2. Politiche di gestione delle scorte

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2. Politiche di gestione delle scorte"

Transcript

1 deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur essendo variabile nel empo, risula comunque noa in anicipo. Anche in ale caso in generale è possibile classificare i modelli a seconda se la poliica è a revisione coninua o a revisione periodica. Nel seguio esamineremo il problema del lo sizing assumendo di adoare la poliica a revisione periodica. Per semplicià considereremo lo scenario di alimenazione a loi, assenza di ammanco, e ordini di dimensione non limiaa. Concluderemo accennando ai casi in cui è previso la possibilià di ammanco con soddisfazione posicipaa della domanda (baclogging) e il caso con ordini di approvvigionameno limiai. 53

2 Orizzone di pianificazione suddiviso in periodi. Modelli senza baclogging Per ogni periodo =,, : Parameri (si assumono ui ineri): d : L : K : c : h : domanda (noa) nel periodo empo di riordino (lead ime), espresso in mulipli della lunghezza del periodo: per semplicià assumiamo L = 0 (o rascurabile rispeo alla duraa di un periodo) coso fisso di approvv. (emissione ordine) coso uniario di approvvigionameno coso per lo soccaggio di una unià di prodoo dal periodo al periodo + Variabili : y : q : I : binaria, rappresena la decisione di effeuare o meno un ordine di approvvig. quanià ordinaa (lo size) livello d invenario alla fine del periodo 54

3 Modello di Wagner-Whiin: dove M d = min = = (K y + c q + h I ) s.. q + I = d + I, =,, q M y, =,, q, I 0, =,, y {0, }, =,, Problema è modellabile come problema di flusso a coso minimo, con cosi fissi e variabili, sulla seguene ree R d s K, c K 2, c 2 K 3, c 3 K, c 2 3 h h 2 d d 2 d 3 d 55

4 E possibile eliminare le variabili binarie y sosiuendo K y + c q con la funzione concava 0, se q = 0 c ( q ) = K + cq, se q > 0 Quindi la f.o. = ( y + c q + h I ) = = (c (q ) + h I ). Si dimosra che se f.o. è concava (nosro caso) e I 0 = 0, esise una soluzione oima per il problema di flusso su ree per cui: I q = 0, =,, Poliica oima: ordinare quando il livello di invenario (all inizio del periodo) è nullo (zero-invenory policy) Il periodo per cui I = 0 è deo puno di rigenerazione, in quano ciò che accade dal periodo + in poi è disaccoppiao da quano accaduo nei periodi precedeni 56

5 Conseguenze: L'orizzone emporale di pianificazione può essere suddiviso in p inervalli, [, r ], [r +, r 2 ],, [r p- +, ], delimiai da p puni di rigenerazione consecuivi: 0 = r 0, r, r 2,, r p- <. Consideriamo due puni di rigenerazione consecuivi: r h = e r h+ = (con 0 h p e r p = da cui 0 < ) e quindi l inervallo [, ] Nel primo periodo dell inervallo (periodo ) si effeua un reinegro (a seguio di un ordine) pari alla domanda oale di ui i periodi dell inervallo: q = d i Il coso del programma di invenario dell inervallo è indipendene da quello degli alri e pari a: 0, se d i = 0 C = K + c d i + l= 57 h l l+ d i, alrimeni

6 Deo F il minimo coso oale del programma di invenario per i primi periodi, ale che I = 0, è possibile scrivere la seguene relazione ricorsiva di programmazione dinamica: F = min 0 {F + C +, }, =, 2,,, dove F 0 = 0, in base alla quale la programmazione oima ha coso F = min 0 {F + C +, } Noi i valori di C +,, con 0 <, è possibile ricondurre il problema di deerminare F a quello del cammino di coso minimo sul digrafo aciclico D = (N, A) pesao sugli archi, dove N = {0,, 2,, } e (, ) A, per ogni 0 <, e il coso dell arco è c = C +, C,- C C 2 C 2,- C C +,- 0 C - - C C,- C +, C 2,- C 2 C,- C C C 2,- F è il coso del cammino minimo dal nodo 0 al nodo 58

