Laboratorio di Fisica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio di Fisica"

Transcript

1 Lbortoro d Fc Eperenz. Mur dell cotnte eltc d un oll. Brev rch ull eltctà S dcono eltc corp che qundo vengono defort con un copreone o dltzone regcono con un forz d rcho che, n pr pprozone, rult proporzonle ll deforzone. Tle forz tende fr rcqure l corpo le denon orgnl. L orgne crocopc dell eltctà de corp rede nell truttur ordnt (crtll) con cu gl to d certe otnze legno tr loro. Se un corpo, coe l clndro n Fg., vene ottopoto ll zone d un forz F, oerv un pccolo llungento. l A Fg. F Tr llungento l e forz pplct F ete un relzone le quell rppreentt n Fg.. Fg. Il grfco può eere uddvo n vre zone, econd dell ntentà dell forz pplct. Trtto OH: l grfco è un rett. Vene dett zon d cpo proporzonle o d Hooe. Cet l forz l corpo rprende l u confgurzone orgnr. Punto E: lte dell zon d eltctà. Trtto EB: l corpo, nche dopo lo crco, rne pù lungo che n orgne. Punto B: l punto n cu verfc l rottur. el cpo proporzonle l ed F ono proporzonl. In prtcolre l vrzone percentule d lunghezz del corpo (l / l) rult proporzonle ll forz per untà d re trte un cotnte d proporzonltà /E che dpende dl tpo d terle (E rppreent l odulo d Young). Ovvero:

2 l F l E A E () dove è l forz per untà d re dell ezone ( F/A). L legge d Hooe () può crvere nche nell for: F EA l l () Infne, ntroducendo l cotnte eltc dell oll defnt coe Ε Α /l l legge d Hooe può crvere nell for pù not: F l (3) Quet legge può eere pplct qul corpo eltco n trzone che n copreone. Il co pù eplce è quello d un oll llungt otto l zone d un forz etern. Dtnuo tre c:. L oll è rpoo n pozone d equlbro.. L oll vene llungt d un qunttà. L oll tende rtornre ll propr pozone d rpoo, ednte un forz d rcho F - (negtv perché oppot llo potento). Per ntenerl llungt occorrerà pplcre un forz etern F. 3. el co d un copreone l tuzone è l te, con vettor drett n vero oppoto. Rcordo nche che ogn volt che per effetto d un forz l oll cope uno potento, vene ccuulto del lvoro che verrà recuperto durnte lo crco. Poché l forz dpende dllo potento, non è poble clcolre l lvoro con un eplce prodotto forz potento occorre rcorrere l clcolo d un ntegrle ( L F( ) d ( ) d ) o per v grfc (coe otrto lezone). 0 0

3 . Mur dell cotnte eltc d un oll con l etodo ttco L pprto d utlzzre è chetzzto n Fg.3 : un oll d lunghezz l rpoo è pot vertclente, con l etreo uperore vncolto d un otegno. All ltr etretà dell oll vengono ope corp d not (,, 3, ). Eendo Pg cò equvle d pplcre forze peo (F P ) dvere che nducono llungent pr,, 3, dell oll. Quet llungent poono eere lett trgurdndo l etretà dell oll con l cl d un regolo grduto (n lletr) poto lungo l drezone dell oll. Fg. 3 In prncpo, l cotnte eltc dell oll potrebbe effetture utlzzndo un unc e urndo l reltvo llungento. Inftt dll legge d Hoo h: P g (4) dove g è l ccelrzone d grvtà (g9.8 / ), entre con e bbo ndcto vlor ed dell e dell llungento rcvt d un certo nuero d ure rpetute. In un grfco, dove ull e delle ce rporto l (che, eno d g, rppreent l forz peo) e ulle ordnte l llungento, l notr ur pprrà coe un punto P d coordnte (, ) (ved Fg.4). () P tgθ Fg. 4 (Kg) Coe può notre l cotnte eltc rppreent l pendenz dell rett trtteggt che unce l orgne degl con l unco punto perentle notr dpozone. Ovvero: tgθ (5) Cercho d cpre perché non è convenente egure queto pprocco.. In pro luogo, con un olo punto perentle non o cert d trovrc nel trtto lnere dell rpot eltc dell oll (ved Fg.). Avreo potuto pplcre un forz troppo nten tle che l llungento prodotto non è pù proporzonle ll forz (ved Fg.5). S cpce, llor, che 3

