DISTRIBUITED BRAGG REFLECTOR (DBR)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DISTRIBUITED BRAGG REFLECTOR (DBR)"

Transcript

1 UNIVERSIT EGLI STUI I ESSIN FCOLT I INGEGNERI CORSO I LURE IN INGEGNERI ELETTRONIC ISTRIUITE RGG REFLECTOR R)

2 R ISTRIUITE RGG REFLECTOR) Stuttua : mezzo eodco a stat N coe d stat d mateale delettco; Gl stat hao dc d fazoe, ) e sesso a,b) dves; Gl sesso dedoo dalla λ cu s vuole cetae lo seccho. Peodo coa d stat) Λab Sessoe Ottco Sessoe fsco Idce d Rfazoe λ/4

3 Pco d fuzoameto : Ceazoe d dscotutà ottche all tefacca ta va stat; L effetto delle dscotutà s duce dmuedo l umeo d do stat che costtuscoo lo seccho; La oagazoe d u oda attaveso gl stat vee studata co l etodo delle atc. Oda Rflessa Oda Tasmessa Oda Icdete

4 etodo delle atc Il metodo delle matce emette d aalzzae feome d flessoe e tasmssoe assocat alla oagazoe d u oda attaveso u flm delettco Raesetazoe matcale d u flm sottle ),, 3, < < > d < d,, 3 dc d fazoe d sessoe del flm ), ) amezze delle ode vaggat ogessva e etogada).

5 Il C.E. e l C.. assocat ad u oda che s oaga el ao z : E E)e H H ) e ωt βz) ωt βz) E e k E e ξ k E e k E e ξ ) ) k ) ξ ) ξ ± k comoet del vettoe d oda; ξ medeza caattestca del mezzo ξ / ; ), ) ) amezze delle ode vaggat La codzoe d cotutà de cam all tefacca ta due mezz dves: E H E H Et H t Nell alcazoe d tale codzoe è coveete scomoe og vettoe elle settve cooet eedcola s) ) o tasveso-elettche elettche e aallele ) ) o tasveso-magetche magetche.

6 Ode eedcola s) s s ) s ) s s s)cosθ ) s ) s) cosθ ) atce damca e u oda s cosθ cosθ θ agolo che l oda l e.m. foma co l asse l og stato. s ) s s S ) ) s ) s s s s ) s I coeffcet d flessoe e tasmssoe e u oda s t s ) s s ) s

7 Ode aallele ) Ode aallele ) ) ) ) ) cosθ cosθ ) θ agolo che l oda e.m. foma co l asse og stato. I coeffcet d flessoe e tasmssoe e u I coeffcet d flessoe e tasmssoe e u oda : oda : ) ) ) t atce damca atce damca e u e u oda oda ) ) )cos )cos ) ) ) ) θ θ

8 e e P φ φ P matce d oagazoe; Φ k d;,, 3 matc damche che aesetao lat dell tefacca; Le atc d tasmssoe mettoo elazoe le amezze delle due ode a lat dell tefacca : P FOR FOR TRICILE I UN TRICILE I UN FIL SOTTILE FIL SOTTILE t t t, t 3,, 3 coeffcet d tasmssoe e flessoe d Fesel. efedo, e l flm sottle: efedo, e l flm sottle:

9 Raesetazoe Raesetazoe matcale matcale d u flm multstato d u flm multstato < < < < < <,,,, ) N s N N- N " ", S S geealzzado l caso del flm sottle s ottee la foma geealzzado l caso del flm sottle s ottee la foma matcale matcale: S N P dce d fazoe dell -esmo stato; N dce d fazoe del mezzo cdete; s dce d fazoe del substato.

