Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase"

Transcript

1 3. Effeo della variazioni di parameri del PLL - A Un PLL uilizza come demodulaore di fase un moliplicaore analogico, e il livello dei segnali sinusoidale di ingresso (Vi) e locale (Vo) è ale da manenere il moliplicaore in linearià. Il ha una caraerisica lineare. Deerminare gli effei sui campi di caura e di manenimeno delle segueni variazioni: Inserimeno di un amplificaore con guadagno A = 2 Inserimeno di un aenuaore con guadagno A = 0,5 Sull ingresso (Vi) Tra e demodulaore di fase (Vo) ra demodulaore di fase e filro (Vd) ra filro e (Vc) D requenza di aglio del filro dimezzaa requenza di aglio del filro raddoppiaa 3.2 Effeo della variazioni di parameri del PLL - B Ripeere l esercizio 3. per PLL con Ingresso Vi a onda quadra, di ampiezza ale da far saurare il moliplicaore. Segnale locale Vo a onda quadra, di ampiezza ale da far saurare il moliplicaore. Ingresso Vi e segnale locale Vo a onda quadra, di ampiezza ale da far saurare il moliplicaore. Demodulaore a EX-OR con comparaori su enrambi gli ingressi. 3.3 Campo di caura Per un PLL del I ordine con filro RC ricavare l'espressione analiica del campo di caura in funzione dei parameri Ko Kd e della cosane di empo del polo. La ensione Vc = Vd (jω D ) dove ω D è lo scosameno rispeo a ω OR, e V D è la massima ampiezza della v D (uscia del D). Per un filro RC (jω D ) = /(jω D RC+) (jω) = ( ωrc) 2 + Vc (jω) = 2 ( ω D RC) + In prima approssimazione si ha aggancio quando Vc = ω D /Ko e, combinando le due relazioni: Vc = ω D /Ko Vc = Vd (jω D ) = ω D /Ko Campo di caura Il campo di caura corrisponde all inervallo ω OR - ω D -! ω OR + ω D, dove ω D è definia impliciamene dalla relazione: ω D ω or ω Vd = ω 2 D / Ko ( ωdrc) + ETLes03x.doc - 4-Jun-00

2 3.4 Demodulaore di ampiezza coerene - A Tracciare lo schema a blocchi di un demodulaore di ampiezza coerene.. Indicare dove collocare un filro passa banda per migliorare le presazioni, 2. Indicare dove collocare un compressore di dinamica per rendere l'inervallo di frequenze di funzionameno indipendene dall'ampiezza del segnale di ingresso. 3. Indicare quali modifiche circuiali permeono di ridurre la sensibilià alle variazioni di frequenza.. ilro passa banda: 2. Compressore di dinamica: C 3. Per ridurre la sensibilià alle variazioni di frequenza occorre aumenare il guadagno d anello (Kd Ko 2(0)). C V a D DA 2 3 V m 3.5 Demodulaore di ampiezza coerene - B Un segnale AM ha porane di 0 MHz nominali; il segnale modulane ha una banda di 20 khz. L'oscillaore del rasmeiore ha un errore in frequenza dello 0,4%, ed è collocao su mezzo mobile per cui può avere uno scosameno doppler fino a 0 khz. Tracciare lo schema a blocchi di un demodulaore di ampiezza coerene, e indicare le caraerisiche dei filri di ingresso (passa banda), di anello (PLL) e di uscia (demodulaore). Spero occupao: khz (modulazione AM, segnale X(f)) Sposameni di frequenza: - errore di frequenza del rasmeiore: 40 khz - effeo doppler: 0 khz Sposameno oale = 50 khz; il filro di anello deve essere dimensionao per un campo di caura di almeno 50 khz (2 nel 3.4). Banda del filro passa-banda di ingresso ( in 3.4): X(f) 40 khz 50 khz Passa-banda 90 khz = 90 khz (cenrai su 0 MHz) ilro di uscia del demodulaore (3 in 3.4): M(f) 20 khz Passa-basso di uscia Passa-basso, con banda 20 khz ETLes03x.doc - 4-Jun-00 2

