A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI"

Transcript

1 A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene Dividendi da parecipazioni azionarie qualificae in socieà ialiane Ineressi lordi su ioli di Sao Inolre egli ha sosenuo spese mediche per 500 e ha versao conribui per conrai assicuraivi sulla via per Il signor X ha dirio ad una derazione per lavoro dipendene pari a 769 euro. Si calcoli: a) reddio complessivo b) reddio imponibile c) IRPEF lorda d) IRPEF nea uilizzando le segueni aliquoe per scaglioni di reddio: scaglioni di reddio Aliquoe % % % % Olre % I dividendi da parecipazione qualificaa sono assoggeai a IRPEF solo per il 49,72%. Gli ineressi su ioli di Sao sono esclusi dal reddio complessivo perché sono sooposi a una rienua a iolo d imposa del 12,5%. a) Reddio complessivo = ,4972 x 5000 = b) Reddio imponibile = Reddio complessivo = c) IRPEF lorda = 0,23 x ,27 x ,38 x 4486 = 8664,68 Derazioni a cui il Signor X ha dirio: - Derazione per spese mediche = 0,19 x ( ) = 0,19 x 371 = 70,49 - Derazione su premi per assicurazione sulla via = 0,19 x 630 = 119,7 - Derazione per lavoro dipendene = 769 Toale derazioni = 70, , = 659,19 d) IRPEF nea = 8664,68 659,19 = 8.005,49.

2 Esercizio 2 - IRPEF 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor A, con un figlio a carico e sposao con la signora B, la quale non percepisce alcun ipo di reddio, ha percepio i segueni reddii: reddio da lavoro dipendene: euro; dividendi da parecipazione qualificaa in una socieà ialiana: euro; plusvalenze da parecipazioni non qualificae in una socieà ialiana: euro. Durane l anno il signor A ha inolre versao conribui a forme pensionisiche complemenari per un imporo pari a euro. Sapendo che il signor A ha dirio ad una derazione per lavoro dipendene pari a 335, ad una derazione per coniuge a carico pari a 604, e ad una derazione per figlio (maggiore di re anni) a carico pari a 500, e che la scala delle aliquoe in vigore è la seguene: si calcoli: a) reddio complessivo b) reddio imponibile c) IRPEF lorda d) IRPEF nea scaglioni di reddio Aliquoe % % % % Olre % 3) Si dimosri che l IRPEF è un imposa progressiva. 1) Un imposa è progressiva quando l aliquoa media aumena all aumenare del reddio. La progressivià può essere realizzaa mediane re modalià fondamenali: per scaglioni, per deduzione e per derazione. Nella progressivià per scaglioni si idenificano scaglioni progressivi di reddio e alla pare di reddio propria dello scaglione si applicano aliquoe specifiche cresceni al crescere del reddio. Nella progressivià per derazione il debio di imposa si oiene applicando un aliquoa di imposa cosane per ui i livelli di reddio e deraendo dall ammonare così deerminao, una somma F. Nella progressivià per deduzione il debio di imposa si oiene applicando un aliquoa di imposa cosane alla differenza ra il reddio e un deerminao ammonare D. Spesso nella realà la progressivià dell imposa viene realizzaa mediane la combinazione di ue e re quese modalià. 2) a) Reddio complessivo = reddio da lavoro dipendene + (49,72% dividendi parecipazione qualificaa)= (0,4972x ) = Solo il 49,72% del valore dei dividendi da parecipazioni qualificae in socieà ialiane è inserio nel reddio complessivo a fini IRPEF. Le plusvalenze da parecipazioni non qualificae sono invece assae con impose sosiuive. b) Reddio imponibile = Reddio complessivo oneri deducibili = = I conribui versai a forme pensionisiche complemenari sono deducibili fino ad un ammonare massimo pari a 5165 euro. c) IRPEF lorda = 0,23 x ,27 x ,38 x = 11889,36

3 d) Toale derazioni = = 1439 IRPEF nea = 11889, = 10450,36 3) Un imposa è progressiva quando all aumenare del reddio l aliquoa media aumena. Un modo per verificare quesa condizione è dao dal confrono ra l aliquoa media e l aliquoa marginale del Signor A: se l aliquoa marginale risula maggiore di quella media, allora l aliquoa media aumenerà all aumenare del reddio. Su un reddio complessivo di 44972, il Signor A paga un imposa pari a 10450,36. L'aliquoa media IRPEF del Signor A è, quindi, pari a: 10450, ,24% L aliquoa marginale ' è pari al 38%. Dao che ' l IRPEF è un imposa progressiva.