4 n queto co non vreo tto correttente l pendenz del trtto lnere dell curv vreo ottenuto un ottot d. () P tgθ Fg. 5 (Kg). Anche e c trovo nel trtto lnere dell curv non reo cutelt d eventul error tetc. (Un errore tetco preent qundo un ur è epre ovrtt o ottott d un cert qunttà. Speo queto tpo d errore è dovuto d un errone lettur d pre dell opertore, errore d prlle, o d un trtur dello truento). Pertnto, e un delle due grndez urte drettente, o o lunghezz, foero ffette d error tetc, l cotnte eltc verrebbe ncor un volt tt per dfetto o per ecceo econd dell drezone n cu quet error ncdono (queto punto verrà dcuo eglo con l Fg.6). 3. Infne nche e e ono tte ttrvero ure rpetute non è detto che n queto odo ruco d evdenzre l tttc del notro eperento. Inftt, potrebbe ccdere che l errore d enbltà dell blnc e/o del rghello no ggor degl error d precone (coì coe oervto con l clbro). Per quet tre otv è llor pù convenente rpetere un certo nuero d ure vrndo l forz che pplcho ll oll. In queto co, nel grfco d Fg. 6 vreo olt pù punt. Gurdndo l nee d quet punt potreo coprendere un certo nuero d coe. Ad eepo, ndvdu ubto l rege d lnertà dell oll. Inoltre, è poble cpre e o n preenz d error tetc. Inftt e condero olo punt che pprtengono l rege lnere vedo che l rett che eglo ppro punt perentl non p per l orgne, coe nvece ffer l legge d Hoo (F). Il otvo d cò è propro dovuto d un tetc ovrt delle lunghezze o un tetc ottot delle e. Entrb quet error (error tetc) trlno l rett vero l lto o vero ntr non fcendol coì pre per l orgne. In ltre prole, entre l legge fc tte è del tpo b, cu degl error tetc, ottene un rett + b con un ntercett dver d zero. E portnte notre però che lgrdo l preenz degl error tetc l pendenz dell rett non cb, ovvero non lter l t dell cotnte eltc dell oll. () Rege lnere tgθ Fg. 6 (Kg) 4

5 Dobbo or nprre tre l glore rett che p per punt perentl. A tl fne uppono d ver effettuto un nuero d ure rpetute l vrre dell forz pplct. D quete ure ottene un tbell del tpo: ur n (Kg) () ± ± ± ± 3 3 ± 3 ± -e ± ± n-e ± ± Suppono nche che ccun ur ffett dllo teo errore o che c fornce l blnc ed l rghello ( e, rpettvente). Qundo rporto n un grfco punt perentl ndchereo con un crocett quet error (l elrghezz dell crocett rppreent l errore). el co gl error doveero rultre troppo pccol rpetto ll cl celt, llor, nzchè ure l crocett l denone te de punt rà ugule gl error. () P t r P Fg.7 (Kg) Per trovre l glore rett procede con l eguente etodo grfco. S trccno le due rette d (rett ) e n (rett t) pendenz. Quete rette, ndcte con lnee trtteggte n Fg.7, trccno n odo che tutt punt perentl trovno ne due con ndvdut dll nterezone delle due rette. L rett glore rà dt dll bettrce d quete due rette (rett r). A queto punto convene clcolre le equzon delle rette e t. Cò può ere ftto fclente crvendo l equzone dell rett che p per due punt che pprtengono ll rett e ll rett t, rpettvente. A ttolo d eepo c rferreo ll rett. Quet equzone è dt d: (6) 5

6 dove P (, ) e P (, ) ono le coordnte d due punt che pprtengono ll rett celt n ner del tutto rbtrr (ved le due tellne n Fg.7). Dopo eplc clcol rrv ll eguente epreone: + (7) Quet epreone può eere nche crtt coe: + b (8) dove l ntercett ed l coeffcente ngolre b vlgono: (9) b (0) Queto rgonento può eere rpetuto per l rett t. Qund, per le due rette, vreo coì deternto: t, b t, b Per clcolre l ntercett e l pendenz b dell glore rett (ovvero l rett bettrce r) è rgonevole clcolre l ed d quet vlor: () b + t b + bt () Un volt clcolto b o gunt ll t dell cotnte eltc n qunto, econdo l legge d Hoo (4) h: g b (3) eendo g l ccelrzone d grvtà. Coe può notre o gunt counque deternre l equzone d un rett con un cert ntercett, fronte d un legge fc (l legge d Hoo) che nvece non l prevede. Cò è coneguenz dll tttc dell eperento. Per verfcre e o n preenz o eno d error tetc occorre verfcre che l vlore dell ntercett, coì deternt, contente con lo zero. Per fre cò è portnte tre gl error d cu ono ffett che b. D vlor d, b e t, b t, può dre che: 6