3 3.6 Caraerisica a farfalla Indicare la disposizione di srumeni che permee di racciare direamene su un oscilloscopio la caraerisica a farfalla di un PLL. Il generaore fornisce il segnale di ingresso Vi, modulao in frequenza con andameno riangolare dal generaore 2. Generaore (Vi) D Generaore 2 (scansione in frequenza) Oscilloscopio X Y A La figura ripora lo schema di un ipo Tracciare le forme d onda Va e Vb Deerminare il campo di frequenza e la cosane Ko per: C = 220 p R = 0 kω R2 = 22 kω Vdd = 5 V Vc =... 5 V V = 3,5 V (soglia dei comparaori) (fare l ipoesi che ui i MOS siano idenici e abbiano Vgs = 0,5 V) V DD I I 2 R R 2 V A I V B Il empo richieso per porare la ensione sul condensaore da 3,5 a +3,5 V (semiperiodo T A ) è: V = I / C V A T A V T A = C V /I; = / 2T A = I / (2 C V) I = I + I2 = (Vc 0,5)/R + (Vdd 0,5) /R2 V B = 0,5/0k + 4,5 / 22k = 254 µa (correne minima) min = 254 µa / (7 V x 440 p) = 82,4 khz I = ( Vc 0,5)/R = 3,5/0k = 35 µa (correne minima) = 35 µa / (7 V x 440 p) =,35 khz ETLes03x.doc - 4-Jun-00 3

4 3.8 - B La figura ripora lo schema di un ipo 567. Tracciare la forma d onda sul condensaore. Deerminare il campo di frequenza e la cosane Ko per C = 220 p R = 5 kω R2 = 47 kω R3 = 2 kω Vdd = 5 V Vc = V R V c R 2 R 3 V Q V DD Valuare l effeo delle corrni di ingresso dei comparaori sul campo di frequenza V S C V S T A V S = (V' c VDD) e τ + VDD Per Vs = V c = T A e il cambia sao: V c TA τ V' c V = DD lg Vc VDD V Q Le correni di ingresso dei comparaori (ipoizzae cosani) deerminano una variazione aggiuniva della ensione sul condensaore C, con andameno lineare nel empo. Dao che quesa variazione ha sempre lo sesso verso, inroduce una asimmeria nel periodo ma, in prima approssimazione, non deermina variazioni di frequenza. 3.9 Demodulaore di fase a EX-OR I segnali Vi e Vo applicai a un demodulaore di fase a EX-OR hanno duy cycle rispeivamene del 50% e del 30%. Deerminare il campo di sfasameno su cui può essere uilizzao il demodulaore. 50 Una raslazione di Vo verso cresceni corrispondene a 20/00 di periodo parendo da sfasameno 0 non modifica il valor medio dell uscia. Analoga considerazione vale parendo da sfasameno π, per raslazioni verso decresceni V H 0,8 V H Il campo di funzionameno uile del demodulaore di fase, in cui a variazioni di fase corrispondono variazioni della Vd è pari a 0,6 π, cenrao su π/2. 0,2 V H 0,2 π π 0,8 π θ e ETLes03x.doc - 4-Jun-00 4

5 3.0 Demodulaore AM coerene - C Un demodulaore di ampiezza sincrono deve operare sul campo khz con errore dovuo alla variazione di frequenza inferiore al 5%. Il PLL uilizza un D a EX-OR CMOS, con alimenazione 5 V, filro RC, con Ko = 0kHz/V. Deerminare il minimo valore di (0) richieso per rispeare la specifica. Al variare della frequenza la risposa del demodulaore di ampiezza varia secondo il cos θ e. Per limiare la variazione enro i limii richiesi deve essere cos θ e > 0,95, quindi θ e < 0,32 rad. Lo scosameno di frequenza di 5 khz richiede una ensione di correzione Vc = 5 khz/ko = 0,5 V Per un demodulaore a EX-OR CMOS con alimenazione 5 V (Vl = 0, Vh = 5V), Kd = 5V/π =,59 V/rad Per lo sfasameno di 0,32 rad la ensione Vc = 0,32 Kd (0). Il valore di (0) richieso è quindi (0) > 0,5 V/(0,32 rad x,59 V/rad) = 0,98 3. Demodulaore AM coerene - D Come esercizio precedene, ma il PLL uilizza un D analogico con Km = 0,2, segnali Vi e Vo con ampiezza picco-picco 3V, filro RC, con Ko = 0kHz/V.. Cambia solo il Kd = Km Vi Vo / 2 3. Errore di fase a regime Deerminare l'errore di fase a regime θ er per un PLL con ingresso: gradino di fase di,5 rad gradino di frequenza di 0,7 krad/s nelle diverse condizioni: cosane del D Kd = 0,5 V/rad filro d'anello con (0) = /3/0,5/oo θ er = ETLes03x.doc - 4-Jun-00 5