4 Esercizio 3 - IRPEF e regimi sosiuivi Il signor A percepisce nell anno fiscale correne i segueni reddii: lavoro dipendene: euro Il signor B percepisce nell anno fiscale correne i segueni reddii: lavoro dipendene: euro ineressi lordi su ioli di sao: euro plusvalenze da cessione di parecipazioni azionarie non qualificae in una socieà ialiana: euro Nessuno dei conribueni ha figli o coniugi a carico. Il signor A ha dirio ad una derazione per lavoro dipendene pari a 960, menre il signor B ha dirio ad una derazione per lavoro dipendene pari a Considerando la seguene scala delle aliquoe IRPEF per scaglioni: scaglioni di reddio Aliquoe % % % % Olre % a) calcolae il debio di imposa complessivo (IRPEF e regimi sosiuivi) dei due conribueni; b) verificae che l IRPEF è un imposa progressiva; c) verificae se il sisema di impose sui reddii (IRPEF e regimi sosiuivi) è progressivo; d) quale valuazione del sisema di imposizione sui reddii (IRPEF e regimi sosiuivi) emerge dalla comparazione dei risulai oenui in b) e c)? a) Reddio complessivo per il Signor A = Reddio Imponibile IRPEF del Signor A = Applicando gli scaglioni alla base imponibile si oiene: IRPEF lorda = 0,23 x ,27 x = 6825 IRPEF nea signor A = debio complessivo signor A = = 5865 Reddio complessivo per il Signor B = Reddio Imponibile IRPEF del Signor B = IRPEF lorda = 0,23 x = 2300 IRPEF nea signor B = = 603 Gli ineressi su ioli di sao sono assoggeai a rienua a iolo d imposa con aliquoa del 12,5% e le plusvalenze da parecipazioni azionarie non qualificae sono assoggeae a imposa sosiuiva con aliquoa del 20%. Il debio d'imposa del Signor B relaivo ai regimi sosiuivi è quindi pari a: 0,125 x ,20 x = = Il debio d'imposa complessivo (IRPEF e regimi sosiuivi) del Signor B é pari a: = 8.478

5 b) Su un reddio complessivo ai fini IRPEF di , il Signor A paga un imposa pari a L'aliquoa media IRPEF del Signor A è, quindi, pari a: ,32% Su un reddio complessivo ai fini IRPEF di , il Signor B paga un imposa pari a 603. L'aliquoa media IRPEF del Signor B è, quindi, pari a: 603 6,03% Poiché all'aumenare del reddio (reddio complessivo A > reddio complessivo B) l'aliquoa media aumena, l'irpef è un imposa progressiva. c) Dal momeno che il Signor A non percepisce alri reddii olre a quelli da lavoro dipendene, il debio IRPEF precedenemene calcolao coincide con il debio complessivo di imposa. L'aliquoa media complessiva del Signor A è, quindi, ancora: TOT ,32% Su un reddio complessivo di , il Signor B paga un imposa complessiva di L'aliquoa media complessiva del Signor B è, quindi, pari a: TOT 15,42% Poiché all'aumenare del reddio l'aliquoa media diminuisce, il sisema complessivo di impose sui reddii (IRPEF e regimi sosiuivi) è in queso caso regressivo. d) La regressivià del sisema fiscale complessivo dipende dal fao che i reddii derivani da aivià finanziarie (nel caso in esame, ineressi sui ioli di sao e plusvalenze su parecipazioni azionarie non qualificae) non rienrano, o rienrano solo parzialmene, nella base imponibile dell IRPEF e sono assai con regimi sosiuivi (rienue o impose sosiuive) con aliquoe basse.

6 Esercizio 4 - Derazioni per carichi di famiglia La famiglia Tasso ha quaro componeni: due coniugi, perceori di reddio da lavoro dipendene, e due figli fiscalmene a carico (enrambi maggiori di re anni). Il reddio percepio dal Sig. A è pari a euro; quello percepio dalla Sig.ra B, coniugaa con il Sig. A, è di euro. Si consideri la seguene scala delle aliquoe IRPEF per scaglioni di reddio: scaglioni di reddio Aliquoe % % % % olre % Sapendo che, nel caso specifico in esame, le derazioni per ipo di reddio sono di 502 euro per il Sig. A e 1840 euro per la Sig.ra B, sapendo inolre che le derazioni effeive per figli a carico sono: 1) in ipoesi di suddivisione delle derazioni eoriche in misura eguale ra i coniugi, pari a 302 per figlio per il Sig. A e 445 per figlio per la Sig.ra B. 2) in ipoesi di aribuzione della derazione eorica al reddio più alo, pari a 604 per figlio si calcoli il debio d imposa complessivo dell unià familiare nelle due ipoesi segueni: a) i geniori suddividono, in misura eguale fra loro, la derazione per i figli a carico; b) i geniori decidono di aribuire ua la derazione speane sul reddio più elevao. a) Reddio complessivo del Sig.A = reddio da lavoro dipendene = Poiché gli oneri deducibili sono in queso caso pari a zero: Reddio imponibile = Reddio complessivo = IRPEF lorda del Sig. A = 0,23 x ,27 x ,38 x = Derazioni a cui il Signor A ha dirio: Derazione per ipo di reddio =502 Derazione per figli a carico =604 (=302x2; 302 per ciascun figlio, 2 figli) Toale derazioni = = IRPEF nea del Sig. A = = Reddio complessivo della Sig.ra B = reddio da lavoro dipendene = 7000 Poiché anche in queso caso gli oneri deducibili sono pari a zero: Reddio imponibile = Reddio complessivo = 7000 IRPEF lorda della Sig.ra B = 0,23 x 7000=1610 Derazioni a cui la Sig.ra B ha dirio: Derazione per ipo di reddio = 1840 Derazione per figli a carico = 890 (= 445x2; 445 per ciascun figlio, 2 figli) Toale derazioni = = 2730