10 Coeffcete d tasmssoe: t s s s Coeffcete d flessoe: s Rflettaza: R

11 Raesetazoe matcale d u R La stuttua multstato è fomata da N coe d mateal avet dc d fazoe e. La sua foma matcale è: S S N P s N [ P P ] S

12 Nell otes d cdeza d omale la massma flettaza è: R / ) N s N s / ) / ) / ) Rflettaza d u R al vaae della dffeeza degl dc d fazoe degl stat Rflettaza d u R al vaae del umeo d coe d stat eod)

13 PROGETTZIONE I UN R Scelta della lughezza d oda d λ a cu s vuole cetae lo seccho; Scelta de mateal: sobltà; asso costo; Poetà chmco-fsche fsche; Caactà ad essee deostat flm sottl Scelta del ocesso d cescta Poetà ottche I mateal devoo ossedee ua elevata dffeeza egl dc d fazoe

14 Calcolo degl sesso degl stat : d λ 4 L stato ad dce d fazoe moe) d L λ 4 L H stato ad dce d fazoe maggoe) d H λ 4 H

15 Smulazoe dello setto del R 6 4 N

16 Realzzazoe del R lcazoe ; Scelta del ocesso: lcazo; Tecologe dsobl; Comatbltà de mateal co la tecologa; Scelta del substato; Scelta del umeo d eod eoszoe degl stat. Comatbltà ta estazo e ocesso d cescta

17 GRZIE!

Lezione 18. Orbite e cicli di una permutazione.

Lezione 18. Orbite e cicli di una permutazione. Lezoe 8 Peequst: Lezo 4, 7. Obte e ccl d ua pemutazoe. I questa lezoe toducamo, pe u'abtaa pemutazoe, la cosddetta decomposzoe ccl dsgut, che e vela la stuttua, agevolado la detemazoe del suo peodo e della

Dettagli

08/04/2002 Lucidi-Spettroscopia Ottica, Ettore Vittone

08/04/2002 Lucidi-Spettroscopia Ottica, Ettore Vittone La uce etate ua ba ottca è tasessa ao spettoeto dove u po spetto seco ocazza a uce su u etcoo d dazoe. La uce datta cde qud su u secodo speccho seco. Lo spetto è qud poettato su ua atce eae d CCD ed dat

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

La metrica di Minkowski e la distanza generalizzata o di Mahalanobis. Note di Mary Fraire

La metrica di Minkowski e la distanza generalizzata o di Mahalanobis. Note di Mary Fraire La meca ow e la aa geealaa o ahalaob. Noe ay Fae. Rcham eoc S ee ule oae qu eguo, vao a e ecfc ca oa 9 ull agomeo alcu cham ulle ae ow e ahalaob. Coeao ue veo-ga a eleme ua mace a quav, a, R, eemo la eguee

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

2 PROPAGAZIONE DELLA LUCE

2 PROPAGAZIONE DELLA LUCE POPGZIONE DELL LUE Voglamo aalzzae che a succede quado u foe d oda coa sul suo cammo ua supefce esesa. Dobbamo dsguee caso cu la supefce sa ua supefce deleca o coduce. alzzamo azuo l caso cu la supefce

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

Robotica industriale. Quantità meccaniche. Prof. Paolo Rocco

Robotica industriale. Quantità meccaniche. Prof. Paolo Rocco Robotca ndustale Quanttà eccanche Pof. Paolo Rocco (aolo.occo@ol.t) Cento d assa Consdeao un sstea d unt ateal, cascuno de qual abba assa e la cu osone sa desctta dal vettoe setto ad una tena. Defnao cento

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

CIRCUITI EQUIVALENTI DELLE LINEE ELETTRICHE AEREE

CIRCUITI EQUIVALENTI DELLE LINEE ELETTRICHE AEREE Elettotecca : patmeto d Igegea dell Eega e de Sstem CIRCUITI EQUIVALENTI ELLE LINEE ELETTRICHE AEREE Coso d Lauea Igegea Elettca slde d 48 LE LINEE ELETTRICHE AEREE Sstem Tfase: lee elettche La peseza

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Regime di capitalizzazione composta

Regime di capitalizzazione composta Regme d capalzzazoe composa Se s deposa baca, all zo dell ao, ua somma d 000 ad u asso auale uaro =0,05 oppure r=5%, dopo ao ale somma frua u eresse par a I = = 000 0,05 = 50 che aggugedos al capale zale

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La edita fiaziaia U ispamiatoe, alla fie di ogi ao, vesa ua ata R di 6000 a ua baca che la capitalizza a u tasso d iteesse auo i del 3,5% Il motate M matuato alla fie