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

GENERATORE D'ONDA TRIANGOLARE E D'ONDA QUADRA

GENERATORE D'ONDA TRIANGOLARE E D'ONDA QUADRA GENEAOE D'ONDA IANGOLAE E D'ONDA QUADA Un generaore di onda riangolare può essere realizzao enendo cono che un inegraore, solleciao in ingresso con un onda quadra, fornisce in uscia un onda riangolare

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

Il campo di cattura deve coprire le possibili frequenze di portante, quindi da 50 a 55 MHz.

Il campo di cattura deve coprire le possibili frequenze di portante, quindi da 50 a 55 MHz. Prova scritta del 10/07/01 ver A tempo: 2 ore Esercizio 1) Un segnale modulato in ampiezza è formato da una portante con frequenza compresa tra 50 e 55 MHz, con segnale modulante che occupa la banda tra

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Il PLL: anello ad aggancio di fase

Il PLL: anello ad aggancio di fase 9 Il PLL: anello ad aggancio di ase l PLL (Phase-Locked Loop) è un circuio, le cui applicazioni sono descrie nel SOTTOPARAGRAFO 9., cosiuio da re blocchi (FIGURA ) che realizzano un sisema in reroazione

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

Modello di una macchina in corrente continua

Modello di una macchina in corrente continua Modello di una macchina in correne coninua Consideriamo un moore in correne coninua con ecciazione indipendene, in generale per esso poremo scrivere le segueni relazioni: e( ) = K Φ ω( ) v dia ( ) ( )

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di ELETTRONICA INDUSTRIALE Conrollo di correne del converiore Buck Argomeni raai Argomeni raai Conrollo di ensione con limiazione di correne Argomeni raai Conrollo di ensione con limiazione di correne

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

ElapE3 23/11/ DDC 1 ELETTRONICA APPLICATA E MISURE. Ing. Informatica/Telecomunicazioni. Lez. E3: regolatori a commutazione

ElapE3 23/11/ DDC 1 ELETTRONICA APPLICATA E MISURE. Ing. Informatica/Telecomunicazioni. Lez. E3: regolatori a commutazione Ing. Informaica/Telecomunicazioni ez. E3: regolaori a commuazione EETTRONICA APPICATA E MISURE ane E CORSO eonardo REYNERI E3 REGOATOR COMMUTAZIONE» Regolaori a parzializzazione» Regolaori buck e boos»

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di EETTRONICA INDUSTRIAE Converiore Boos Converiore innalzaore di ensione (boos) Converiore innalzaore di ensione (boos) U i S D C U o Converiore innalzaore di ensione (boos) U i S D C U o Noe: 1)

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Eleroecnica Teoria dei Circuii Regime lenamene variabile v(), i(), p() funzioni del empo Esempio: a() a Relazioni: non algebriche, ma inegro-differenziali

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

Moltiplicazione di segnali lineari

Moltiplicazione di segnali lineari Moliplicazione di segnali lineari Processo non lineare: x ( x ( x ( Meodologia uilizzaa per: Campionameno ed acquisizione dai Processi di comunicazione (modulazione Abbiamo viso con il campionameno dei

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

TIMER 555 E CIRCUITI DI IMPIEGO

TIMER 555 E CIRCUITI DI IMPIEGO ME E U MEGO U EL OF. GNLO FON...S.. MONO - OSENZ NE imer e circuii di impiego...ag. Mulivibraore asabile col imer...ag. Mulivibraore monosabile col imer.... ag. rieri di progeo.ag. 6 rogeo e verifica di

Dettagli

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine APPUNTI INTEGATIVI Provvisori circa: isposa in Frequenza: Inroduzione ai Filri Passivi e Aivi Filri del I ordine. Passa-Basso Consideriamo la funzione di ree: Trasferimeno in ensione ai capi di un condensaore