7 IRPEF nea della Sig.ra B =0 ( <0) La signora B non paga Irpef perché incapiene. Debio d imposa della famiglia = IRPEF del Sig. A= b) Dao che il reddio della Sig.ra B è inferiore a quello del Sig. A, la derazione per figli a carico andrà ineramene aribuia al Sig. A. Reddio complessivo del Sig.A = reddio da lavoro dipendene = Poiché gli oneri deducibili sono in queso caso pari a zero: Reddio imponibile = Reddio complessivo = IRPEF lorda del Sig. A = 0,23 x ,27 x ,38 x = Derazioni a cui il Signor A ha dirio: Derazione per ipo di reddio = 502 Derazione per figli a carico =1208 (=604x2; 604 per ciascun figlio, 2 figli) Toale derazioni= = 1710 IRPEF nea del Sig. A= =9.810 Reddio complessivo della Sig.ra B = reddio da lavoro dipendene = 7000 Poiché anche in queso caso gli oneri deducibili sono pari a zero: Reddio imponibile = Reddio complessivo = 7000 IRPEF lorda della Sig.ra B = 0,23 x 7000=1610 Derazioni a cui la Sig.ra B ha dirio: Derazione per ipo di reddio = 1840 Toale derazioni = 1840 IRPEF nea della Sig.ra B =0 ( <0) Debio d imposa della famiglia = IRPEF del Sig. A=9.810 Dao che la Sig.ra B è incapiene non usufruirà delle derazioni per figli a carico: in queso caso quindi è conveniene aribuire ua la derazione speane al reddio più alo rispeo a riparire le derazioni equamene ra i due coniugi.

8 Esercizio 5 - Scela dell unià imposiiva Si consideri un nucleo familiare composo da due geniori e due figli maggiori di re anni, in cui i due geniori percepiscono rispeivamene un reddio di euro e euro, menre i figli non percepiscono reddii. Ipoizzando che non esisano derazioni per ipo di reddio e facendo riferimeno alle segueni aliquoe per scaglioni scaglioni di reddio aliquoe % % % % Olre % nei casi di: a) assazione su base individuale; b) assazione su base familiare; c) assazione su base familiare con applicazione del meodo del quoziene familiare (coefficieni pari a 1 per ciascun geniore e 0,5 per ciascuno dei figli); d) assazione su base individuale e derazioni per familiari a carico nel caso in cui i coniugi suddividono, in misura uguale fra loro, la derazione per i figli a carico. Si consideri che la derazione speane per ogni figlio è cosane e pari a 367 euro per il coniuge con reddio minore e 216 euro per il coniuge con reddio maggiore. si indichi con riferimeno ai due coniugi ed all inera famiglia (ove appropriao): 1) il debio d imposa 2) l aliquoa media 3) l aliquoa marginale Guardando l aliquoa marginale, quali considerazioni si possono fare in riferimeno alla quesione degli incenivi all offera di lavoro? Reddii dei due coniugi: y 1 = y 2 = y o a) Tassazione su base individuale Le aliquoe dei vari scaglioni di reddio si applicano separaamene ai reddii dei due coniugi. Le aliquoe marginali e medie dei due coniugi saranno differeni. T 1 = x 0, x 0,27 = = 27% ,6% T 2 =15000 x 0, x 0, x 0, x 0,41 = ' 2 41% ,1% 60000

9 Per la famiglia nel suo complesso si ha: T T T o 1 2 o ,9% b) Tassazione su base familiare Le aliquoe per scaglioni si applicano al reddio complessivo della famiglia pari a T o 15000x0, x0, x0, x0, x0, ' 43% (L aliquoa marginale è pari al 43% per enrambi i coniugi. E indifferene se l unià addizionale di reddio viene guadagnaa dal coniuge 1 o 2) ,96% Poiché il sisema è di ipo progressivo, la scela del reddio familiare come unià imposiiva, a parià di aliquoe, pora a un imposizione più gravosa e, dao che l aliquoa marginale aumena rispeo alla assazione su base individuale, porebbe disincenivare l offera di lavoro. c) Quoziene familiare E il meodo uilizzao in Francia. Il quoziene familiare si cosruisce dividendo la somma dei reddii per la dimensione fiscale della famiglia (somma dei coefficieni). reddii Q i coeffic ,5 0,5 La scala delle aliquoe si applica al quoziene: x0, x0,27 333x0, ,54 T Q Il debio d imposa complessivo si oiene moliplicando quano oenuo per la dimensione fiscale della famiglia. T ' o o coeffic 7086, , 62 T x Q 38% 21259, ,01% L aliquoa marginale che risula applicando il meodo del quoziene familiare è inermedia rispeo alle aliquoe marginali oenue con la assazione su base individuale. Ciò porebbe disincenivare l offera di lavoro del coniuge con reddio inferiore, la cui aliquoa marginale aumena dal 27% al 38%, e invece incenivare l offera di lavoro del coniuge con reddio maggiore, la cui aliquoa marginale scende dal 41% al 38%. d) Tassazione su base individuale e derazione per figli a carico L inroduzione della derazione per figli a carico riduce il debio d imposa di ciascun coniuge. Inroducendo la derazione avremo: Coniuge 1: Reddio Imponibile = y 1 = IRPEF lorda = T 1 = 6150 Derazione speane per figlio a carico = 367 IRPEF nea = 6150 (367x2) = 5416