Dettagli

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 - ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

Quelle che più frequentemente si verificano nell esercizio delle trasmissioni di potenza per ingranaggi sono:

Quelle che più frequentemente si verificano nell esercizio delle trasmissioni di potenza per ingranaggi sono: Il pogeo o la veiica di ua coppia di uoe deae, dal puo di visa della esiseza suuale, si basa sulla valuazioe delle possibili avaie. Quelle che più equeemee si veiicao ell esecizio delle asmissioi di poeza

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

FORMULARIO DI ELETTROMAGNETISMO E DI OTTICA

FORMULARIO DI ELETTROMAGNETISMO E DI OTTICA Foulao d Elettoagetso e ottca Paga d 8 FOMULAIO DI ELETTOMAGNETISMO E DI OTTICA NOTA: le gadezze vettoal soo dcate eetto. ELETTOSTATICA ε ε ε costate delettca assoluta ; ε costate delettca elatva Nel vuoto

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

Matematica finanziaria avanzata III: la valutazione dei gestori

Matematica finanziaria avanzata III: la valutazione dei gestori Maemaca azaa aazaa III: la aluazoe de geso L dusa del spamo geso La aluazoe della peomace Redme Msue sk-adjused Msue basae su modell ecoomec Le gadezze lea I bechmak e le commsso La lodzzazoe de edme L

Dettagli

mentre in un mezzo materiale:

mentre in un mezzo materiale: Appu d Fsa Oa geomea OTTCA GEOMETRCA. Veloà d popagazoe delle ode eleomagehe e mezz soop. e ode eleomagehe (e qud ahe la lue) s popagao el uoo alla eloà: ε mee u mezzo maeale: ε ε ε ε maeal he asmeoo la

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Induzione Elettromagnetica

Induzione Elettromagnetica Iduzioe Elettromagetica U campo elettrico che iduce quidi ua correte elettrica produce u campo magetico. U campo magetico è i grado di produrre u campo elettrico? Quado o c e moto relativo fra il magete

Dettagli

Programma lezione XII

Programma lezione XII Lezioe XII Programma lezioe XII / Ottia la storia Ode di lue o partielle di lue? Riflessioe e rifrazioe Riflessioe totale Dispersioe Lezioe XII Ottia fisia - storia / Sio a tutto il medioeo, teologia,

Dettagli

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO CMPI DI OZ CONSEVTIVI - ENEGI POTENZIE E POTENZIE EETTICO Camp Vettoal Defzoe: u campo vettoale è ua egoe dello spazo, cu og puto è defto u vettoe. Ta camp vettoal d patcolae teesse fsca v soo camp d foza

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

Urti su scale diverse. m 1 m 2. tra particelle α Ν. t 4 ms. meteor-crater m. F r 21. r risultato di un contatto fisico

Urti su scale diverse. m 1 m 2. tra particelle α Ν. t 4 ms. meteor-crater m. F r 21. r risultato di un contatto fisico Ut uto: eeto solato el quale ua oza elataete tesa agsce e u teo elataete bee su due o ù co cotatto ta loo [aossazoe ulsa: tascuo oze estee] sultato d u cotatto sco F F sultato d ua teazoe ta atcelle eteo-cate

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

Schemi a blocchi. Sistema in serie

Schemi a blocchi. Sistema in serie Scem a blocc Nel caso ssem semplc, ques possoo essere scemazza meae blocc, ce rappreseao vers compoe, collega ra loro sere o parallelo a secoa ella logca uzoameo. Vl Valvolal solvee Sesore Pompa Pompa

Dettagli

1. L irraggiamento è la trasmissione di energia termica per opera delle onde elettromagnetiche.

1. L irraggiamento è la trasmissione di energia termica per opera delle onde elettromagnetiche. Il poblema del copo eo: etae el meito pe capie G.L. Michelutti IRRAGGIAMNO. L iaggiameto è la tasmissioe di eegia temica pe opea delle ode elettomagetiche.. Quado ua caica q subisce u acceleazioe a, essa

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

= 4. L unita di misura della carica elettrica nel S.I. è il coulomb (C).