7 t b b bt (4) Se ± rà contente con lo zero llor poo concludere che le notre ure non ono ffette d error tetc. Per qunto rgurd l errore d ttrbure ll cotnte eltc bterà pplcre l regol dell propgzone degl error l eq. (3) tenendo conto dell errore b e dell errore con cu to g9.8 / (g0.0 / ). Il rgonento eguto fnor è d tpo eprco. Ete ovvente un trttzone pù rgoro che conente, prtre dl et d punt perentl, d rrvre ll t de pretr e b dell glore rett e de rpettv error. Quet procedur v otto l noe d bet-ft de dt perentl che non trttereo n queto coro. 7

8 8 Per copletezz rporto le forule per l clcolo de coeffcent e b dell rett d bet ft ed rpettv error. rett glore dell pretr de t l, con ), ( l perent dt d nee un Dt b + è ndcto con dove b ( ) b b è poto con dove e b. u error St degl

9 3. Mur dell cotnte eltc d un oll con l etodo dnco In queto prgrfo vedreo coe rà poble deternre l cotnte eltc d un oll eguendo un etodo perentle dvero. In Fg.8 è otrt un oll, d cotnte eltc e trcurble, n pozone d rpoo e ft vertclente d un otegno. Coe bbo gà detto, e ll etretà lber vene pplcto un corpo d l oll llung d un trtto 0 (ved Fg. 8b). In condzon d equlbro ttco, l forz eltc F 0 che l oll eerct ul corpo deve equlbrre l forz peo g, ovvero l o vettorle delle forze gent ul corpo deve eere null: 0 0 g g (5) Se lco cdere l corpo, ppeo d un certo tnte t0, con veloctà null nell pozone 0, l equzone che detern l uo oto rà dt dll econd legge d ewton (F) : + g (6) quet è un equzone dfferenzle del econdo ordne che h coe oluzone un oto ocllntoro (oto ronco) ttorno ll pozone d equlbro ttco 0. ( t) 0 ( coωt) L pulzone ω (o frequenz ngolre) vle: (7) ω (8) Rcordndo che ωπ/t è poble rcvre l perodo dell ocllzone T n funzone de pretr del proble: T π (9) Qund, elevndo l qudrto entrb ebr dell eq.(9) h: 9

10 T 4π (0) d cu rcv l cotnte eltc : 4π () T Qund gunge tre l cotnte eltc ttrvero l ur dell e del perodo d ocllzone. D un punto dvt perentle l deternzone del perodo T effettu urndo l durt T d un certo nuero d ocllzon. In queto odo l perodo T rà: TT / () entre l uo errore rà: T (3) dove è l errore d enbltà del cronoetro d cu è ffett l ur d T. Qund urndo l durt d perod d ocllzone nzché d un oltnto bbo rdotto d un fttore / l u ndeternzone. Il nuero d perod d urre cegle tenendo conto del ftto che n un oto oclltoro rele l pezz delle ocllzon rduce (orzento) cu dell ttrto. Anche n queto co, coe per l etodo ttco, poono rpetere quete ure l vrre dell. S otterrnno coì coppe d dt perentl del tpo: ur n (Kg) T () ± T ±T ± T ±T 3 3 ± T 3 ±T -e ± T ±T n-e ± T ±T Quet dt poono eere rportt n un grfco eguendo l legge rportt nell eq. (0): o rportndo ull e delle ce le e e ulle ordnte qudrt de perod (T ). I punt coì ottenut dovrebbero dpor ntorno d un rett. Ccun punto vrà coe errore ulle quello delle e (enbltà dell blnc) entre per l errore ulle ordnte occorrerà propgre gl error prtre dll relzone T (TT). Per gungere qund ll glore t dell cotnte eltc occorrerà egure l te procedur bt ulle rette d e n pendenz coe ftto per l etodo ttco. 0