Dettagli

ELEMENTI DI BASE PER IL LABORATORIO DI ELETTRONICA

ELEMENTI DI BASE PER IL LABORATORIO DI ELETTRONICA ELEENI DI BASE PER IL LABORAORIO DI ELERONICA. ulipli e soomulipli Per esprimere in forma concisa valori molo grandi o molo piccoli si uilizzano i mulipli e i soomulipli. ulipli Nome Simbolo Faore moliplicaivo

Dettagli

REOVIB REOVIB VUI-126. Convertitore di misura per trasduttori di accelerazione AZIONAMENTI PER SISTEMI DI TRASPORTO A VIBRAZIONE

REOVIB REOVIB VUI-126. Convertitore di misura per trasduttori di accelerazione AZIONAMENTI PER SISTEMI DI TRASPORTO A VIBRAZIONE Informazioni di prodoo REOVIB VUI-126 Converiore di misura per rasduori di accelerazione REO ITALIA S.r.l. Via Treponi, 29 I- 2586 Rezzao (BS) Tel. (3) 2793883 Fax (3) 296 hp://www.reoialia.i email : info@reoialia.i

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO CENTRO PER LO SVILUPPO DEL POLO DI CREMONA Corso di Laurea Ingegneria INFORMATICA LABORATORIO DI FONDAMENTI DI ELETTRONICA Anno --- Semesre Eserciazione n Si consideri il conaore

Dettagli

Circuiti del primo ordine

Circuiti del primo ordine Circuii del primo ordine Un circuio del primo ordine è caraerizzao da un equazione differenziale del primo ordine I circuii del primo ordine sono di due ipi: L o C Teoria dei Circuii Prof. Luca Perregrini

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Page 1. Elettronica per l informatica ELINF - B1 28/04/ DDC 1. Facoltà dell Informazione. Contenuti di questo gruppo.

Page 1. Elettronica per l informatica ELINF - B1 28/04/ DDC 1. Facoltà dell Informazione. Contenuti di questo gruppo. Facolà dell Informazione Conenui di queso gruppo Modulo Eleronica per l informaica B1 Gesione e conversione dell energia» Tipi e parameri di converiori» Richiami su componeni aivi» Alimenaori AC-DC» Baerie»

Dettagli

Voltmetri AC analogici

Voltmetri AC analogici oleri AC analogici Risposa dei voleri per AC oleri a valore edio raddrizzao (voleri con raddrizzaore) oleri a valore efficace (voleri rs) oleri a valore di picco (voleri di cresa) 1 oleri AC analogici

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Convertitore flyback. Convertitore flyback

Convertitore flyback. Convertitore flyback onveriore flyback Derivao dal converiore base buckboos buckboos flyback i d R R onveriore flyback Derivao dal converiore base buckboos Isolameno ra ingresso ed uscia Muli oupu a ensioni diverse Uilizzao

Dettagli

Esercitazioni Link Budget

Esercitazioni Link Budget Eserciazioni Link Budge P. Lombardo IET, Univ. di oma La Sapienza Esercizi Link Budge - Equazione radar (I) Cosruzione dell equazione radar a) radarbersaglio a disanza con anenna direiva: p (,, ) PG(,

Dettagli

Azionamenti Elettrici

Azionamenti Elettrici Azionameni Elerici 2.4. CONVERTITORI DC/DC... 33 2.4.1. Conrollo dei converiori DC/DC... 33 2.4.2. FullBridge converer (DC/DC)... 34 2.4.2.1. PWM con commuazione di ensione bipolare...35 2.4.2.2. PWM con

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Inroduzione e modellisica dei sisemi Modellisica dei sisemi eleromeccanici Principi fisici di funzionameno Moore elerico in correne coninua (DC-moor) DC-moor con comando di armaura DC-moor con comando

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

SOMMARIO. AMPLIFICATORI OPERAZIONALI II applicazioni non lineari e particolari

SOMMARIO. AMPLIFICATORI OPERAZIONALI II applicazioni non lineari e particolari SOMMAO APPLAZON NON LNEA DEGL AMPLFATO OPEAZONAL OA... omparaore non inverene... omparaore inverene... omparaori a finesra... omparaore con iseresi inverene (Trigger di Schmi)...3 omparaore con iseresi