10 1 = 27% ,66% Coniuge 2: Reddio Imponibile = y 2 = IRPEF lorda = T 2 = Derazione speane per figlio a carico = 216 IRPEF nea = (216x2) = ' 2 41% ,40% Per la famiglia nel suo complesso si ha: T o = = ,53% L inroduzione delle derazioni per figli a carico riduce il debio d imposa oale e di conseguenza anche l aliquoa media su base familiare, menre lascia invariae le aliquoe marginali individuali. Quindi non vi è variazione degli incenivi individuali all offera di lavoro.

11 Esercizio 6 Un individuo possiede ad inizio d anno un parimonio del valore di Nel corso dell anno percepisce di reddii da lavoro, di reddii da capiale, di plusvalenze azionarie. L individuo subisce, però, una minusvalenza azionaria pari a Sappiamo inolre che in corso d anno la variazione posiiva del parimonio è saa di Si calcoli la base imponibile dell individuo applicando il principio del reddio prodoo, del reddio enraa e del reddio consumo. a) Ricordando che l adozione del reddio prodoo come base imponibile implica che siano soggei a assazione i corrispeivi della parecipazione ad un aivià produiva, avremo che per l individuo in quesione vale: reddio prodoo = = b) Dal momeno che, invece, il conceo di reddio enraa definisce la base imponibile dell imposa personale in ermini di poenzialià o capacià di spesa del conribuene, il reddio fiscalmene rilevane è in al caso rappresenao da quano un individuo può consumare senza ridurre il valore del parimonio iniziale. Perano avremo: reddio enraa = = c) Infine, sulla base del conceo di reddio consumo reddio consumo = reddio enraa variazione del parimonio = =

12 Esercizio 7 a) Si dia una definizione sineica di reddio prodoo, reddio enraa e reddio consumo. b) Quale ra quese nozioni è saa applicaa nel sisema d impose personali ialiano? Il sig. X deve decidere ra due invesimeni azionari A e B. Il primo gli assicura un dividendo di 100 e una plusvalenza alla fine dell anno di 200; il secondo, viceversa, un dividendo di 200 e una plusvalenza di 100. c) Quale invesimeno sceglierà il sig. X se vale la nozione di reddio prodoo e quale se vale la nozione di reddio enraa? Con il reddio complessivo di 300 guadagnao con uno dei due invesimeni di cui sopra il sig. X deve decidere se acquisare un auo oppure ioli di Sao. d) Cosa gli conviene acquisare se vale la nozione di reddio enraa? E se vale la nozione di reddio consumo? a) Reddio Prodoo: la base imponibile dell imposa personale è pari alla somma dei corrispeivi oenui dalla parecipazione all aivià produiva (reddio di lavoro e di capiale) Reddio Enraa: la base imponibile dell imposa personale coincide con quano il conribuene può consumare senza inaccare il suo parimonio iniziale (reddio prodoo + plusvalenze nee) Reddio Consumo: la base imponibile dell imposa personale coincide con quano effeivamene consumao dal conribuene. b) L IRPEF ialiana è principalmene un imposa sul Reddio Prodoo (in paricolar modo sul reddio di lavoro). Tuavia, esisono anche aperure alla nozione di Reddio Enraa (sono infai incluse nella base imponibile alcune plusvalenze-quelle da parecipazione qualificaa) e a quella di Reddio Consumo (è infai escluso dal reddio imponibile il risparmio previdenziale). c) Nozione di Reddio Prodoo: Base imponibile invesimeno A: 100 (dividendo) Base imponibile invesimeno B: 200 (dividendo) Il Sig. X preferirà dunque l invesimeno A che gli consene, a parià di reddio complessivo (300) di avere un debio d imposa più basso perché calcolao su una base imponibile di 100 (e non di 200 come nel caso dell invesimeno B). Nozione di Reddio Enraa: Base imponibile invesimeno A: 100 (dividendo) (plusvalenza) = 300 Base imponibile invesimeno B: 200 (dividendo) (plusvalenza) = 300 Il Sig. X è dunque indifferene ra i due invesimeni in quano il suo debio d imposa è il medesimo. d) Se vale la nozione di Reddio Enraa, l acquiso dell auo compora un debio d imposa nullo, menre l acquiso di ioli di Sao deermina alla fine dell anno un debio d imposa commisurao agli ineressi maurai: T=r300. Se vale la nozione di Reddio Consumo, l acquiso dell auo è assao T=300, menre i ioli di Sao no (capiale e rendimeni sul capiale saranno oggeo di imposizione nel momeno in cui saranno rasformai in consumo).