7 E facile verificare che c è una corrispondenza biunivoca ra i cammini dal nodo 0 al nodo sul digrafo D e le soluzioni ammissibili per il problema di flusso a coso minimo definio sulla ree R e ali per cui: I q = 0, =,, In paricolare un ale cammino su D che araversi gli archi (0, r ), (r, r 2 ),, (r h, ) è associao alla soluzione in cui l orizzone di pianificazione è suddiviso negli inervalli [, r ], [r +, r 2 ],, [r h +, ], in cui si reinegra l invenario esaamene nel primo periodo di ciascuno inervallo, cioè nei periodi, r +, r 2 +,, r h +, e rispeivamene per: r r2 r3 q = d i ; q r + = d i ; q r2 + = d i ; ; q rh + = d i, r + r2+ e il cui coso coincide con il coso C r + C r +,r C rh +, del cammino. Infine, se I 0 > 0 il meodo coninua a funzionare purché si modifichi opporunamene la sequenza delle domande, ponendo: d' := max{0; d I 0 } e I 0 := I 0 d ; d' i := max{0; d i I 0 } e I 0 := I 0 d i, erminando se I r h +

8 Esempio Prodoo sagionale con periodo di vendia di = 6 mesi d K c h I 0 = 0 non sono ammessi ammanchi Occorre pianificare gli approvvigionameni nel semesre assumendo i lead ime L << mese Ricordando che C = K + c d i + l= h l l+ d i, si ha: F 0 = 0; F = F 0 + C = 0 + ( ) = 570; F 2 = min =0, {F + C +,2 } = min { F 0 + C 2 = 0 + ( (60+00) + 00) = 370; F + C 22 = ( ) = 40 } = 370; F 3 = min =0,,2 {F + C +,3 } = min { F 0 + C 3 = 0 + ( ( ) + [ (00+40)+ (40)]) = 2630; F + C 23 = ( (00+40) + 40) = 2530; F 2 + C 33 = 370+ ( ) = 2650 } = 2530; 60

9 F 4 = min =0,,2,3 {F + C +,4 } = min { F 0 + C 4 = 0 + ( ( ) + [ ( ) + (40+200) ]) = 4830; F + C 24 = ( ( ) + [ (40+200) ]) = 4530; F 2 + C 34 = ( (40+200) ) = 4650; F 3 + C 44 = ( ) = 4090 } = 4090; F 5 = min =0,,2,3,4 {F + C +,5 } = min { F 0 + C 5 = 0 + ( ( ) + [ ( ) + ( ) + 2 (200+20) ]) = 6390; F + C 25 = ( ( ) + [ ( ) + 2 (200+20) ]) = 5970; F 2 + C 35 = ( ( ) + [2 (200+20) ]) = 6090; F 3 + C 45 = ( (200+20) ) = 570; F 4 + C 55 = ( (20) + 0) = 4980 } = 4980; F 6 = min =0,,2,3,4,5 {F + C +,6 } = min { F 0 + C 6 = 0 + ( ( ) + [ ( ) + ( ) + 2 ( ) + 2 (20+80) ]) = 7590; F + C 26 = ( ( ) + [ ( ) + 2 ( ) + 2 (20+80) ]) = 7090; F 2 + C 36 = ( ( ) + [2 ( ) + 2 (20+80) ]) = 720; F 3 + C 46 = ( ( ) + [2 (20+80) ]) = 6050; 6

10 ulimo periodo con I = 0 F 4 + C 56 = ( (20+80) ) = 5620; F 5 + C 66 = ( ) = 5970 } = 5620; ulimo periodo di approvv. + indice esremo desro del sooinervallo [, ] dell orizzone di pianificazione F r * r * C = 570 C 44 = C 23 = 960 C 56 = 530 La abella ripora i valori F + C +,, e gli indici r * = arg-min 0 - {F + C +, } L indice r * + è quello del periodo in cui è sao fao l ulimo approvvigionameno (nella poliica oima per il sooinervallo [, ]) In definiiva ci si approvvigiona in: = per q = d = 60; = 2 per q 2 = d 2 + d 3 = = 240; = 4 per q 4 = d 4 = 200; = 5 per q 5 = d 5 + d 6 = = 200. La figura mosra il cammino di coso minimo associao alla poliica oima 62

11 Alre sraegie (eurisiche) di lo sizing: o L4L Lo-for-Lo: Approvvigionameno (con un ordine anicipao nel caso di lead ime non rascurabile) per un quaniaivo pari al fabbisogno neo nel periodo, q = d I -. A regime (dopo esaurimeno scora iniziale) assicura zero-invenory alla fine di ogni periodo. N.B.: soluzione oima per h. o FOQ Fixed-Order-Quaniy: Approvvigionameno (con un ordine anicipao nel caso di lead ime non rascurabile) per un quaniaivo pari ad un muliplo di un ammonare prefissao q' (q = n q' d I - ), se d I - > 0. o EOQ Economic-Order-Quaniy: Approvvigionameno (con un ordine anicipao nel caso di lead ime non rascurabile) per un quaniaivo pari all EOQ, se d I - > 0, con EOQ = sqr(2kd/h), dove K, D e H sono i rispeivi valori medi di K, d, e h nell orizzone emporale pianificao 63

12 Alre sraegie (eurisiche) di lo sizing: o Silver-Meal heurisic: Si basa sulla valuazione del coso medio per periodo C () assumendo di effeuare al periodo + un approvvigionameno q = 64 d i, pari alla domanda di periodi consecuivi a parire da : + C () = (K + c + d i d i )/ l= h l l+ Si esaminano i valori C () per =, 2,, s, s+ + arresando la ricerca quando C (s+) > C (s), + s decidendo di approvv. per q = d i, per un coso nell inervallo [, + s ] pari a s C (s) e riparendo poi con il calcolo nei periodi successivi ponendo = + s. o Leas-Uni-Cos heurisic: Analoga alla precedene ma valuando il coso per unià di domanda: + C' () = (K + c + d i d i )/ l= h l l+ d i

13 Modelli con baclogging Caraerizzano i casi in cui è possibile soddisfare la domanda di un periodo nei periodi successivi (baclogging) Tipicamene il baclog I, cioè la quoa di ammanco nel periodo, presena un coso h uniario (ipicamene superiore al coso di soccaggio) Modello di Zangwill: min = (K y + c q + h + I + + h I ) = s.. q + I + + I = d + I + + I, =,, q M y, =,, q, I +, I 0, =,, y {0, }, =,, Problema modellabile come problema di flusso a coso minimo, con cosi fissi e var., sulla seguene ree R d s K, c K 2, c 2 K, c K 3, c 3 h h d h + h + d 2 2 d 3 d 65

14 Anche in al caso è possibile decomporre la soluzione in inervalli indipendeni di pianificazione. Analogamene al caso senza baclogging si può formulare il problema in ermini di PD e ricondurlo a quello di cammino minimo su digrafo aciclico. Risula però più complessa la deerminazione dei cosi degli archi del digrafo in quano in presenza di baclog non è deo che convenga sempre approviggionarsi all inizio dell inervallo. Consideriamo due puni di rigenerazione consecuivi r h = e r h+ = (con 0 < ) e quindi l inervallo [, ] e assumiamo che si effeui l ordine nel periodo, ; il coso del programma di invenario dell inervallo è: C = K + c d i + h + l d i + l h l d i l= l= e quindi: l+ C = min {C } calcolabile nel caso peggiore in O(). 66

15 Alre generalizzazioni: capacià di approvvig. Q limiaa Modello di Florian-Klein (generalizza Wagner-Whiin): min = (K y + c q + h I ) = s.. q + I = d + I, q Q y, q, I 0, y {0, }, =,, =,, =,, =,, L'approccio risoluivo è conceualmene analogo a quello per il modello di Wagner-Whiin. Anche in al caso è possibile decomporre l orizzone di pianificazione in inervalli indipendeni di pianificazione Consideriamo due puni di rigenerazione consecuivi r h = e r h+ = (con 0 < ) e quindi l inervallo [, ] Si dimosra che valore di coso C dell inervallo [, ] può essere oenuo risolvendo un problema di cammino minimo su una digrafo aciclico con sruura a griglia in cui il numero dei nodi e degli archi è O((-) D /Q ), dove D è la domanda nell inervallo considerao. 67

Programmazione della produzione a lungo termine e gestione delle scorte

Programmazione della produzione a lungo termine e gestione delle scorte Programmazione della produzione a lungo ermine e gesione delle score Coneso. Il problema della gesione delle score consise nel pianificare e conrollare i processi di approvvigionameno dei magazzini di

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

Gestione della produzione MRP e MRPII

Gestione della produzione MRP e MRPII Sommario Gesione della produzione e Inroduzione Classificazione Misure di presazione La Disina Base Logica Lo Sizing in II Inroduzione Inroduzione Def: Gesire la produzione significa generare e sfruare

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Modelli di Ricerca Operativa per il Lot Sizing

Modelli di Ricerca Operativa per il Lot Sizing Modelli di Ricerca Oeraiva er il Lo Sizing Corso di Modelli di Sisemi di Produzione I Sommario Inroduzione La gesione delle score (Problema e modelli) Parameri Fondamenali (cosi di e soccaggio) Aroccio

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5 Esercizio 1 Ricapioliamo i dai a nosra disposizione (o ricavabili da quesi): - asso di domanda aeso: đ = 194 unià/mese - deviazione sandard asso di domanda: σ d = 73 - coso fisso emissione ordine (approvvigionameno):

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

Lezione 4 Material Requirement Planning

Lezione 4 Material Requirement Planning Lezione 4 Maerial Requiremen Planning Obieivo: noi gli alberi di prodoo per ciascun ipo; daa una sringa di loi di prodoi finii (fabbisogni dei clieni), ciascun loo da complearsi enro un dao inervallo (se.)

Dettagli

MODELLI AFFLUSSI DEFLUSSI

MODELLI AFFLUSSI DEFLUSSI MODELLI AFFLUSSI DEFLUSSI Al ecnico si presenano moli casi in cui non è sufficiene la deerminazione delle massime porae ramie i crieri di similiudine idrologica, precedenemene esposi. Si ciano, a iolo

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

A. Quantità edificatorie e densità territoriale...1

A. Quantità edificatorie e densità territoriale...1 Cara di Urbanisica I Pro.ssa Arch. Fabiola Fraini Cara di Urbanisica I --- a.a. 2003/2004 PROGETTO PER UN AMBITO URBANO NEL QUARTIERE DI CENTOCELLE Laboraorio progeuale annuale INDICAZIONI RIGUARDO LE

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Differenziazione di prodotto e qualità in monopolio

Differenziazione di prodotto e qualità in monopolio Economia Indusriale Capiolo 7 Differenziazione di prodoo e qualià in monopolio Beoni Michela Gallizioli Giorgio Gaverina Alessandra Rai Nicola Signori Andrea AGENDA Concei di differenziazione vericale

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI Prof. Ing. R. M. Poro A cura della TELECOMUNICAZIONI Con il ermine elecomunicazioni

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2 COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA Ecco una piccola e semplice guida che illusra come risolvere, a grandi linee gli esercii proposi agli esami di Analisi Maemaica (del DM 509/99, cioè successione

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

DI IDROLOGIA TECNICA PARTE III

DI IDROLOGIA TECNICA PARTE III FCOLT DI INGEGNERI Laurea Specialisica in Ingegneria Civile N.O. Giuseppe T. ronica CORSO DI IDROLOGI TECNIC PRTE III Idrologia delle piene Lezione XVII: I meodi indirei per la valuazione delle porae al

Dettagli

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES)

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) Monica Billio Universià Ca Foscari e GRETA, Venezia Michele Paron GRETA, Venezia Inroduzione. Moli meodi di analisi ecnica

Dettagli

Soluzione degli esercizi del Capitolo 2

Soluzione degli esercizi del Capitolo 2 Sisemi di auomazione indusriale - C. Boniveno, L. Genili, A. Paoli 1 degli esercizi del Capiolo 2 dell Esercizio E2.1 Il faore di uilizzazione per i processi in esame è U = 8 16 + 12 48 + 6 24 = 1. L algorimo

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI UNIVERIÀ DEGLI UDI DI RENO FACOLÀ DI CIENZE MAEMAICHE, FIICHE E NAURALI CORO DI LAUREA IN FIICA APPLICAA DAVIDE BAI APPUNI DI ANALII DEI EGNALI Indice Risposa impulsionale dei sisemi lineari -. isemi lineari

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1)

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1) Serie Sorice e Processi Socasici Federico Andreis Inroduzione Desiderando inrodurre inuiivamene il conceo di serie sorica basa fare riferimeno a qualsiasi fenomeno misurabile ce varia nel empo e la cui

Dettagli

Pianificazione di traiettorie nello spazio cartesiano

Pianificazione di traiettorie nello spazio cartesiano Corso di Roboica 1 Pianificazione di raieorie nello spazio caresiano Prof. Alessandro De Luca Roboica 1 1 Traieorie nello spazio caresiano le ecniche di pianificazione nello spazio dei giuni si possono

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli FOCUS TECNICO IL DIMENSIONAMENTO DEGLI IMIANTI IDROSANITARI asi d espansione e accumuli RODUZIONE DI ACQUA CALDA SANITARIA Due sono i sisemi normalmene uilizzai per produrre acqua calda saniaria: quello

Dettagli

USO DELL OSCILLOSCOPIO

USO DELL OSCILLOSCOPIO Con la collaborazione dell alunno Carlo Federico della classe IV sez. A Indirizzo Informaica Sperimenazione ABACUS Dell Isiuo Tecnico Indusriale Saele A. Monaco di Cosenza Anno scolasico 009-010 Prof.

Dettagli

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO 27 nrouzione Per i pali si può fare un iscorso analogo a quello viso per le fonazioni superficiali. Si è viso che nel caso elle fonazioni superficiali l analisi ella eformabilià ella sruura non poeva essere

Dettagli

CAPITOLO 4 Misurazioni nel dominio del tempo Pagina 46 CAPITOLO 4 MISURAZIONI NEL DOMINIO DEL TEMPO CON CONTATORE NUMERICO

CAPITOLO 4 Misurazioni nel dominio del tempo Pagina 46 CAPITOLO 4 MISURAZIONI NEL DOMINIO DEL TEMPO CON CONTATORE NUMERICO CAPIOLO 4 Misurazioni nel dominio del empo Pagina 46 CAPIOLO 4 MISURAZIONI NEL DOMINIO DEL EMPO CON CONAORE NUMERICO Misurare il empo he inerorre ra due eveni signifia onfronare due inervalli di empo,

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

Analisi Frequenziale di Segnali a Tempo Discreto

Analisi Frequenziale di Segnali a Tempo Discreto Capiolo 3 Analisi Frequenziale di Segnali a Tempo Discreo Nei capioli precedeni sono sae inrodoe le nozioni basilari di segnali analogici e a empo discreo, le operazioni fondamenali ra segnali, e, infine,

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

Azionamenti Elettrici

Azionamenti Elettrici Azionameni Elerici 2.4. CONVERTITORI DC/DC... 33 2.4.1. Conrollo dei converiori DC/DC... 33 2.4.2. FullBridge converer (DC/DC)... 34 2.4.2.1. PWM con commuazione di ensione bipolare...35 2.4.2.2. PWM con

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

I possibili schemi di Partenariato Pubblico Privato

I possibili schemi di Partenariato Pubblico Privato OSSERVATORIO collegameno ferroviario Torino-Lione Collegameno ferroviario Torino-Lione I possibili schemi di Parenariao Pubblico Privao Torino, 30 Oobre 2007 Unià Tecnica Finanza di Progeo 1 PPP: analisi

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA RELATORE: Ch.mo Prof. Francesco

Dettagli

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato Analisi dei uasi a erra nei sisemi MT a neuro isolao e neuro compensao - Problemaiche inereni alle proezioni 5N e 67N - A cura di: n. laudio iucciarelli n. Marco iucciarelli . nroduzione Di seuio viene

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Maemaica nella Socieà e nella Culura Sabrina Mulinacci Valuazione del prezzo delle opzioni Americane: meodi probabilisici Bolleino dell Unione Maemaica

Dettagli

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO Sergio Rech Diparimeno di Ingegneria Indusriale Universià di Padova Mercai energeici e meodi quaniaivi: un pone ra Universià

Dettagli

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Teoria delle leggi finanziarie Inensià di ineresse L inensià di ineresse relaiva al periodo da x ad y è definia come adimensionale I( xy, ) 1 ixy (, ) γ ( xy, ) = = C y x ( dimensione di empo -1 ) L inensià

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda UNIVERSITA DEGLI STUDI DI SASSARI FACOLTA DI SCIENZE POLITICHE MASTER IN STATISTICA APPLICATA L approccio ime series per l analisi e la previsione della disoccupazione sarda Relaore: Prof. Paolo Maana

Dettagli

INTERBANCA Codice ISIN IT0004041478

INTERBANCA Codice ISIN IT0004041478 REGOLAMENTO DEL PRESTITO OBBLIGAZNAR INTERBANCA 2006/2011 Discoun Dynamic Index 24 fino a EUR 250.000.000 Ar. 1 - TITOLI Il presio obbligazionario Inerbanca 2006/2011 Discoun Dynamic Index 24 fino a EUR

Dettagli

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INTRODUZIONE AI SEGNALI Classiicazione dei segnali ( I segnali rappresenano il comporameno di grandezze isiche (ad es. ensioni, emperaure, pressioni,... in unzione di una o piu variabili indipendeni (ad

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

4 Il Canale Radiomobile

4 Il Canale Radiomobile Pare IV G. Reali: Il canale radiomobile 4 Il Canale Radiomobile 4.1 INTRODUZIONE L evoluzione fondamenale nella filisofia di progeo delle rei di comunicazione indoor è il passaggio dalla modalià di rasmissione

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

Introduzione all analisi delle serie storiche e dei metodi di previsione

Introduzione all analisi delle serie storiche e dei metodi di previsione Inroduzione all analisi delle serie soriche e dei meodi di previsione Indice. Capiolo inroduivo,. Inroduzione.2 Fasi di un analisi di previsione e sruura delle dispense 2. Meodi e srumeni di base, 5 2.

Dettagli

Dai segnali analogici a quelli numerici

Dai segnali analogici a quelli numerici Appuni di eoria dei Segnali a.a. 200/20 L.Verdoliva In queso capiolo descriveremo i passi che subisce un segnale analogico quando viene discreizzao per oenere un segnale numerico (conversione A/D), e quelle

Dettagli

9. Conversione Analogico/Digitale

9. Conversione Analogico/Digitale 9.1. Generalià 9. Conversione Analogico/Digiale 9.1. Generalià In un converiore analogico/digiale, il problema di fondo consise nello sabilire la corrispondenza ra la grandezza analogica di ingresso (che

Dettagli

Provincia di Treviso

Provincia di Treviso Treviso, 21 dicembre 2004 OGGETTO: Gesione rifiui urbani e assimilai Servizio pubblico inegraivo di gesione rifiui speciali Adempimeni relaivi alla compilazione di formulari di idenificazione, regisri

Dettagli

Sottounità. S6. Disciplina : fisica Docente : Renzo Ragazzon

Sottounità. S6. Disciplina : fisica Docente : Renzo Ragazzon Soounià. S6 Disciplina : fisica Docene : Renzo Ragazzon,OIRJOLRGLFDOFRORFRPH SDOHVWUDµGLSURJUDPPD]LRQH Le isruzioni che un calcolaore dee eseguire engono scrie uilizzando i cosiddei linguaggi di programmazione

Dettagli

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A.

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A. Eserciio ( es le La marice è diagonaliabile: verificare, rovando la marice diagonaliane, che è simile a. Esisono re auovalori: mol.alg(- dim V - ; mol.alg( dim V ; mol.alg(- dim V -. Esise una marice simile

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006 - 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande

Dettagli

LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE

LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE Prof. PAOLO DE ANGELIS Auario - Sudio ACRA Do. STEFANO VISINTIN Auario - Sudio Auariale Visinin & Associai Roma 19 giugno 2012 ASPETTI

Dettagli

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Liuc Papers n. 33, Serie Economia e Impresa 8, seembre 1996 LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Angelo Marano Inroduzione Le dimensioni anomale che il debio pubblico

Dettagli

Università degli Studi di Padova

Università degli Studi di Padova Universià degli Sudi di Padova FACOLTÀ DI SCIENZE STATISTICHE Corso di Laurea Specialisica in Scienze Saisiche, Economiche, Finanziarie e Aziendali VALUTAZIONE DELL EFFICACIA DELLA PUBBLICITÀ NEL MERCATO

Dettagli

Previsione della domanda e ottimizzazione delle scorte di magazzino della CAME s.p.a.

Previsione della domanda e ottimizzazione delle scorte di magazzino della CAME s.p.a. UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIE INFORMATICHE RELAZIONE FINALE Previsione della domanda e oimizzazione delle score di magazzino

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica.

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica. Opporunià di arbiraggio nel mercao del BTP Fuures: una verifica empirica. Andrea Giacomelli Grea, Venezia Domenico Sarore Universià Ca' Foscari e Grea, Venezia Michele Trova Inesa Asse Managemen Come è

Dettagli

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita Appuni delle lezioni di isiuzioni di maemaica auariale per le assicurazioni sulla via Claudio Pacai anno accademico 2005 06 Indice 1 Le operazioni di assicurazione e la eoria dell uilià 1 1.1 L operazione

Dettagli

ANALISI DEGLI SPOSTAMENTI DI UNA COLATA LENTA IN ARGILLE VARICOLORI E DEL LORO LEGAME CON LE PIOGGE

ANALISI DEGLI SPOSTAMENTI DI UNA COLATA LENTA IN ARGILLE VARICOLORI E DEL LORO LEGAME CON LE PIOGGE ANALISI DEGLI SPOSTAMENTI DI UNA COLATA LENTA IN ARGILLE VARICOLORI E DEL LORO LEGAME CON LE PIOGGE Robero Vassallo, Giuseppe Maria Grimaldi, Caerina Di Maio Universià della Basilicaa robero.vassallo@unibas.i;

Dettagli

SCHEDULING INDICE SCHEDULING ESEMPIO INTRODUTTIVO ESEMPIO INTRODUTTIVO SCHEDULING SCHEDULING

SCHEDULING INDICE SCHEDULING ESEMPIO INTRODUTTIVO ESEMPIO INTRODUTTIVO SCHEDULING SCHEDULING orso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO INDIE Esempio Inroduivo Generalià sui problemi di scheduling SINGLE MAHINE SPT (shores processing ime) scheduling

Dettagli

INVENTORY CONTROL. Ing. Lorenzo Tiacci

INVENTORY CONTROL. Ing. Lorenzo Tiacci INVENORY CONROL Ing. Lorenzo iacci esto di riferimento: Inventory Management and Production Planning and Control - hird Ed. E.A. Silver, D.F. Pyke, R. Peterson Wiley, 1998 Indice 1. IL MEODO DI WAGNER-WHIIN

Dettagli

Regolatori switching

Regolatori switching 2 A4 Regolaori swiching I regolaori di ensione lineari hanno il grave difeo di non consenire il raggiungimeno di valori di efficienza paricolarmene elevai. Infai, in quese archieure gli elemeni di regolazione

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007 POLIECNICO DI ILNO IV FCOLÀ Ingegneria erospaziale Fisica Sperimenale + - I ppello 6 Luglio 007 Giusificare le rispose e scriere in modo chiaro e leggibile. Sosiuire i alori numerici solo alla fine, dopo

Dettagli

Economia e gestione delle imprese - 01

Economia e gestione delle imprese - 01 Economia e gesione delle imprese - 01 L impresa come organizzazione che crea valore Leve di creazione di ricchezza e responsabilià sociale Prima pare : L impresa che crea valore 1. L impresa 2. L evoluzione

Dettagli

3 CORRENTE ELETTRICA E CIRCUITI

3 CORRENTE ELETTRICA E CIRCUITI 3 ONT LTT UT lessandro ola Descrizione dell esperienza di Galvani Nel 79 il medico bolognese Luigi Galvani nell ambio dello sudio delle azioni eleriche sugli organi animali osservò che occando con uno

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

Analisi di Mercato. Facoltà di Economia. La pubblicità. Creare la conoscenza di un prodotto. Creare l'immagine di marca. Influenzare gli atteggiamenti

Analisi di Mercato. Facoltà di Economia. La pubblicità. Creare la conoscenza di un prodotto. Creare l'immagine di marca. Influenzare gli atteggiamenti Obieivi della pubblicià Creare la conoscenza di un prodoo Analisi di Mercao Facolà di Economia francesco mola La pubblicià Creare l'immagine di marca Influenzare gli aeggiameni Rafforzare la fedelà alla

Dettagli

REGIONE LIGURIA Piano di risanamento e tutela della qualità dell aria e per la riduzione dei gas serra

REGIONE LIGURIA Piano di risanamento e tutela della qualità dell aria e per la riduzione dei gas serra Piano di risanameno e uela della qualià dell aria e per la riduzione dei gas serra REGIONE LIGURIA Piano di risanameno e uela della qualià dell aria e per la riduzione dei gas serra 1 Piano di risanameno

Dettagli