuisca, fino a ch valor dl suo przzo la valutazion porta allo stsso risultato prcdnt? Valutar infin l du obbligazioni in bas al critrio dl TIR usando un tasso (annuo) di prova i =.% (snza calcolar il TIR dll du oprazioni). A. I REA dll du obbligazioni sono + 9 REA A (.) = + a. + ( +.) = 9. B. + Tma dl 5//

7 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ 7 REA B (.) = 9 + a. + ( +.) = S il przzo dll obbligazion B diminuisc, aumnta nlla stssa misura il suo REA. Pr raggiungr la parità di REA il przzo di B dv diminuir in misura dlla diffrnza =. quindi la convninza di A si ha fino a ch il przzo di B raggiung il valor Al tasso di prova i =.% abbiamo 9. = REA A (.) = + a. + ( +.) =.8 REA B (.) = 9 + a. + ( +.) =.. Prtanto, dato ch l du funzioni REA sono dcrscnti al crscr dl tasso, possiamo affrmar ch TIR A <. invc TIR B >. di consgunza avrmo ch TIR B > TIR A. Tma dl 5//

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti Svolgimnto di tmi d sam di Matmatica Anno Accadmico 05/6 Albrto Prtti April 06 A Prtti Svolgimnto di tmi d sam di Matmatica AA 05/6 PROVA INTERMEDIA DI MATEMATICA I part Vicnza, 04//05 Domanda Scomporr

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA Esrcizio n 1 C= 400 + 0,8D I= 200-1400r G= 200 TA= 0,25 X= 300-100 Q=156+0,4 r*=0,36 L=50+0,2-100r M o =99 a) Dtrminat l quazion dlla IS dlla LM, il tasso

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

I CAMBIAMENTI DI STATO

I CAMBIAMENTI DI STATO I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo Foglio Comparativo sull tipologi mutuo ipotcario/fonario pr l acquisto dll abitazion principal (sposizioni trasparnza ai snsi dll art. 2 comma 5 D.L. 29.11.2008 n. 185) Pr tutt l conzioni conomich contrattuali

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100 Mrcato dl lavoro Popolazion civil Forza lavoro (FL) Inattivi (bambini, pnsionati, casalinghi, studnti) Occupati () Disoccupati (U) Tasso di partcipazion alla forza lavoro (Forza lavoro/popolazion civil)

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

730, Unico 2014 e Studi di settore

730, Unico 2014 e Studi di settore 730, Unico 2014 Stu sttor Pillol aggiornamnto N. 39 27.06.2014 Il prosptto Dati bilancio in Unico2014 ENC. La riconciliazion dati dllo Stato Patrimonial nl prosptto Dati bilancio. Catgoria: Dichiarazion

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

IV-3 Derivate delle funzioni di più variabili

IV-3 Derivate delle funzioni di più variabili DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Forza d interesse. Università degli Studi di Catania Facoltà di Economia D.E.M.Q.

Forza d interesse. Università degli Studi di Catania Facoltà di Economia D.E.M.Q. Fora d intrss Univrsità dgli Studi di Catania Facoltà di Economia D.E.M.Q. Fora d intrss Lgg di capitaliaion a du variabili Opraion finaniaria : -C + C C+ Intrss prodotto in [ + ] da un capital C invstito

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

APPROFONDIMENTO MANAGEMENT

APPROFONDIMENTO MANAGEMENT APPROFONDIMENTO MANAGEMENT Iniziativa Comunitaria Equal II Fas IT G2 CAM - 017 Futuro Rmoto Approfondimnto LIQUIDAZIONI E VERSAMENTI IVA ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA LIQUIDAZIONE

Dettagli

APPUNTI DI MACROECONOMIA

APPUNTI DI MACROECONOMIA Brtocco G., Kalajzić A. Mourad Agha G. Univrsità dgli Studi dll Insubria Dipartimnto di Economia Anno accadmico 2014-2015 APPUNTI DI MACROECONOMIA (Sconda part pp. 175-296) Il modllo IS-LM pr una conomia

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

MATER NITÀ. La legge recentemente approvata non si limita ad emanare. eciale. congedi parentali. Legge sui congedi parentali. Legge 8 marzo2000 n.

MATER NITÀ. La legge recentemente approvata non si limita ad emanare. eciale. congedi parentali. Legge sui congedi parentali. Legge 8 marzo2000 n. Lcco Sp ciale congdi parntali Lgg 8 marzo2000 n. 53 Lgg sui congdi parntali La lgg rcntmnt approvata non si limita ad manar disposizioni spcifich pr il sostgno dlla matrnità dlla patrnità, pr il diritto

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza Qual quantità produrr? Massimizzazion dl profitto offrta concorrnzial In ch modo l imprsa scgli il livllo di produzion ch massimizza il profitto. Com l sclt di produzion dll singol imprs contribuiscono

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor)

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor) Sommario Dispositivi lttronici l transistor bipolar a giunzion (bjt( bjt) l transistor bipolar a giunzion (bjt) com è fatto un bjt principi di funzionamnto (giunzion a bas corta) fftto transistor (

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari.

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari. OO SCHOTTKY Si tratta dl più smplic dispositivo unipolar, in cui cioè la corrnt è lgata sclusivamnt ai portatori maggioritari. livllo dl vuoto q q s E Fm q m E Fs E Fm q( m -) q( m - s )= bi E Fs prima

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

ELENCO DEGLI ULTERIORI PROVVEDIMENTI E ATTI DELEGATI DAL DIRETTORIO IN MATERIA DI VIGILANZA BANCARIA E FINANZIARIA (delibera n. 347 del 21.7.