11 YT ( - ) (Kg)

I segmenti orientati

I segmenti orientati I vettor Untà Pgn 1 d 5 I egment orentt Dll geometr euclde ppmo che l egmento è l prte fnt d rett delmtt d due punt dett etrem del egmento. Defnmo egmento orentto un qul egmento ul qule è tto fto un vero

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I NO & VO Compito A

Facoltà di Ingegneria Prova scritta di Fisica I NO & VO Compito A Eerczo n.1 Un pll vene lnct con veloctà nzle d odulo Fcoltà d nener Prov crtt d Fc NO & VO 1-07-03 - opto rovre: L pozone (coè le coordnte x e y) dell pll dopo 3 econd l odulo dell veloctà dell pll dopo

Dettagli

Metodo di massima verosimiglianza (cenni) Maximum Likelyhood

Metodo di massima verosimiglianza (cenni) Maximum Likelyhood Metodo d mm veromglnz (cenn) Mmum kelhood In un proceo d mur (con mure rpetl ed ndpendent) ono tte ftte mure dfferent,,, 3,. S m l vlore vero (non noto) dell oervle e P(m) l dtruzone d proltà egut d dt

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Regressione Lineare Semplice

Regressione Lineare Semplice reressone lnere Reressone nere Semplce Per ottenere l veloctà d un corpo s msur l su poszone vr temp. Spendo che l relzone tr l poszone del corpo s l tempo t è dt dll lee s = v t trovre con l reressone

Dettagli

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH ESEZO.0: egnto l crcuto d fgur.0, relzzto trmte l collegmento d pol lner, determn l equvlente d Thévenn del polo d morett e pendo che con l retenz L 45 W, conne morett, mur 90, mentre con L non conne mur

Dettagli

Linearità. linearità = omogeneità + additività. matematica lineare fra causa ed effetto. Elemento lineare: presenta una relazione

Linearità. linearità = omogeneità + additività. matematica lineare fra causa ed effetto. Elemento lineare: presenta una relazione Lnertà Elemento lnere: preent un relzone mtemtc lnere fr cu ed effetto. Eempo: v/ relzone lnere 0 e αv relzone non lnere lnertà omogenetà ddtvtà Se l ngreo vene moltplcndo per un fttore cotnte, l uct rult

Dettagli

Capitolo 4 : Problema 45

Capitolo 4 : Problema 45 Cptolo 4 : Proble 45 Scelgo per convenenz l sse X lungo superfce dell tvol lsc col verso postvo concorde con l forz pplct F=+ ˆ N. S ssue che durnte l oto le tre sse sno sepre ccostte e = = = qund 3 Y

Dettagli

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Moto circolare uniformemente accelerato

Moto circolare uniformemente accelerato Moto circolre uniforeente ccelerto el M.C.U.A. il vettore velocità non h più il odulo cotnte, è preente invece un ccelerzione dett ccelerzione tngenzile che i ntiene cotnte. Ripenndo ll circonferenz tglit

Dettagli

7. Cinematica del corpo rigido

7. Cinematica del corpo rigido 7. Cnetc del corpo rgdo r r Coe poo decrvere l ovento rottoro d un corpo rgdo? Condero un qulunque punto pprtenete l corpo rgdo n rotzone, e co l punto n cu l e buc l pno n cu ruot, decvendo qund un crconferenz

Dettagli

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

Problemi Omogenei e Non Omogenei

Problemi Omogenei e Non Omogenei Le Condzon l Contorno Tpo: Tepertur Fsst T = f r, t sul contorno S T = sul contorno S Tpo: Flusso Fssto T n = f rt, sul contorno S T n = sul contorno S 3 Tpo: Sco Convettvo T k + ht = f ( r, t) sul contorno

Dettagli

Sviluppo curato da: Francesca Caporale e Lia Di Florio Docente: prof. Quintino d Annibale a.s. 2003/2004

Sviluppo curato da: Francesca Caporale e Lia Di Florio Docente: prof. Quintino d Annibale a.s. 2003/2004 Meccnc Legge d Newton e prncp d conervzone Lceo Scentco Tecnologco ESECZO TATTO DAL COMPTO FNALE DEL ANNO Svluppo curto d: Frncec Cporle e L D Floro cle LST A Docente: pro. Quntno d Annble.. /4 Teto Un