= 4. L unita di misura della carica elettrica nel S.I. è il coulomb (C). LGG DI COULOMB (3) L unta d msua della caca elettca nel.i. è l coulomb (C). F π o La caca elettca d C è uella caca che posta nel vuoto ad m d dstanza da una caca elettca uguale la espnge con la foza d

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Laboratorio: Metodi quantitativi per il calcolo del VaR. Aldo Nassigh Financial Risk Management A.A. 2011/12 Lezione 4

Laboratorio: Metodi quantitativi per il calcolo del VaR. Aldo Nassigh Financial Risk Management A.A. 2011/12 Lezione 4 Laboatoo: Metod quanttatv pe l calcolo del VaR Aldo Nassgh Fnancal Rsk Management A.A. 011/1 Lezone 4 METODO PARAMETRICO Sngolo fattoe d scho e poszone lneae Poszone l cu valoe attuale è soggetto ad un

Dettagli

10. DIMENSIONAMENTO DEL CONTROVENTO DI FALDA

10. DIMENSIONAMENTO DEL CONTROVENTO DI FALDA Università egli Stui i Salerno - Facoltà i Ingegneria Corso i: Tecnica elle costruzioni II - Anno Accaemico 003 / 004 47 10. DIESIOAETO DEL COTROVETO DI FALDA Fk/ Fk Fk Fk Fk Fk Fk Fk Fk Fk Fk/ u 400 mm

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

Corrente elettrica. Conduttore in equilibrio. Condutture in cui è mantenuta una differenza di potenziale (ddp) E=0 V=cost

Corrente elettrica. Conduttore in equilibrio. Condutture in cui è mantenuta una differenza di potenziale (ddp) E=0 V=cost Coente elettca Conduttoe n equlbo B E 0 E0 cost B Conduttue n cu è mantenuta una dffeenza d potenzale (ddp) > B E 0 _ B Un campo elettco all nteno d un conduttoe appesenta una stuazone d non equlbo. Un

Dettagli

c n OTTICA GEOMETRICA RIFLESSIONE E RIFRAZIONE INDICE DI RIFRAZIONE

c n OTTICA GEOMETRICA RIFLESSIONE E RIFRAZIONE INDICE DI RIFRAZIONE OTTICA GEOMETRICA U oda e.m. si propaga rettilieamete i u mezzo omogeeo ed isotropo co velocità c v = > si chiama idice di rifrazioe e dipede sia dal mezzo sia dalla lughezza d oda della radiazioe RIFLESSIONE

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

1 Previsione matematica

1 Previsione matematica Giorata di studio per doceti Esercitazioe pratica sulla telefoia mobile Calcolo della previsioe matematica delle Radiazioi No Ioizzati (RNI) Caobbio, 12 ottobre 2005 Ig. Mario Della Vecchia, SUPSI, TTHF

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

La distribuzione statistica doppia (o bivariata)

La distribuzione statistica doppia (o bivariata) Marlea Pllat - Semar d Statstca (SVIC) "Le dstrbuzo doppe" La dstrbuzoe statstca doppa (o bvarata) Se u seme d utà statstche s osservao gl stat d gradezza assut da due caratter e s ottee ua -pla statstca

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Relazioni statistiche

Relazioni statistiche buo delle doe apput Coo d Stattca - caale E- - modulo bae - a.a.007-08 Relazo tattche I ua dtbuzoe tattca doppa o multpla può tudae la: coeoe - e al vaae d uo de caatte l alto mae cotate o vaa modo udezoale

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Università degli Studi di Cagliari

Università degli Studi di Cagliari Università degli Studi di Cagliari Facoltà di Scienze Corsi di Laurea in Fisica Tesi di Laurea Triennale Crittografia Quantistica Relatore: Michele Saba Candidata: Samuela Furcas Anno Accademico 2014/2015

Dettagli

La necessità di trasmettere potenza tra organi in moto rotatorio è un problema frequentissimo e di grande importanza nell ingegneria.

La necessità di trasmettere potenza tra organi in moto rotatorio è un problema frequentissimo e di grande importanza nell ingegneria. La ecessità di tasmettee poteza ta ogai i moto otatoio è u poblema fequetissimo e di gade impotaza ell igegeia. Gli assi di otazioe ta i quali deve essee tasmesso il moto possoo essee paalleli I questo

Dettagli

L OCCHIO. L OCCHIO: Proprietà Ottiche

L OCCHIO. L OCCHIO: Proprietà Ottiche L OCCHIO La truttura dell cch può esser trvata svarat test, put fdametal per quat rguarda l str teresse: studad l spettr Elettr-Magetc s s trvat due ftrecettr c (per l rss, l blu ed l verde) bastcell (vse

Dettagli

MISURE E GRANDEZZE FISICHE

MISURE E GRANDEZZE FISICHE R. Campaella Ig. Meccaca v. Peruga Gradezze fsche Rev. 12.02.21 MISRE E GRANDEZZE FICHE 1 Itroduzoe Nella descrzoe de feome la fsca s serve d legg, elle qual tervegoo gradezze fsche qual: la lughezza,

Dettagli

Sanna-Randaccio Lezioni n 13

Sanna-Randaccio Lezioni n 13 Sanna-Randaccio ezioni n 13 Teoema di Stole-Samuelson: effetti dell aetua al libeo scambio (e del otezionismo) sulla distibuzione del eddito ta caitale e lavoo all inteno dei aese. Teoema di Rbcznski:

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

Sistemi ottici - Lenti sottili. Lente semplice: materiale trasparente delimitato da due superfici sferiche

Sistemi ottici - Lenti sottili. Lente semplice: materiale trasparente delimitato da due superfici sferiche Sstem ttc - Let sttl Immage d u ggett putfrme data da u sstema stgmatc: putfrme reale vrtuale Lete semplce: materale trasparete delmtat da due superfc sferche Se, dstaza tra vertc delle due superfc, è

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

S i g n o r V i c e M i n i s t r o p e r l U n i v e r s i t à, A u t o r i t à, M a g n i f i c i R e t t o r i, c a r i C o l - l e g h i, c a r i S t u d e n t i, S i g n o r e e S i g n o r i, r i

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIAIA Prof. Adrea Berard 999 4. MUTUI E PIANI I AMMOTAMENTO Corso d Maeaca Fazara 999 d Adrea Berard Sezoe 4 0 CONTATTO I MUTUO Il corao d uuo è u operazoe fazara corrspodee ad ua parcolare

Dettagli

Introduzione. w slot. piano metallico indefinito

Introduzione. w slot. piano metallico indefinito Apput d Atee Cptolo 6 Atee fessu toduoe... Studo del cmpo dto tmte le coet equvlet...3 Clcolo dell esste d doe...7 Sche d slot su ud d od ettole...9 Rchm sulle ude d od ettol...9 Applcoe d slot sulle pet

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Lezione 9. Congruenze lineari. Teorema Cinese del Resto.

Lezione 9. Congruenze lineari. Teorema Cinese del Resto. Lezoe 9 Prerequt: Lezoe 8. Cogrueze lear. Teorema Cee el Reto. Nella Lezoe 8 abbamo vto che a caua ella compatbltà ella cogrueza moulo rpetto alle operazo artmetche le relazo cogrueza moulo pooo eere ottopote

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Distribuzioni doppie

Distribuzioni doppie Distibuzioi doppie Quado vegoo osideate ogiutamete due oloe di ua matie di dati si ha ua distibuzioe doppia disaggegata (o uitaia). Si tatta dell eleazioe delle modalità di due aattei ( X e Y ) ossevate

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

maturità 2015

maturità 2015 wwwmatematicameteit matuità QUETIONIO Detemiae l esessioe aalitica della fuzioe =f saedo ce la etta =-+ è tagete al gafico di f el secodo quadate e ce f =- + Dimostae ce il volume del toco di coo è esesso

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Le strutture in cemento armato. Ipotesi di calcolo

Le strutture in cemento armato. Ipotesi di calcolo Le trutture emeto armato Ipote d alolo Prova d ua trave.a. Feurazoe Servameto ollao 11.118 5 Dagramma Curvatura-ometo Fae III ometo (knm) 15 kn? m 1 5 Fae II Fae I V? 4.56 5.5.5.1.15.? 3.731? 1? 4? Curvatura

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale.

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale. III Eserctazoe: Stes delle dstrbuzo semplc secodo u carattere qualtatvo ordale. Eserczo 3 dvdu ao seguet ttol d studo: Lceza elemetare, Lceza elemetare, ploma, Lceza meda, Lceza elemetare, Lceza meda,

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

Lezione 3: Segnali periodici

Lezione 3: Segnali periodici eoria dei segali Segali a poteza media fiita e coversioe A/D Lezioe 3: Aalisi i frequeza Esempio di calcolo 005 Politecico di orio eoria dei segali aalisi i frequeza Poteza media Sia dato u segale (t)

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

REGIONE TOSCANA Giunta Regionale

REGIONE TOSCANA Giunta Regionale Gu Rg D G D C C Fm, I A. N AOOGRT/ 0272442 /Q.90.70 F, 24/10/2013 Ag Mgg ug 2013 Mgg g ug 2013 Ogg Mgg fmu ug 2013. A A D u Lug M EDE A D G DG D C C V G EDE A Rb A Cm m A L EDE A D G A UL T EDI C DGRT

Dettagli

ammontare del carattere posseduto dalle i unità più povere.

ammontare del carattere posseduto dalle i unità più povere. Eserctazoe VII: La cocetrazoe Eserczo Determare l rapporto d cocetrazoe d G del fatturato medo (espresso. d euro) d 8 mprese e rappresetare la curva d Lorez: 97 35 39 52 24 72 66 87 Eserczo apporto d cocetrazoe

Dettagli

MODELLO 730/2015 redditi 2014 dichiarazione semplificata dei contribuenti che si avvalgono dell'assistenza fiscale. Dlchlarazlone NOME

MODELLO 730/2015 redditi 2014 dichiarazione semplificata dei contribuenti che si avvalgono dell'assistenza fiscale. Dlchlarazlone NOME MOELLO 730/2015 redditi 2014 dichiarazioe semplificata dei cotribueti che si avvalgoo dell'assisteza fiscale ( gezia ò..-...!lotratew Gli importi devoo essere idicati i uità di Euro Mod. N. O 1 CONTRIBUENTE

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Gli urti impulso teorema dell impulso

Gli urti impulso teorema dell impulso Gl ut Spesso abbao bsogno d conoscee coa una oza dpende dal tepo, n quanto solee l poblea utlzzando le eazon enegetche non è possble o sucente. Intoducao alloa la seguente quanttà ettoale chaata pulso.

Dettagli

W T X X X' ( W T X X W X X' t X t X ( t X t X. t X t X t X t X X X T. t X t X ( t X t X W X X

W T X X X' ( W T X X W X X' t X t X ( t X t X. t X t X t X t X X X T. t X t X ( t X t X W X X 1 - o tamo ama ma daprè bale Pocaterra cpoe acorca o tamo ama ma orre ovete dre & ardo a lao Cude la voce etro le labrmore E veroe tmore E m fa duom vvo u muto ao. mor ce e tu vuo cel mo martre o pur tacca

Dettagli

ITCG LST L. Einaudi S.Giuseppe Vesuviano (NA) 2010/ Saperi essenziali di Fisica prof. Angelo Vitiello

ITCG LST L. Einaudi S.Giuseppe Vesuviano (NA) 2010/ Saperi essenziali di Fisica prof. Angelo Vitiello ITG LST L. Enaud S.Guseppe esuvano (N / - Sape essenzal d Fsca pof. ngelo tello Elettostatca L elettostatca è la pate della fsca che studa le nteazon fa cache elettche non n movmento (o tascuandone l movmento

Dettagli

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C.

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C. Serie 19: Relatività VIII FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Considera la collisione frontale di due particelle A e B di massa M A = M B = M e v A = v B = 3/5c, tale che alla

Dettagli