ELENCO DEGLI ULTERIORI PROVVEDIMENTI E ATTI DELEGATI DAL DIRETTORIO IN MATERIA DI VIGILANZA BANCARIA E FINANZIARIA (delibera n. 347 del 21.7. ELENCO DEGLI ULTERIORI PROVVEDIMENTI E ATTI DELEGATI DAL DIRETTORIO IN MATERIA DI VIGILANZA BANCARIA E FINANZIARIA (dlibra n. 347 dl 21.7.2015) Nl prsnt lnco sono utilizzat l sgunti abbrviazioni: LEGENDA

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO APPUNTI DI CALCOLO NUMERICO Mawll Equazioni non linari: probla di punto isso Sisti di quazioni non linari Introduzion Il probla di punto isso è un probla ch si prsnta spsso in oltissi applicazioni Esso

Dettagli

Progettazione di sistemi distribuiti

Progettazione di sistemi distribuiti Progttazion di sistmi distribuiti Valutazion dll prstazioni: cnni Prformanc Cosa vuol dir ch un sistma è più vloc di un altro? Tmpo di risposta (tmpo di scuzion): diffrnza tra T c, l'istant in cui un task

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

La ricchezza delle famiglie: confronto internazionale 1. Riccardo De Bonis

La ricchezza delle famiglie: confronto internazionale 1. Riccardo De Bonis La ricchzza dll famigli: confronto intrnazional 1 Riccardo D Bonis L articolo confronta la ricchzza dll famigli italian con qulla di altri si Pasi industrializzati. L famigli italian occupano una posizion

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

CAPITOLO 12 Una rivisitazione dell economia aperta: il modello di Mundell- Fleming e il regime dei tassi di cambio

CAPITOLO 12 Una rivisitazione dell economia aperta: il modello di Mundell- Fleming e il regime dei tassi di cambio CPITOLO Una rivisitazion dll conomia aprta: il modllo di Mundll- Flming il rgim di tassi di cambio Domand di ripasso. Nl modllo di Mundll-Flming, a front di un aumnto dll impost la curva IS si sposta vrso

Dettagli

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA 8 9 DERIVATA DI UNA FUNZIONE COMPOSTA La drivata di una funion composta ( funion di funion si ottin (dim all pagin 0 : a drivando la funion principal ( qulla ch si applica pr ultima risptto al suo argomnto

Dettagli

REGRESSIONE LOGISTICA

REGRESSIONE LOGISTICA 0//04 METODI E TECNICHE DELLA RICERCA IN PSICOLOGIA CLINICA E LABORATORIO AA 04/05 PROF. V.P. SENESE Sconda Univrsità di Napoli (SUN) Facoltà di Psicologia Dipartimnto di Psicologia METODI E TECNICHE DELLA

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è "Trmodinamica trasmission dl calor 3/d" 1 - Yunus A. Çngl RISOLUZIONI cap.19 19.1 (a) La rsistnza trmica total dllo scambiator di calor, rifrita all'unità di lunghzza, è (b) Il cofficint global di scambio

Dettagli

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 Foglio n.10 Somma intrszion di sottospazi vttoriali prof. Cigliola Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

EUCENTRE. European Centre for Training and Research in Earthquake Engineering

EUCENTRE. European Centre for Training and Research in Earthquake Engineering Europan Cntr for Rsarch in Earthquak Enginring Parr sulla vntual obbligatorità di un intrvnto di adguamnto sismico nll ambito dll intrvnto di ristrutturazion, adguamnto ampliamnto dlla Casa Albrgo pr Anziani

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) :

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) : Ystudio Corsi lzioni d srcizi on lin di Matmatica, Statica Scinza dll costruzioni www.studio.it/sit. Dominio : Poichè la unzion è pari, lo studio vin itato al smipiano dll asciss positiv. Intrszion assi

Dettagli

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9 1 IL CONCETTO DI FUNZIONE 1 II-1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 5 3 Funzion invrsa 7 4 Rstrizion prolungamnto di una funzion 9 5 Soluzioni dgli srcizi 9 In qusta dispnsa affrontiamo

Dettagli

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia ORGANO GOLD PIANO COMPENSI E Facil, E smplic. E caffè. Italia INDICE Indic INTRODUZIONE...2 PIANO COMPENSI...3 DEFINIZIONI ED ACRONIMI.4 COME DIVENTARE UN INCARICATO ALLE VENDITE OG...5 I SETTE MODI PER

Dettagli

Ottimizzazione economica degli scambiatori di recupero.

Ottimizzazione economica degli scambiatori di recupero. Facoltà di Inggnria Univrsità dgli tudi di Bologna Dipartimnto di Inggnria Industrial Marco Gntilini Ottimizzazion conomica dgli scambiatori di rcupro Quadrni dl Dipartimnto MARCO GENTILINI OTTIMIZZAZIONE

Dettagli

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza

Dettagli

Renato Filosa e Giuseppe Marotta. Stabilità finanziaria e crisi. Il ruolo dei mercati, delle istituzioni e delle regole

Renato Filosa e Giuseppe Marotta. Stabilità finanziaria e crisi. Il ruolo dei mercati, delle istituzioni e delle regole Supplmnto analitico al tsto, dito nl 011 dalla Socità ditric Il Mulino, Bologna, di Rnato Filosa Giuspp Marotta Stabilità finanziaria crisi. Il ruolo di mrcati, dll istituzioni dll rgol Supplmnto onlin

Dettagli