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù crtter qutttv o vrl. L rcerc de legm etet r pù vrl poe come rcerc delle relzo uzol che pogoo come grdezz dpedete d u ere d

Dettagli

Lavoro in presenza di forze non conservative

Lavoro in presenza di forze non conservative oro n preenz d orze non conerte erczo: no crctore pnge un c ( totle =kg ) u un terreno d ceento con un orz orzzontle cotnte d ntentà. In uno potento rettlneo d=.5 l eloctà dell c dnuce d =.6 / =.9/. )

Dettagli

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1 Lez.9 Teorem sulle ret 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A. 207-208, Elettrotecnc. Lezone 9 Pgn Teorem d non mplfczone In un rete costtut d sol pol, n cu è presente un unco polo che erog

Dettagli

Legge dei grandi numeri e significato probabilistico della distribuzione normale

Legge dei grandi numeri e significato probabilistico della distribuzione normale Legge dei grndi numeri e ignificto probbilitico dell ditribuione normle Sppimo che l quntità f()d rppreent un indictore dell frione di miure che cdono tr e + d in un dto eperimento qundo l vribile X egue

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

Problema Q & SOLUZIONE

Problema Q & SOLUZIONE Problem 2..2.2 Un portt di,00 0 4 m / di ri umid, inizilmente ll tempertur di 2,0 C con umidità reltiv del 60% viene rffreddt e deumidifict. L tempertur in ucit è di 0,0 C ed il grdo igrometrico del 00%

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

INDICI DI VARIABILITÀ. Proprietà essenziali

INDICI DI VARIABILITÀ. Proprietà essenziali INDICI DI VARIABILITÀ Valor che ono calcolat per eprmere ntetcamente la varabltà d un fenomeno, o meglo la ua atttudne ad aumere valor dfferent tra loro Propretà eenzal. NON NEGATIVITÀ Una quala mura d

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

MECCANICA DEI SISTEMI

MECCANICA DEI SISTEMI MECCNIC DEI SISTEMI EX Il tema d ollevamento pe n fgura è cottuto da una barra nclnable lunga L che termna n una carrucola deale, un flo che tene l peo che paando per la carrucola arrva u una uperfce vertcale

Dettagli

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti.

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti. . dsegnndo l crcuto senz ncroc e pplcndo l trsformzone trngolostell s ottengono gl schem seguent. Ω Ω eq Ω Ω Ω Ω Ω Ω eq Ω Ω Ω Ω eq Ω eq // Ω. S trsform l stell edenzt n rosso n un trngolo (le resstenze

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

Sia data una macchina rotante isotropa, dotata di un solo avvolgimento rotorico.

Sia data una macchina rotante isotropa, dotata di un solo avvolgimento rotorico. ommrio. FAORI PAZIALI... 1.1 I FAORI PAZIALI ED IL GIUTO ELETTROMAGETICO... 1. Fori pzili.1 I fori pzili ed il giunto elettromgnetico i dt un mcchin rotnte iotrop, dott di un olo vvolgimento rotorico.

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

Esercitazione di Controlli Automatici 1 n 3

Esercitazione di Controlli Automatici 1 n 3 0 aprle 007 a.a. 006/07 Rferendo al tema d controllo della temperatura n un locale d pccole dmenon dcuo nella eerctazone precedente, e d eguto rportato:. S analzzno le carattertche modal del loop nterno

Dettagli

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito A

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito A Eeczo n. Un blocco, d denon tcubl e d d 4 Fcoltà d ngegne Fc Pov n tnee feb 5 Copto A kg, legto d un flo, vene ftto uote ozzontlente u un pno enz ttto, decvendo un cecho d ggo. 8 ll veloctà d odulo cotnte

Dettagli

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito C

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito C Eeczo n. Un blocco, d denon tcubl e d d Fcoltà d ngegne Fc Pov n tnee feb 5 Copto C kg, legto d un flo, vene ftto uote ozzontlente u un pno enz ttto, decvendo un cecho d ggo ll veloctà d odulo cotnte v.