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 0/0/00 Corso di Laurea in Ingegneria Inormaica (Laurea on Line) Corso di Fondameni di elecomunicazioni Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello di veriicare

Dettagli

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza :

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza : L impedena RASSUNTO Richiamo: algebra dei numeri complessi FASOR Derivae e inegrali Esempio: circuio RC Transiene Soluione saionaria l conceo di impedena : Resisena: Z R R nduana: Z L ω L Capacia : Z C

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO De3 ESERCIZI PARTI B e D» Esempi di esercizi da scritti di esame AA 2015-16 01/12/2015-1 ElapDe2-2014 DDC Page 1 2014 DDC 1 De3:

Dettagli

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA Giorgio Porcu Appuni di SSTEM T Eleronica lasse QUNTA Appuni di SSTEM T Eleronica - lasse QUNTA 1. TEORA DE SSTEM SSTEMA ollezione di elemeni che ineragiscono per realizzare un obieivo. l ermine è applicabile

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di A. A 3/4 e 4/5 Ulimo aggiornameno 4//9 Premessa egime sazionario Un sisema elerico è in

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

TECNICHE DI PILOTAGGIO DELL INVERTER TRIFASE

TECNICHE DI PILOTAGGIO DELL INVERTER TRIFASE TECNICHE DI PILOTAGGIO DELL INERTER TRIFASE NOZIONI DI BASE Lo schema di un inverer rifase a impressa è illusrao in Fig... Esso è composo da re rami (insiemi di due inerruori bidirezionali collegai in

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

VERIFICA DEL FUNZIONAMENTO DI UN PLL INTEGRATO

VERIFICA DEL FUNZIONAMENTO DI UN PLL INTEGRATO Corso di elettronica per telecomunicazioni - 4 esercitazione VERIFICA DEL FUNZIONAMENTO DI UN PLL INTEGRATO Docente del corso: prof. Giovanni Busatto Galletti Riccardo Matr. 165 Riccardo Galletti - www.riccardogalletti.com/appunti_gratis

Dettagli

Elettronica di potenza - I Lezione

Elettronica di potenza - I Lezione Eleronica di poenza - I Lezione Le migliori presazioni, la facilià di conrollo e la riduzione dei cosi dei moderni disposiivi di poenza a semiconduore rispeo a quelli di pochi anni fa, hanno permesso di

Dettagli

Regolatori switching

Regolatori switching 2 A4 Regolaori swiching I regolaori di ensione lineari hanno il grave difeo di non consenire il raggiungimeno di valori di efficienza paricolarmene elevai. Infai, in quese archieure gli elemeni di regolazione

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni Tektronix CFG280 Generatore di Funzioni Tektronix CFG280 Genera i segnali di tensione

Dettagli

MISURE DI SPOSTAMENTO

MISURE DI SPOSTAMENTO ESTENSOMETRO F A MISURE DI SPOSTAMENTO L F ISTA A - A A 1 esensimeri 2 Misure di sposameno : - lineare - angolare Misure di sposameno : - Quasi saiche (allineameno di un roore con comparaori) - Tempovariani

Dettagli

Modulazioni di ampiezza

Modulazioni di ampiezza Modulazioni di ampiezza 1) Si consideri un segnale z(t) modulato in ampiezza con soppressione di portante dal segnale di informazione x(t): z(t) = Ax(t)cos(2πf 0 t) Il canale di comunicazione aggiunge

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

Soluzione degli esercizi del Capitolo 10

Soluzione degli esercizi del Capitolo 10 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. La funzione d anello è L(s) = R(s)G(s) = ( + s) 2 il cui diagramma del modulo è mosrao nella Figura S.. Da ale grafico si deduce che risula

Dettagli

PRINCIPALI TIPI DI SEGNALI ELETTRICI

PRINCIPALI TIPI DI SEGNALI ELETTRICI PRINCIPALI IPI DI SEGNALI ELERICI PROF. MASSIMO SCALIA E CON Ing. Fabrizio Guidi Do. Massimo Sperini Ing. Giampaolo Giraldo SOCIEÀ EDIRICE ANDROMEDA Sommario. Il conceo di segnale..... Classificazione

Dettagli

Indice. Componenti discreti non lineari. Quadripoli e amplificatori. modulo A. modulo B