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

AA. 2012/13 50011-CLMG Esercitazione - IRPEF TESTO E SOLUZIONI

AA. 2012/13 50011-CLMG Esercitazione - IRPEF TESTO E SOLUZIONI AA. 2012/13 50011-CLMG Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro

Dettagli

6061-CLMG Prima Esercitazione (Irpef) TESTO E SOLUZIONI

6061-CLMG Prima Esercitazione (Irpef) TESTO E SOLUZIONI 6061-CLMG Prima Eserciazione (Irpef) TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso del 2008, i segueni reddii: - Reddii da lavoro dipendene 30000

Dettagli

30018-CLEF Prima Esercitazione (Irpef) TESTO E SOLUZIONI

30018-CLEF Prima Esercitazione (Irpef) TESTO E SOLUZIONI 30018-CLEF Prima Esercitazione (Irpef) TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepito, nel corso del 2008, i seguenti redditi: - Redditi da lavoro dipendente

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli

Esercitazione I - IRPEF

Esercitazione I - IRPEF Universià degli Sudi di Ferrara Corso di Economia Pubblica Eserciazione I - IRPEF ESERCIZIO 1 - IRPEF 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione

Dettagli

LIUC-Facoltà di Economia Corso di Scienza delle Finanze I Esercitazione: testo e soluzioni A.A. 2008-2009

LIUC-Facoltà di Economia Corso di Scienza delle Finanze I Esercitazione: testo e soluzioni A.A. 2008-2009 LIUC-Facoltà di Economia Corso di Scienza delle Finanze I Esercitazione: testo e soluzioni A.A. 2008-2009 Esercizio 1 Il sig. A, senza figli e sposato con la signora B la quale non percepisce alcun tipo

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015

ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015 ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015 Esercizio 1 Si consideri un imposta sul reddito personale con aliquota marginale t costante del 20% e detrazione, f, pari a 1.000 dall imposta dovuta. Nel

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

Ottobre 2009. ING ClearFuture

Ottobre 2009. ING ClearFuture Oobre 2009 ING ClearFuure Una crescia cosane. Con una solida proezione nel empo. ING ClearFuure è la soluzione assicuraiva Uni Linked di dirio lussemburghese, realizzaa apposiamene da ING Life Luxembourg

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

30018-CLES Prima Esercitazione (Economia del benessere, Irpef), 8 Marzo 2011

30018-CLES Prima Esercitazione (Economia del benessere, Irpef), 8 Marzo 2011 30018-CLES Prima Eserciazione (Economia del benessere, Irpef), 8 Marzo 2011 1. Confrono fra funzioni del benessere sociale a. Illusrae analiicamene e graficamene le funzioni di benessere sociale uiliarisa

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto Valuazione d azienda La valuazione d azienda: conciliazione ra meodo direo ed indireo di Maeo Versiglioni (*) e Filippo Riccardi (**) La meodologia maggiormene uilizzaa per la valuazione d azienda, è quella

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

Le basi della valutazione secondo i cash flow. Aswath Damodaran

Le basi della valutazione secondo i cash flow. Aswath Damodaran Le basi della valuazione secondo i cash flow Aswah Damodaran Valuazione secondo i cash flow: le basi dell'approccio Valore = = n CF = 1 1+ r ( ) dove, n = anni di via dell'aivià CF = Cash flow nel periodo

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

INTERBANCA Codice ISIN IT0004041478

INTERBANCA Codice ISIN IT0004041478 REGOLAMENTO DEL PRESTITO OBBLIGAZNAR INTERBANCA 2006/2011 Discoun Dynamic Index 24 fino a EUR 250.000.000 Ar. 1 - TITOLI Il presio obbligazionario Inerbanca 2006/2011 Discoun Dynamic Index 24 fino a EUR

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

Bilancio dello Stato e Debito pubblico. Corso di Scienza delle Finanze Cleam, classe 3 Università Bocconi a.a. 2012-2013 Dott.ssa Simona Scabrosetti

Bilancio dello Stato e Debito pubblico. Corso di Scienza delle Finanze Cleam, classe 3 Università Bocconi a.a. 2012-2013 Dott.ssa Simona Scabrosetti Bilancio dello Sao e Debio pubblico Corso di Scienza delle Finanze Cleam, classe 3 Universià Bocconi a.a. 2012-2013 Do.ssa Simona Scabrosei Il bilancio dello Sao Due versioni alernaive: - bilancio di previsione:

Dettagli

Differenziazione di prodotto e qualità in monopolio

Differenziazione di prodotto e qualità in monopolio Economia Indusriale Capiolo 7 Differenziazione di prodoo e qualià in monopolio Beoni Michela Gallizioli Giorgio Gaverina Alessandra Rai Nicola Signori Andrea AGENDA Concei di differenziazione vericale

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli

Buono Fruttifero Postale P70

Buono Fruttifero Postale P70 Foglio Informaivo delle principali caraerisiche dei Buoni Fruiferi Posali e Regolameno del presio Pare I - Informazioni sull'emiene e sul Collocaore Emiene: Cassa deposii e presii socieà per azioni (di

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

Corso di. Economia Politica

Corso di. Economia Politica Prof.ssa Blanchard, Maria Laura Macroeconomia Parisi, PhD; Una parisi@eco.unibs.i; prospeiva europea, DEM Universià Il Mulino di 2011 Brescia Capiolo I. Un Viaggio inorno al mondo Corso di Economia Poliica

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

UNITà E. Biblioteca di Telepass + 2 biennio TOMO 3 ESERCIZIO. La contabilità generale: le operazioni d esercizio 1/11

UNITà E. Biblioteca di Telepass + 2 biennio TOMO 3 ESERCIZIO. La contabilità generale: le operazioni d esercizio 1/11 Biblioeca di Telepass + 2 biennio TOMO 3 UNITà E La conabilià generale: le operazioni d esercizio Cosiuzione di azienda, acquisi e vendie: scriure in P.D. Tuorial ESERCIZIO In daa 27 marzo 20.. il signor

Dettagli

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI Fabio Grasso Direore Diparimeno di Scienze Saisiche Presidene Area Didaica delle Scienze Saisiche, Auariali e Finanziarie Universià degli Sudi di Roma La Sapienza LA PREVIDENZA COMPLEMENTARE: I PROFILI

Dettagli

= 1,4 (rischiosità sistematica)

= 1,4 (rischiosità sistematica) Analisi degli invesimeni n.b.: ui i valori moneari sono in euro Nel corso del 4 al managemen della socieà MPRESA vengono proposi due invesimeni alernaivi. Nel seguio vengono fornie informazioni in merio

Dettagli

Biblioteca di Telepass + 2 biennio TOMO 4. Il portafoglio salvo buon fine: accreditato diretto in c/c e gestione mediante il Conto Anticipi

Biblioteca di Telepass + 2 biennio TOMO 4. Il portafoglio salvo buon fine: accreditato diretto in c/c e gestione mediante il Conto Anticipi Biblioeca di Telepass + biennio TOMO UNITÀ I I prodoi bancari: il fi do e i fi nanziameni alla clienela Il porafoglio salvo buon fine: accrediao direo in c/c e gesione mediane il Cono nicipi Tuorial ESERCIZIO

Dettagli

SCIENZA DELLE FINANZE A.A. 2013-2014 Esercitazione Attività Finanziarie TESTO E SOLUZIONI

SCIENZA DELLE FINANZE A.A. 2013-2014 Esercitazione Attività Finanziarie TESTO E SOLUZIONI SCIENZA DELLE FINANZE A.A. 2013-2014 Esercitazione Attività Finanziarie TESTO E SOLUZIONI Tutti gli esercizi, dove pertinente, sono risolti utilizzando la normativa entrata in vigore dal 1 Gennaio 2012

Dettagli

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES)

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) Monica Billio Universià Ca Foscari e GRETA, Venezia Michele Paron GRETA, Venezia Inroduzione. Moli meodi di analisi ecnica

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Esercizi sulle imposte per il corso di Scienza delle finanze a.a. 2015-16 (Clea)

Esercizi sulle imposte per il corso di Scienza delle finanze a.a. 2015-16 (Clea) Esercizi sulle imposte per il corso di Scienza delle finanze a.a. 2015-16 (Clea) Gli esercizi servono per verificare se avete capito la logica, la struttura di un imposta. Pertanto, quando fate il compito

Dettagli

Economia e gestione delle imprese - 01

Economia e gestione delle imprese - 01 Economia e gesione delle imprese - 01 L impresa come organizzazione che crea valore Leve di creazione di ricchezza e responsabilià sociale Prima pare : L impresa che crea valore 1. L impresa 2. L evoluzione

Dettagli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli FOCUS TECNICO IL DIMENSIONAMENTO DEGLI IMIANTI IDROSANITARI asi d espansione e accumuli RODUZIONE DI ACQUA CALDA SANITARIA Due sono i sisemi normalmene uilizzai per produrre acqua calda saniaria: quello

Dettagli

I possibili schemi di Partenariato Pubblico Privato

I possibili schemi di Partenariato Pubblico Privato OSSERVATORIO collegameno ferroviario Torino-Lione Collegameno ferroviario Torino-Lione I possibili schemi di Parenariao Pubblico Privao Torino, 30 Oobre 2007 Unià Tecnica Finanza di Progeo 1 PPP: analisi

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà Macroeconomia neoclassica 1 1.7. Il modello compleo e le sue proprieà Disponiamo ora di ui gli elemeni necessari a rappresenare il modello compleo e l equilibrio. I dai del modello sono: 1. numero degli

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

MODELLI AFFLUSSI DEFLUSSI

MODELLI AFFLUSSI DEFLUSSI MODELLI AFFLUSSI DEFLUSSI Al ecnico si presenano moli casi in cui non è sufficiene la deerminazione delle massime porae ramie i crieri di similiudine idrologica, precedenemene esposi. Si ciano, a iolo

Dettagli

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici Facolà di Agraria - Universià di Sassari Anno Accademico 004-005 Dispense Corso di Pianificazione e Difesa del erriorio Docene: Luciano Guierrez Analisi Cosi e Benefici. Inroduzione. Decisioni individuali

Dettagli

Regolatori switching

Regolatori switching 2 A4 Regolaori swiching I regolaori di ensione lineari hanno il grave difeo di non consenire il raggiungimeno di valori di efficienza paricolarmene elevai. Infai, in quese archieure gli elemeni di regolazione

Dettagli

L IRPEF del 2007 Alcuni esercizi

L IRPEF del 2007 Alcuni esercizi Esercizi L IRPEF del 2007 Alcuni esercizi Capitolo III, Lezione 1 Le aliquote e le detrazioni dell Irpef Capitolo III, Lezione 1 SCALA DELLE ALIQUOTE redditi 2007 Scaglioni Al.legalelegale EURO (%) 0-15.000

Dettagli

Appunti di Matematica e tecnica finanziaria. Ettore Cuni, Luca Ghezzi

Appunti di Matematica e tecnica finanziaria. Ettore Cuni, Luca Ghezzi Appuni di Maemaica e ecnica finanziaria Eore Cuni, Luca Ghezzi Universià Carlo Caaneo LIUC Casellanza 2010 Universià Carlo Caaneo LIUC C.so Maeoi, 22-21053 Casellanza (VA) Tel. +39-0331-572.1 www.liuc.i

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

Programmazione della produzione a lungo termine e gestione delle scorte

Programmazione della produzione a lungo termine e gestione delle scorte Programmazione della produzione a lungo ermine e gesione delle score Coneso. Il problema della gesione delle score consise nel pianificare e conrollare i processi di approvvigionameno dei magazzini di

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

Finanza pubblica in Italia

Finanza pubblica in Italia Finanza pubblica in Ialia Aggregazioni di eni pubblici Nelle saisiche e nei documeni ufficiali di poliica economica si fa riferimeno a deerminae aggregazioni di eni pubblici. Tali aggregazioni possono

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE TESI DI LAUREA Valuazione di opzioni europee in presenza di eeroschedasicià condizionale

Dettagli

Università degli Studi di Padova

Università degli Studi di Padova Universià degli Sudi di Padova FACOLTÀ DI SCIENZE STATISTICHE Corso di Laurea Specialisica in Scienze Saisiche, Economiche, Finanziarie e Aziendali VALUTAZIONE DELL EFFICACIA DELLA PUBBLICITÀ NEL MERCATO

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

INDICATORI PER IL MERCATO AZIONARIO (aggiornato il 2-2-2007)

INDICATORI PER IL MERCATO AZIONARIO (aggiornato il 2-2-2007) INDICATORI PER IL MERCATO AZIONARIO (aggiornao il 2-2-2007). Obievi della rilevazione Negli anni 60 Mediobanca avviò la rilevazione sisemaca dei corsi delle azioni quoae in Borsa, ideando un indice con

Dettagli

Le polizze rivalutabili

Le polizze rivalutabili Capiolo 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi, con l eccezione delle polizze TCM, hanno compleamene

Dettagli

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006 - 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande

Dettagli

L imposta sul reddito delle persone fisiche

L imposta sul reddito delle persone fisiche L imposta sul reddito delle persone fisiche IRPEF 30018 Scienza delle finanze Cles A.A. 2011/12 Classe 14 Irpef 1 Schema di determinazione dell Irpef Reddito complessivo= Somma delle singole categorie

Dettagli

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita Appuni delle lezioni di isiuzioni di maemaica auariale per le assicurazioni sulla via Claudio Pacai anno accademico 2005 06 Indice 1 Le operazioni di assicurazione e la eoria dell uilià 1 1.1 L operazione

Dettagli

CONTO DI BILANCIO GESTIONE DELLE ENTRATE - Anno 2014 Sintetico

CONTO DI BILANCIO GESTIONE DELLE ENTRATE - Anno 2014 Sintetico Comune di Nereto Prov. (E) CONO DI BILANCIO GESIONE DELLE ENRAE - Anno 2014 Sintetico Comune di Nereto Prov. (E) Pagina 2 Residui (A) Competenza (F) otale (M) otale (N) Res. al 31/12 (O=C+H) Acc. al 31/12

Dettagli

Allegato sub B) PROVINCIA DI PIACENZA RENDICONTO DELL ESERCIZIO FINANZIARIO 2012

Allegato sub B) PROVINCIA DI PIACENZA RENDICONTO DELL ESERCIZIO FINANZIARIO 2012 RENDICONO DELL ESERCIZIO FINANZIARIO 2012 Allegato sub B) RENDICONO DELL ESERCIZIO FINANZIARIO 2012 I N D I C E CONO DEL BILANCIO PARE PRIMA ENRAA pag. PARE SECONDA - SPESA pag. PARE ERZA RIEPILOGHI E

Dettagli

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Liuc Papers n. 33, Serie Economia e Impresa 8, seembre 1996 LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Angelo Marano Inroduzione Le dimensioni anomale che il debio pubblico

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

In questi ultimi tre anni le società di assicurazione europee hanno. Polizze vita l Approfondimenti

In questi ultimi tre anni le società di assicurazione europee hanno. Polizze vita l Approfondimenti Polizze via l Approfondimeni Incorporare le aese dell assicurao nell ALM In quesi ulimi anni le socieà di assicurazione europee hanno affinao l uilizzo dell ALM nel ramo via. I loro sforzi, uavia, si sono

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Trasformazioni di Galileo

Trasformazioni di Galileo Principio di Relaivià Risrea (peciale) e si sceglie un dr rispeo al uale le leggi della fisica sono scrie nella forma più semplice (dr ineriale) allora le sesse leggi valgono in ualunue alro dr in moo

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

LEZIONE 10. Il finanziamento dell istruzione. Economia del Settore Pubblico. Modalità dell intervento pubblico. Il finanziamento dell istruzione

LEZIONE 10. Il finanziamento dell istruzione. Economia del Settore Pubblico. Modalità dell intervento pubblico. Il finanziamento dell istruzione Economia del Seore Pubblico Laura Vici laura.vici@unibo.i www2.dse.unibo.i/lvici/edsp_ii.hm Modalià dell inerveno pubblico Regolamenazione Finanziameno: parziale o inegrale? Produzione: pubblica o privaa?

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ CORSO DI LAUREA IN ECONOMIA E COMMERCIO Tesi di laurea IL RUOLO DELL ESPANSIONE DELLA DOMANDA DI CONSUMI NELLA CRESCITA ECONOMICA: ALCUNE

Dettagli

VERSO STANDARD CONTABILI INTERNAZIONALI PER LE ASSICURAZIONI VITA. ASPETTI ATTUARIALI

VERSO STANDARD CONTABILI INTERNAZIONALI PER LE ASSICURAZIONI VITA. ASPETTI ATTUARIALI UNIVERSIA DEGLI SUDI DI RIESE FACOLA DI ECONOMIA CORSO DI LAUREA IN SCIENZE SAISICHE ED AUARIALI ESI DI LAUREA IN MAEMAICA AUARIALE VERSO SANDARD CONABILI INERNAZIONALI PER LE ASSICURAZIONI VIA. ASPEI

Dettagli

SCIENZA DELLE FINANZE A.A. 2012-2013 CLEAM Esercitazione Attività Finanziarie TESTO E SOLUZIONI

SCIENZA DELLE FINANZE A.A. 2012-2013 CLEAM Esercitazione Attività Finanziarie TESTO E SOLUZIONI SCIENZA DELLE FINANZE A.A. 2012-2013 CLEAM Esercitazione Attività Finanziarie TESTO E SOLUZIONI Tutti gli esercizi, dove pertinente, sono risolti utilizzando la normativa entrata in vigore al 1 Gennaio

Dettagli

quaderni europei sul nuovo welfare

quaderni europei sul nuovo welfare quaderni europei sul nuovo welfare svecchiameno e socieà allegai N. 10, Maggio 2008 la conferenza di orino sul nuovo welfare Pubblicao da l isiuo del rischio Triese - MILANo - Ginevra Macros Research MILANo

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

CONDIZIONI DEFINITIVE NOTA INFORMATIVA SUL PROGRAMMA

CONDIZIONI DEFINITIVE NOTA INFORMATIVA SUL PROGRAMMA Dexia Crediop S.p.A. CONDIZIONI DEFINITIVE alla NOTA INFORMATIVA SUL PROGRAMMA «DEXIA CREDIOP S.P.A. OBBLIGAZIONI CONSTANT PROPORTION PORTFOLIO INSURANCE (CPPI)» Presio Obbligazionario «Dexia Crediop Callable

Dettagli

Produttività, progresso tecnico ed efficienza nei paesi OCSE

Produttività, progresso tecnico ed efficienza nei paesi OCSE Produivià, progresso ecnico ed efficienza nei paesi OCSE [Produciviy, efficiency and echnical progress in OECD counries] Alessandro Manello CERIS-CNR Via Real Collegio, 30 0024 Moncalieri (To) a.manello@ceris.cnr.i

Dettagli

Questioni di Economia e Finanza

Questioni di Economia e Finanza Quesioni di Economia e Finanza (Occasional Papers) La grande disribuzione organizzaa e l indusria alimenare in Ialia di Eliana Viviano (coordinaore), Luciana Aimone Gigio, Emanuela Ciapanna, Daniele Coin,

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE ECONOMICHE, FINANZIARIE E AZIENDALI RELAZIONE FINALE: METODI STATISTICI PER LA GESTIONE

Dettagli