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann Dprtmento d Scenze Sttstche Anls Mtemtc Lezone 26, 25 novembre 2014 Integrle d Remnn prof. Dnele Rtell dnele.rtell@unbo.t 1/28? Teorem du Bos-Reymond e Drboux Condzone necessr e suffcente ffnché f R ([,

Dettagli

, m = = = è la risultante delle sole forze esterne, dal momento che quella delle forze interne è nulla

, m = = = è la risultante delle sole forze esterne, dal momento che quella delle forze interne è nulla Eseczo l cento d ss () d un sste d punt tel è un punto geoetco l cu poszone spetto d un sste d feento è ndvdut dl ggo vettoe:, dove ed ppesentno spettvente le sse e vetto poszone de sngol punt tel che

Dettagli

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 30/1/2018

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 30/1/2018 c II - Ingegner edc -.. /8 - ppell del //8 ---------------------------------------------------------------------------------------------------------------------- e: gne: Mtrcl: ----------------------------------------------------------------------------------------------------------------------

Dettagli

Circuiti Elettrici Lineari Teoremi delle reti elettriche

Circuiti Elettrici Lineari Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Crcut Elettrc ner Teorem delle ret elettrche Crcut Elettrc ner.. 08/9 Prof. uc Perregrn Teorem delle ret elettrche,

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione 1 E S E R C I Z I S U L L E P O M P E C E N T R I F U G E ESERCIZIO 1 In un panto ollevaento per acqua ono not Il lvello geoetco tra ue erbato g 0 La preone aoluta ul erbatoo a valle p A p at La preone

Dettagli

Diagrammi di Bode. (versione del ) Funzioni di trasferimento

Diagrammi di Bode.  (versione del ) Funzioni di trasferimento Dgr d Bode www.de.g.uo.t/er/tr/ddtt.ht veroe del 5-- Fuo d trfereto Le fuo d trfereto f.d.t de rut ler teo vrt oo fuo rol oè rort tr due olo oeffet rel dell vrle Per evtre d trttre eltete quttà gre, trodue

Dettagli

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1 Mtetic Liceo \ Unità Didttic N 7 Le proprietà dell rett Unità Didttic N 7 Le proprietà dell rett ) Rette prllele ) Rett pssnte per un punto dto e prllel d un rett dt 3) Rette perpendicolri 4) Rett pssnte

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot Prof. Gueppn Gn 7/8 Cnemt rett: Pozone e Gunt Pozone e Orentmento ell EnEffetor Obettvo ell nemt rett è l etermnzone ell pozone e orentmento ell orgno termnle

Dettagli

Facoltà di Ingegneria 1 a prova intracorso di Fisica I Compito B

Facoltà di Ingegneria 1 a prova intracorso di Fisica I Compito B Eercizio n. Un punto terile i Fcoltà i Ingegneri pro intrcoro i Fiic I 5--00-Copito = 5kg i uoe lungo l e x con legge orri x( t) α t 8 =, oe x è epreo in etri, t in econi e α =. Deterinre: l poizione el

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli eercizi CPITOLO 2 LUNGHEZZE 0. Qundo l monet f un giro, i pot di un percoro che è ugule ll miur dell u circonferenz, circ 8, cm. 3 UNITÀ DI MISUR DELL RE 6 RE DEL PRLLELOGRMM E DEL TRINGOLO

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff A. hoon esercz Fsc II QUINTA LEZIONE: corrente elettrc, legge ohm, crc e scrc un conenstore, legg Krchoff Eserczo Un conuttore clnrco n rme vente sezone re S mm è percorso un corrente ntenstà 8A. lcolre

Dettagli

Interpolazione e Approssimazione ai minimi quadrati

Interpolazione e Approssimazione ai minimi quadrati Cludio Ettico (cludio.ettico@uiubri.it) Iterpolzioe e Approizioe i iii qudrti Iterpolzioe e iii qudrti Iterpolzioe e pproizioe i iii qudrti ) L pproizioe di fuzioi: iterpolzioe e igliore pproizioe. ) Eitez

Dettagli

DIMOSTRAZIONE DEL METODO DELLE COSTANTI DI TEMPO DI CORTO CIRCUITO (SCTC) E DI CIRCUITO APERTO (OCTC) (G.Spiazzi)

DIMOSTRAZIONE DEL METODO DELLE COSTANTI DI TEMPO DI CORTO CIRCUITO (SCTC) E DI CIRCUITO APERTO (OCTC) (G.Spiazzi) DIOSTAZIOE DE ETODO DEE OSTATI DI TEPO DI OTO IUITO (ST) E DI IUITO APETO (OT) (.Spzz) nderm un generc rete lnere cmpt d retenze, cndentr e genertr cmndt. E può rppreentre un generc mplfctre d cu ule nlzzre