Indice. Componenti discreti non lineari. Quadripoli e amplificatori. modulo A. modulo B Indice modulo A Componeni discrei non lineari Unià di lavoro A1 Il diodo raddrizzaore 1 Noe preliminari 1 Il diodo raddrizzaore 1 Diodo ideale e diodo reale 13 3 I circuii raddrizzaori 15 Raddrizzaori

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

MISURE SU UN ALIMENTATORE STABILIZZATO

MISURE SU UN ALIMENTATORE STABILIZZATO MISUE SU UN LIMENTTOE STBILIZZTO 1 Inroduzione L'alimenaore sabilizzao è uno degli srumeni più diffusi in laboraorio, poiché genera la ensione coninua normalmene usaa per alimenare i circuii eleronici

Dettagli

ω 1 è la frequenza di taglio inferiore ω 2 = ω 1 = 0 ω 2 è la frequenza di taglio superiore Α(ω) Α(ω) ω ω 1 ω 2

ω 1 è la frequenza di taglio inferiore ω 2 = ω 1 = 0 ω 2 è la frequenza di taglio superiore Α(ω) Α(ω) ω ω 1 ω 2 . Studio della loro risposta ad un onda quadra 1 Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento Sommario Lezione 15 Converiore di ipo Flash Converiore a gradinaa Converiore a rampa Converiore ad approssimazioni successive (SA) Converiore di ipo SigmaDela Esempi di converiori preseni a bordo di mc

Dettagli

Geometria differenziale delle curve.

Geometria differenziale delle curve. Geomeria differenziale delle curve Curve paramerizzae Definizione Una curva paramerizzaa in IR n è un applicazione γ γ γ: I IR n,, γ n dove I = [a, b] IR è un inervallo della rea reale con a < b + γa γ

Dettagli

A K CARICHE MOBILI POSITIVE

A K CARICHE MOBILI POSITIVE L DODO SEMCONDUTTOE Polarizzando una giunzione P-N si oiene un paricolare componene doao di una sraordinaria capacià: quella di condurre correne se polarizzao direamene e di non condurla se polarizzao

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2 Circuiti in corrente alternata. Uso di un generatore di funzioni (onda quadra e sinusoidale); 2.

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e emi d esame sull oscillaore armonico 4-marzo4 1. Una massa M = 5. kg è sospesa ad una molla di cosane elasica k = 5. N/m ed oscilla vericalmene. All

Dettagli

Funzioni ausiliarie d'automazione

Funzioni ausiliarie d'automazione Funzioni ausiliarie d'auomazione Caraerisiche: iferimeni: Componeni di proezione elè di misura e di conrollo Zelio Conrol elè di conrollo delle rei rifase M4-T Presenazione Funzioni Quesi apparecchi sono

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC SiElnB3 2/9/ Ingegneria dell Informazione Obieivi del gruppo di lezioni B Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.3 - Tipologie di amplificaori» Comporameno dinamico di amplificaori»

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento.

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento. ITEC - ELETTRONICA ED ELETTROTECNICA Sessione ordinaria 206 ARTICOLAZIONE ELETTRONICA Tema di: ELETTROTECNICA ED ELETTRONICA Soluzione: prof. Stefano Mirandola PRIMA PARTE ) 2) Schema a blocchi e progetto

Dettagli

PLL (anello ad aggancio di fase)

PLL (anello ad aggancio di fase) PLL (anello ad aggancio di fase) Il PLL ( Phase Locked Loop, anello ad aggancio di fase) è un circuito integrato a reazione negativa. E un componente molto versatile e può essere usato come: demodulatore

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di tensione Uscita

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini Auomazione Indusriale AA 2002-2003 Prof. Luca Ferrarini Laboraorio 1 Obieivi dell eserciazione Sviluppare modelli per la realizzazione di funzioni di auomazione Comprensione e uilizzo di Ladder Diagrams

Dettagli

9. Conversione Analogico/Digitale

9. Conversione Analogico/Digitale 9.1. Generalià 9. Conversione Analogico/Digiale 9.1. Generalià In un converiore analogico/digiale, il problema di fondo consise nello sabilire la corrispondenza ra la grandezza analogica di ingresso (che

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA CI OCCUPEREMO DI 1) Legge di Okun Relazione ra la variazione della disoccupazione e la deviazione del asso di crescia della produzione dal suo asso naurale

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

MODELLI AFFLUSSI DEFLUSSI

MODELLI AFFLUSSI DEFLUSSI MODELLI AFFLUSSI DEFLUSSI Al ecnico si presenano moli casi in cui non è sufficiene la deerminazione delle massime porae ramie i crieri di similiudine idrologica, precedenemene esposi. Si ciano, a iolo

Dettagli

Lezione 4 Material Requirement Planning

Lezione 4 Material Requirement Planning Lezione 4 Maerial Requiremen Planning Obieivo: noi gli alberi di prodoo per ciascun ipo; daa una sringa di loi di prodoi finii (fabbisogni dei clieni), ciascun loo da complearsi enro un dao inervallo (se.)

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Alcuni strumenti per misure di portata e velocità

Alcuni strumenti per misure di portata e velocità Capiolo 8 lcuni srumeni per misure di poraa e velocià 8. Meodi sperimenali per misure di velocià lcune delle principali ecniche che si uilizzano in fluidodinamica per misure di velocià (o poraa) sono riassune

Dettagli

2. MASSIMA TRAZIONE OTTENIBILE DALLA CINGOLATURA

2. MASSIMA TRAZIONE OTTENIBILE DALLA CINGOLATURA 2. MASSIMA TRAZIONE OTTENIBILE DALLA CINGOLATURA Bibliografia : [11] 2.1. Considerazioni inroduive Lo sforzo di razione della cingolaura è conseguenza degli sforzi di aglio di reazione che si producono

Dettagli

L imposta personale sul reddito

L imposta personale sul reddito L imposa personale sul reddio pporunià praiche spingono alvola a non includere il valore effeivo di alcuni reddii nella base imponibile ma valori forfeari (es rendie caasali) Il calcolo dell imposa prevede

Dettagli

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Dinamica del puno maeriale Scuola di Ingegneria e Archieura UNIBO Cesena Anno Accademico 2015 2016 Principi fondamenali Sir Isaac Newon Woolshorpe-by-Colserworh, 25 dicembre 1642 Londra,

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

Controllo di Manipolatori (Calcolo delle Traiettorie 2)

Controllo di Manipolatori (Calcolo delle Traiettorie 2) Conrollo di Manipolaori (Calcolo delle Traieorie 2) Ph.D Ing. Folgheraier Michele Corso di Roboica Prof. Gini Anno Acc.. 2006/2007 Scela della velocià nei puni di via con meodo Eurisico: 2) Il sisema con

Dettagli

2. Definiamo il rapporto Debito Pubblico / Pil e le sue determinanti principale conclusione:

2. Definiamo il rapporto Debito Pubblico / Pil e le sue determinanti principale conclusione: DEITO PULICO In quesa lezione:. definiamo il vincolo di bilancio del overno e sudiamo le conseuenze di un aumeno delle impose sull evoluzione del livello del debio pubblico principali conclusioni: o Se

Dettagli

Filtri passa alto, passa basso e passa banda

Filtri passa alto, passa basso e passa banda Filtri passa alto, passa basso e passa banda Valerio Toso Introduzione In elettronica i ltri sono circuiti che processano un segnale modicandone alcune caratteristiche come l'ampiezza e la fase. Essi si

Dettagli

Scelta del gruppo motore-riduttore

Scelta del gruppo motore-riduttore Scela del gruppo moore-riduore 1 Problema ermico per il moore elerico Si presenano qui le problemaiche fondamenali relaive alla scela del moore elerico. Nonosane moli dei concei esposi abbiano validià

Dettagli

Impiego dell oscilloscopio e del generatore di funzioni

Impiego dell oscilloscopio e del generatore di funzioni Esercitazioni Lab - Impiego dell oscilloscopio e del generatore di funzioni 1 Impiego dell oscilloscopio e del generatore di funzioni Esercitazioni Lab - Impiego dell oscilloscopio e del generatore di

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF TEMPOIZZATOE CON Ic NE 555 ( a cura del prof A GAO ) SCHEMA A BLOCCHI : M (8) NE555 00K C7 00uF STAT S 4 K C6 0uF (6) (5) () TH C T A B 0 0 Q S Q rese T DIS (7) OUT () 0 T T09*()*C7 (sec) GND () (4) 6

Dettagli