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforthe per l h Dr. Sergo Brutt Anls de dt II -,8 -,7 -,6 -,5 -,4 -,3 -, -,1,,1,,3,4,5,6,7,8 lore sur Frequenz Rptolo generle Consdero un p rolt d sure ottenute per v oputzonle o sperentle,,15,1,5

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.uno.t/pers/mstr/ddttc.tm (ersone del 9-3-0) Teorem d Tellegen Ipotes: Crcuto con n nod e l lt ers d rfermento scelt per tutt lt secondo l conenzone dell utlzztore {,..., l } =

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

Richiami sui sistemi lineari

Richiami sui sistemi lineari Rcham u tem lnear Ingegnera dell'automazone Coro d Stem d Controllo Multvarable - Prof. F. Amato Verone. Ottobre 0 Rappreentazone ISU Rcordamo che la rappreentazone ISU d un tema LI a tempo-contnuo è del

Dettagli

Elemento Trave nel piano

Elemento Trave nel piano Il etodo degl Element Fnt Elemento Trave nel pano Dalle dpene del prof. Daro Amodo e dalle lezon del prof. Govann Santu.Cortee Progettazone eana agl Element Fnt (a.a. 11-1) Introduzone al alolo trutturale

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b Mtemtic per Scienze Nturli, Aree ed integrli 1 IL CONTRIBUTO DEI GRECI h Rettngolo: A =. h h Prllelogrmm A =. h h Tringolo A =!h 2 Poligono come somm di tringoli Cerchio O r A = ". r 2 Mtemtic per Scienze

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1 Lezone 20. Progetto per tem a fae mnma F. Prevd - Automatca - Lez. 20 Introduzone Il progetto d controllor medante loop hapng laca al progettta molt grad d lbertà, n partcolare nella celta della parte

Dettagli

IDROLISI [CH COOH][OH 3 [CH COO ][H O] ] K eq [H 2 O] [CH COO ] K i. K [CH 3COOH] K w K w. [CH 3COO ] [H ] K a K K w

IDROLISI [CH COOH][OH 3 [CH COO ][H O] ] K eq [H 2 O] [CH COO ] K i. K [CH 3COOH] K w K w. [CH 3COO ] [H ] K a K K w IDROLISI La reazone con l acqua dell acdo conugato d una bae debole, o quella della bae conugata d un acdo debole, chama reazone d drol. L drol è una reazone acdo-bae che può avvenre quando un ale è olublzzato

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Problemi di Fisica. Principio conservazione momento angolare

Problemi di Fisica. Principio conservazione momento angolare www.lceoweb.t Prnc d Conserzone Problem d Fsc Prnco conserzone momento ngolre www.lceoweb.t Prnc d Conserzone TEORIA Per un coro untorme m che ruot su un crconerenz d rggo R con eloctà costnte, l momento

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

con B diretto lungo l asse x e v nel piano (x,y). La forza è:

con B diretto lungo l asse x e v nel piano (x,y). La forza è: Proble 8. Un protone ( =.67-7 Kg) entr n un cpo gnetco d ntenstà =.6 T con veloctà v orentt con ngolo d 3 rspetto l cpo gnetco; l protone subsce un forz F = 6.5-7 N. ) Indcre drezone e verso dell forz

Dettagli

Capitolo 1. Il principio di equivalenza e la sua verifica. 1.1 Il principio di equivalenza. 1.1.1 Definizione e cenni storici

Capitolo 1. Il principio di equivalenza e la sua verifica. 1.1 Il principio di equivalenza. 1.1.1 Definizione e cenni storici Cptolo 1 Il prncpo d equvlenz e l su verfc 1.1 Il prncpo d equvlenz 1.1.1 Defnzone e cenn storc Il prncpo d equvlenz è un prncpo d fondentle portnz per l fsc odern, poché st ll bse delle teore etrche dell

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù rtter qutttv o vrl. L rer de legm etet r pù vrl poe ome rer delle relzo uzol he pogoo Y ome grdezz dpedete d u ere d vrl dpedet

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 5 Luglio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 5 Luglio 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Aello d FISICA, 5 Luglo 00 Un coro d aa =00 g ene eo n oto u un ano orzzontale con eloctà =5. Il ano è cabro nel tratto AB (lungo d = 50 c con coecente d attrto dnaco

Dettagli

Resistenza elettrica

Resistenza elettrica esstenz elettrc esstenz: cpctà d un elemento d oppors l flusso delle crche elettrche. S msur n ohm (Ω). Sezone A l ρ A l ( 0) Mterle con ressttà ρ Teor de Crcut Prof. Luc Perregrn Legg fondmentl, pg. Legge

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 09-0 mplfcatore

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Controllo dei Robot 1

Controllo dei Robot 1 Tble of ontent Introduton Cnemt Prte Dprtmento d Ing. Elettr e dell Informzone (DEI) Polteno d Br e-ml: polo.lno [t] polb.t Coro d Cnemt drett S onder un mnpoltore ottuto d n + br onne n t (ten pert) trmte

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 9. Controllo degli azionamenti elettrici con motore in corrente alternata

Controllo di Azionamenti Elettrici. Lezione n 9. Controllo degli azionamenti elettrici con motore in corrente alternata Controllo di Azionmenti Elettrici Lezione n 9 Coro di Lure in Ingegneri dell Automzione Fcoltà di Ingegneri Univerità degli Studi di Plermo Controllo degli zionmenti elettrici con motore in corrente lternt

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Misura della densità di un solido.

Misura della densità di un solido. Progetto Luree Scientifiche Diprtiento di Fisic- Università Ro Tre Geologi del Siste Solre Prov di Lbortorio Misure Geofisiche Misur dell densità di un solido. L densità di un solido, o ss voluic, è il

Dettagli

Massima verosimiglianza

Massima verosimiglianza Maa veroglanza I. Froo AIS Lab. froo@d.un.t /4 Overvew ozon d bae Funzone d veroglanza Sta alla aa veroglanza Il cao Gauano Ste a n quadrat Il cao Poonano Sta d due rette /4 ozon d bae Varable cauale:

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIFICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 2-3 mplfcatore

Dettagli

Massima verosimiglianza

Massima verosimiglianza Maa veroglanza I. Froo AIS Lab. froo@d.un.t htt:\\hoe.d.un.t\froo\ A.A. 0-0 /4 htt:\\hoe.d.un.t\froo\ Overvew ozon d bae Funzone d veroglanza Sta alla aa veroglanza Il cao Gauano Ste a n quadrat Il cao

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Propagazione degli Errori e regressione lineare. Note e consigli d uso. -Termine covariante -- estrapolazione e/o interpolazione

Propagazione degli Errori e regressione lineare. Note e consigli d uso. -Termine covariante -- estrapolazione e/o interpolazione Propgzione degli Errori e regressione linere Note e consigli d uso -Termine covrinte -- estrpolzione e/o interpolzione Qundo devo usre il termine di covrinz nell propgzione? Qundo l errore delle vriili..

Dettagli

Affidabilità e Sicurezza delle Costruzioni Meccaniche 5 Calcolo strutturale a fatica

Affidabilità e Sicurezza delle Costruzioni Meccaniche 5 Calcolo strutturale a fatica olecnco d Torno Adblà e Scurezz delle Cosruzon eccnche 5 Clcolo sruurle c Eserczo 5- Un cco h le d c lern v ll D 50 ( 0 6 ) e crco unro d rour R 600 ; clcolre l le d c per 0 5 ccl. (0 5 ) 40. Dll equzone

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a Anlisi Mtemtic per Bio-Informtici Esercitzione 3.. 27-28 Dott. Simone Zuccher 28 Febbrio 28 Not. Queste pgine potrebbero contenere degli errori: chi li trov è pregto di segnlrli ll utore (zuccher@sci.univr.it).

Dettagli

Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli

Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli Sommrio Componenti per l ritmetic inri M. Fvlli Engineering Deprtment in Ferrr Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA Sommrio (ENDIF) Reti logiche / 27 Introduzione Motivzioni (ENDIF)

Dettagli

Componenti per l aritmetica binaria

Componenti per l aritmetica binaria Componenti per l ritmetic inri Introduzione 2 Introduzione Motivzioni 3 Appliczioni di n-it dder 4 Sommtore CLA I itemi di clcolo neceitno di componenti che relizzino operzioni di tipo ritmetico (omme,

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli