4 La riserva matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "4 La riserva matematica"

Transcript

1 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso dei premi puri e Y il flusso delle presazioni, risula V (0, X = V (0, Y. L equilibrio non permane però nel corso della duraa del conrao. Per le polizze a premio unico queso fao è chiaro: ad un isane > 0 che precede la scadenza della polizza l unico premio previso è già sao pagao, menre, se il conrao non si è già concluso (ad esempio per la more dell assicurao, sono ancora previse presazioni. Il disequilibrio ad isani successivi alla sipula sussise anche nel caso di polizze a premio annuo. Esempio Si consideri una polizza misa a premio annuo, per una duraa di n anni, asso ecnico i, capiale assicurao C, sipulaa da un assicurao di eà x. Il flusso dei premi conraualmene previsi è X k = { P 1{Tx>k} se k = 0, 1,..., n 1, 0 alrimeni, dove P = C( n E x + n A x / n ä x è il premio annuo puro. Il flusso delle presazioni Y è C 1 {Tx=k} se k = 1, 2,..., n 1, Y k = C 1 {Tx=k} + C 1 {Tx>k} se k = n, 0 alrimeni. Sia n è un isane generico, che per semplicià assumeremo inero. Si assuma inolre che all isane il conrao sia ancora in essere, cioè che l assicurao sia ancora in via. Se 0 n 1, all isane sono sai pagai premi degli n previsi dal conrao. 12 Il flusso di premi residui è quindi una rendia vializia anicipaa con raa P, duraa n e esa assicuraa di eà x +. Se invece > n 1, non ci sono più premi residui. Se si indica con V (, X il valore dei premi residui in, si ha quindi che V (, X = { P n ä x+1 se n 1, 0 alrimeni. Alla sessa daa le presazioni residue della polizza sono Y +1, Y +2,..., Y n e il flusso delle presazioni residue coincide con il flusso di presazioni di una polizza misa di duraa con duraa n, capiale assicurao C e esa assicuraa di eà x +. Indicando con V (, Y il valore delle presazioni residue in, si ha che V (, Y = C( n E x+ + n A x+. Se n > 1 (per n = 1 la polizza è in realà a premio unico e > 0 si può verificare che risula sisemaicamene V (, X < V (, Y. 12 Poiché i premi annui sono anicipai, si immagina che il premio sia dovuo in +, cioè un isane dopo. c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 24

2 4.2 La riserva maemaica Si consideri al empo > 0, che per semplicià assumeremo inero, una polizza ancora in essere, sipulaa al empo zero da una esa di eà x anni. Sia X il veore dei premi previsi e Y il veore delle presazioni previse. La riserva maemaica (ai premi puri della polizza al empo è V x = V (, Y V (, X, (143 cioè il valore delle presazioni residue in meno il valore dei premi puri residui in, calcolai enrambi secondo la base ecnica del I ordine. La riserva maemaica definia secondo la (143 è spesso chiamaa riserva maemaica prospeiva, in quano è calcolaa sulla base dei premi e delle presazioni fuure rispeo alla daa di valuazione. Per convenzione, nel calcolo delle riserva maemaica, si considerano già liquidae in le evenuali presazioni posicipae e non ancora liquidai l evenuale premio in scadenza (che è anicipao e le evenuali presazione anicipae. La riserva maemaica complea (dea anche riserva di bilancio, è invece calcolao dopo uo, considerando cioè liquidiai ui i premi e le presazioni dovue in. La (143 definisce la riserva maemaica come differenza fra la riserva presazioni V (, Y e la riserva premi (puri V (, X. La riserva presazioni può essere uleriormene scomposa nella somma della riserva presazioni caso via V (, Y v con la riserva presazioni caso more V (, Y m. Si osservi che, per cosruzione, alla daa di sipula la riserva maemaica risula nulla, menre la riserva di bilancio coincide con il premio puro (il premio unico o il primo premio annuo versao dall assicurao. Esempio In un conrao di capializzazione a premio unico U, con duraa n anni, asso ecnico i e capiale C = U(1 + i n,, si ha menre per 0 < n risula 0V x = 0 0V + x = U = C (1 + i n, V x = C (1 + i (n = V + x. Esempio In una polizza misa a premio unico, con duraa n anni, asso ecnico i, capiale assicurao C ed eà dell assicurao alla sipula x, si ha menre per 0 < n risula 0V x = 0 0V + x = U = C ( n E x + n A x, V x = C ( n E x+ + n A x+ = V + x. Nauralmene, la riserva presazioni caso via in è C n E x+, menre la riserva presazioni caso more alla sessa daa è C n A x+. Esempio In una polizza di rendia vializia differia posicipaa a premio annuo, con differimeno n anni, asso ecnico i, raa della rendia assicuraa R ed eà dell assicurao alla sipula x, si ha 0V x = 0 0V + x per 0 < < n, durane il differimeno, risula = P = R n a x nä x ; V x = R n a x+ P n ä x+ V + x = V x + P ; c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 25

3 per n, durane il perido di godimeno della rendia, si ha infine V x = R a x+ = V + x. Durane il periodo di differimeno la riserva presazioni è R n a x+ e la riserva premi è P n ä x+. Nel periodo di godimeno della rendia la riserva premi è nulla e la riserva presazioni coincide con la riserva maemaica. Poiché non sono previse presazioni caso more, la relaiva riserva è nulla e la riserva presazioni caso via coincide con la riserva presazioni. Esempio Si consideri una polizza a premio di capiale differio C per n anni con conroassicurazione, asso ecnico i ed eà alla sipula x, con premio annuo puro P e premio annuo di ariffa Π. Al empo 0 < < n la riserva premi (puri è P n ä x+, la riserva presazioni caso via è C n E x+, la riserva presazioni caso more è n k=+1 kπ k 1 1 q x+ (1 + i (k, che, con il cambiameno di variabile j = k, può essere scria nella forma n j=1 n ( + jπ j 1 1 q x+ (1 + i j = Π j=1 La riserva maemaica è quindi n j 1 1q x+ (1 + i j + Π j j 1 1 q x+ (1 + i j j=1 = Π ( n A x+ + n IA x+. V x = C n E x+ + Π ( n A x+ + n IA x+ P n ä x+. Osservazione Si noi l analogia conceuale fra la riserva maemaica di una polizza e il debio residuo di un muuo: è in enrambi i casi il valore (neo del conrao residuo. Osservazione Tue le polizze via sono cosruie in modo ale che, durane la loro via conrauale, la riserva maemaica non diveni negaiva. Ciò significa che l assicuraore congegna il conrao in modo ale da essere sempre debiore e mai crediore nei confroni dell assicurao. Osservazione La riserva maemaica o, meglio, la riserva maemaica complea, è una grandezza bilancisica: essendo il valore neo degli impegni residui dell assicuraore, quesi deve meerla a bilancio, invesendola in aivi a coperura. Esempi di calcolo della riserva maemaica sono proposi nella carella Excel lab3.xls. 4.3 Uno schema conrauale generale Nella raazione che segue, per non dovere ripeere i risulai per le varie ipologie conrauali, faremo riferimeno ad un conrao generico, che chiameremo polizza generica, che prevede: c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 26

4 premi (anicipai pagabili in caso via: alla scadenza inera k il premio pagabile in caso via sarà indicao con P k. presazioni caso more (posicipae: alla scadenza inera k la presazione pagabile in caso di more a quella daa sarà indicaa con C m k ; presazioni caso via anicipae: alla scadenza inera k la presazione anicipaa pagabile in caso di via a quella daa sarà indicaa con C va k ; presazioni caso via posicipae: alla scadenza inera k la presazione posicipaa pagabile in caso di via a quella daa sarà indicaa con C vp k. Supporremo infine che, nel caso di more dell assicurao al empo k, il conrao si concluda con il pagameno della presazione caso more Ck m. Le polizze a premio unico rienrano nello schema ponendo P 0 = U e P k = 0 per k > 0. Le polizze che prevedono n premi annui (anicipai cosani P rienrano nello schema ponendo P k = P per 0 k n 1 e P k = 0 per k n. La disinzione fra presazioni caso via anicipae e posicipae è necessaria per ricomprendere nello schema le presazioni di rendia (immediaa o differia, che può essere anicipaa o posicipaa. Per le polizze che prevedono una presazione di capiale differio in caso di via alla scadenza n si assumerà convenzionalmene che ale presazione sia di ipo anicipao: è infai una presazione che copre il danno cosiuio dal fao che l assicurao è in via nel periodo [n, T x ed è pagaa all inizio del periodo. Lo schema conrauale delineao è sufficienemene generale da comprendere ue le ipologie conrauali descrie nella sezione 3, con l eccezione dei conrai di capializzazione (che non sono polizze via e delle polizze a ermine fisso, del reso poco frequeni. I risulai che oerremo saranno quindi validi per ue le ipologie conrauali, con le eccezioni appena espose. Se si considera una polizza generica sipulaa al empo zero da una esa di eà x, ancora in essere al empo, la riserva maemaica V x è calcolaa considerando già liquidaa la presazione caso via posicipaa C vp via anicipaa C vp e non ancora pagai i premio P e la presazione caso. La relazione ra riserva maemaica e riserva di bilancio è quindi V + x = V x + P C va. (144 Si noi che il compleameno della riserva prevede il premio P vada sommao (e non sorao, perché nel calcolo della riserva maemica si sorae la riserva premi che comprende anche P. Per un moivo simmerico nella (144 la presazione C va va soraa (e non sommaa, perché nel calcolo della riserva maemaica ale presazione si considera non ancora pagaa e quindi compare nella riserva presazioni con il segno posivo. 4.4 L equazione di Foure Teorema (equazione di Foure. Se si considera al empo una polizza generica in essere a quella daa, sipulaa al empo zero da una esa di eà x e con asso ecnico i, vale la relazione V x + P C va dove, come al solio, v = (1 + i 1. = +1 V x p x+ v + C m +1 q x+ v + C vp +1 p x+ v, (145 Dimosrazione. Considerando separaamene le presazioni caso more, caso via posicipae, caso via anicipae e i premi (anicipai e endendo presene le convenzioni sul calcolo della riserva maemaica in, si ha che V x = C+k m k 1 1q x+ v k + C vp +k kp x+ v k + C+k va kp x+ v k P +k k p x+ v k. k>0 k>0 k 0 k 0 c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 27

5 Se scorporiamo il primo addendo di ciascuna delle quaro somme (k = 1 nelle prime due e k = 0 nelle seconde due oeniamo V x = C+1 m 0 1q x+ v + C vp +1 1p x+ v + C va P + C+k m k 1 1q x+ v k + C vp +k kp x+ v k + C+k va kp x+ v k P +k k p x+ v k. k>1 k>1 k 1 k 1 Osservando che, in base alle relazioni (42 e (49, risula kp x+ = p x+ k 1 p x++1 per k 1, k 1 1q x+ = p x+ k 2 1 q x++1 per k > 1, si ha che nelle quaro somme rimase si può raccogliere il faore comune p x+ v, oenendo V x = C+1 m 0 1q x+ v + C vp +1 1p x+ v + C va P + C+k m k 2 1q x++1 v k 1 + C vp +k k 1p x++1 v k 1 + C+k va k 1p x++1 v k 1 k>1 k>1 k 1 P +k k 1 p x++1 v k 1 p x+ v. k 1 Operando nelle somme il cambiameno di variabile j = k 1 (e quindi k > 1 divena j > 0, k 1 divena j > 0 e +k divena +1+j e ricordando che 0 1 q x+ = q x+ e che 1 p x+ = p x+ si oiene V x = C+1 m q x+ v + C vp +1 p x+ v + C va P + C+1+j m j 1 1q x++1 v j + C vp +1+j jp x++1 v j + C+1+j va jp x++1 v j j>0 j>0 j 0 P +1+j j p x++1 v j p x+ v. j 0 Osservando che l espressione nella parenesi onda del membro desro è la riserva maemaica in + 1 e riarrangiando i ermini dell equazione si oiene la esi. L equazione di Foure sabilisce una relazione ricorrene ra la riserva maemaica in e quella in + 1. Se la si scrive risola rispeo a +1 V x si oiene +1V x = V x + P C va = V x + P C va p x+ v C+1 m q x+ v C vp +1 p x+ v p x+ v C m +1 1 p x+ p x+ (146 C vp +1 (147 e quesa relazione può essere usaa per il calcolo ricorrene della riserva, a parire dalla condizione iniziale 0 V x = 0. Si osservi che, usando la (144, l equazione di Foure può essere scria nella forma V + x = +1 V x p x+ v + C m +1 q x+ v + C vp +1 p x+ v. (148 Esempio Per una polizza di capiale differio C a premio annuo, con duraa del differimeno n, eà dell assicurao alla sipula x, asso ecnico i e premio annuo P = C n E x / n ä x, l equazione di Foure assume la forma per ogni = 0, 1,..., n 1. V x + P = +1 V x p x+ v c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 28

6 Esempio Per una polizza misa a premio annuo, con capiale assicurao C, duraa n, eà dell assicurao alla sipula x, asso ecnico i e premio annuo puro P = C ( n E x + n A x / n ä x, l equazione di Foure assume la forma per ogni = 0, 1,..., n 1. V x + P = +1 V x p x+ v + C q x+ v Esempio Si consideri una polizza di rendia vializia differia posicipaa con conroassicurazione a premio annuo, con raa della rendia R, duraa del differimeno n, eà dell assicurao alla sipula x, asso ecnico i e premio annuo puro P e di ariffa Π. Durane il differimeno ( < n l equazione di Foure assume la forma V x + P = +1 V x p x+ v + Π q x+ v. Nel periodo di godimeno della rendia ( n si ha invece V x = +1 V x p x+ v + R p x+ v. Se, ferme resando le rimaneni condizioni conrauali, la rendia assicuraa fosse anicipaa anziché posicipaa, la forma dell equazione durane il differimeno rimarrebbe invariaa (ma i valori numerici di P e Π sarebbero diversi a parià di raa R. Nel periodo di godimeno della rendia ( n si avrebbe invece nv x R = +1 V x p x+ v. Esempi di uso dell equazione di Foure sono proposi nella carella Excel lab4.xls. 4.5 Premio di rischio e premio di risparmio Si consideri una polizza generica. Se si risolve l equazione di Foure (145 rispeo al premio P, si sosiuisce p x+ = 1 q x+ e si riarrangiano un po i ermini: P = +1 V x p x+ v + C+1 m q x+ v + C vp +1 p x+ v + C va V x (149 = C+1 m q x+ v + +1 V x (1 q x+ v V x + C va + C vp +1 (1 q x+ v (150 = ( C+1 m C vp +1 +1V x qx+ v + ( +1V x v V x + C vp +1 v + Cva (151 si oiene una scomposizione noevole del premio P. Se si pone P R = ( C m +1 C vp +1 +1V x qx+ v (152 e si ha che P S = +1 V x v V x + C vp +1 v + Cva (153 P = P R + P S. (154 Il primo addendo della scomposizione (154 è il premio di rischio P R. È uguale al capiale soo rischio C+1 m Cvp +1 +1V x probabilizzao e sconao. Nel caso l assicurao deceda al empo + 1, l assicuraore dovrà corrispondere la presazione caso more C+1 m e non pagherà la presazione caso via posicipaa C vp +1 ; poiché avrà a dispozione la riserva +1V x, se quesa sarà minore della presazione nea C+1 m Cvp +1 egli subirà una perdia pari al capiale soo rischio. Nauralmene, nel caso opposo di riserva maggiore della presazione nea, il capiale soo rischio è negaivo e l assicuraore avrà un guadagno anziché una perdia. Il premio di c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 29

7 rischio è quindi il valore auale auariale in della perdia che l assicuraore subirà per il caso more al empo + 1. La (152 quanifica quindi la pare del premio P che copre (in aspeaiva la perdia dell assicuraore per il caso more al empo + 1. Il secondo addendo della scomposizione è il premio di risparmio P S. È quello che rimane del premio P dopo che è saa scorporaa la componene di rischio; va a finanziare la presazione anicipaa caso via in, la presazione posicipaa caso via in + 1 e quelle (via e more successive. La scomposizione (154 è paricolarmene significaiva per polizze a premio annuo, ma può essere effeuaa anche per polizze a premio unico. In ale caso, essendo nulli i premi successivi al primo, si avrà che premio di rischio e premio di risparmio sono uguali in valore assoluo ma di segno opposo. La noazione usaa per indicare il premio di rischio e il premio di risparmio è quella della radizione auariale; gli apici R e S sono le iniziali di Risiko (ed.: rischio e sparen (ed.: risparmiare. Esempio In una polizza emporanea caso more a premio annuo (puro P, con capiale assicurao C, duraa n anni, asso ecnico i ed eà alla sipula x, il premio di rischio e il premio di risparmio al empo assumono la forma P R = ( C m V x qx+ v= [C (1 n 1 A x++1 + P n 1 ä x++1 ] q x+ v, P S = +1 V x v V x =C ( n 1 A x++1 v n A x+ P ( n 1 ä x++1 v n ä x+. In quesa ipologia conrauale non ci sono capiali caso via nel corso della duraa della polizza che complicano la logica delle espressioni. Il premio di rischio è il valore auale auariale dell inegrazione di riserva che l assicuraore deve operare al empo +1 per pagare la presazione caso more. Il premio di risparmio va a incremenare ( la riserva in + 1 per finanziare le presazioni successive: si ha infai +1 V x = V x + P S (1 + i. Esempio In una polizza misa a premio annuo (puro P, con capiale assicurao C, duraa n anni, asso ecnico i ed eà alla sipula x, il premio di rischio e il premio di risparmio al empo assumono la forma P R P S = ( C m V x qx+ v = [C (1 n 1 E x++1n 1 A x++1 + P n 1 ä x++1 ] q x+ v, = +1 V x v V x = C ( n 1 E x++1 v + n 1 A x++1 v n E x+ n A x+ P ( n 1 ä x++1 v n ä x+. Si osservi che per = n 1, la scomposizione dell ulimo premio annuo fornisce Per = n 1, la scomposizione dell ulimo premio annuo è P R n 1 = (C m n n V x q x+n 1 v = 0, P S n 1 = P P R n 1 = P, che mosra come l ulimo premio annuo sia uo premio di risparmio. Esempio In una rendia vializia immediaa, posicipaa e emporanea a premio annuo (puro P, con raa della rendia R, duraa n anni, asso ecnico i ed eà alla sipula x, il premio di rischio e il premio di risparmio al empo assumono la forma P R P S = ( C vp +1 +1V x qx+ v = [R (1 + n 1 a x++1 P n 1 ä x++1 ] q x+ v, = +1 V x v + C vp +1 v V x = R ( n 1 a x++1 v n a x+ P ( n 1 ä x++1 v n ä x+. Il premio di rischio è negaivo, perché in caso di more dell assicurao al empo + 1 l assicuraore ha un profio in quano omee di versare la raa e incamera la riserva. c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 30

8 Esempi di calcolo del premio di rischio e del premio di risparmio sono proposi nella carella Excel lab4.xls. 4.6 La riserva rerospeiva Sempre nel caso della polizza generica, se si pare dall equazione di Foure scria nella forma V x + P C va = +1 V x (1 q x+ v + C m +1 q x+ v + C vp +1 (1 q x+ v, (155 poiché nel membro sinisro compare P = P S + P R e nel membro desro compare P R = C m +1 q x+ v C vp +1 q x+ v +1 V x q x+ v, semplificando il premio di rischio si oiene V x + P S C va = ( +1V x + C vp +1 v, (156 cioè +1V x = ( V x + P S C va (1 + i C vp +1. (157 La (157 è un espressione paricolarmene significaiva perché mosra come la riserva in +1 si oenga parendo dalla riserva in, ogliendo la presazione caso via anicipaa in, aumenando il risulao del premio di risparmio, capializzando il uo al asso ecnico e ogliendo la presazione caso via posicipaa in + 1. Nell espressione non compaiono espliciamene la presazione caso more in + 1, né le probabilià di sopravvivienza. Parendo dalla solia condizione iniziale 0 V x = 0 e applicando ricorsivamene la (157 si oiene 0V x = 0, (158 ( 1V x = 0V x + P0 S C0 va (1 + i C vp 1 (159 ( = P0 S C0 va (1 + i C vp 1, (160 ( 2V x = 1V x + P1 S C1 va (1 + i C vp 2 (161 ( ( = P0 S C0 va (1 + i 2 + P1 S C1 va (1 + i C vp 1 (1 + i Cvp 2, (162 ( 3V x = 2V x + P2 S C2 va (1 + i C vp 3 (163 2 ( 2 = Pk S Ck va (1 + i 3 k C vp k+1 (1 + i3 k 1, ( k=0 k=0 (165 1 ( V x = Pk S Ck va (1 + i k 1 C vp k+1 (1 + i k 1. (166 k=0 k=0 La (166 è la soluzione in forma chiusa dell equazione ricorrene (157 e mosra come la riserva in sia il monane puramene finanziario dei premi di risparmio incassai fino a (escluso, privai delle presazioni caso via anicipae pagae fino alla sessa daa, meno il monane puramene finanziario delle presazioni caso via posicipae liquidae fino a (compreso. Mosra quindi come la riserva venga cosiuia dal monane dei premi di risparmio al asso ecnico, a cui dal quale vengono però via via prelevae le risorse finanziarie per pagare le presazioni caso via. Il risulao è paricolarmene significaivo per forme conrauali che non prevedono presazioni caso via prima di una cera scadenza (ad esempio polizze di c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 31

9 capiale o rendia differia e polizze mise: fino a quella scadenza la riserva maemaica è il monane finanziario dei premi di risparmio. In base a queso risulao risula chiaro come l assicuraore debba gesire la polizza. Nell ipoesi del I ordine egli riesce infai a invesire esaamene al asso ecnico e paga le presazioni secondo quano previso dalla base demografica del I ordine. In quese ipoesi, quindi, se l assicuraore ogni anno: incassa i premi puri (a inizio anno, paga le presazioni caso via anicipae (a inizio anno, invese quello che rimane; paga le presazioni caso more (a fine anno, paga le preszioni caso via posicipae (a fine anno, si rirova con un valore degli aivi che è esaamene uguale alla riserva maemaica, cioè al valore residuo neo del suo impegno verso gli assicurai. È quindi copero. Nauralmene non è assoluamene deo che le ipoesi del I ordine si verifichino nella realà, ma se sono sufficienemene prudenziali l assicuraore ha una cera garanzia di rimanere copero. L espressione (166 viene soliamene chiamaa la riserva rerospeiva. Per la polizza generica che abbiamo considerao abbiamo viso quindi che la riserva rerospeiva coincide con la riserva prospeiva. Queso fao non è vero in generale: ci sono forme assicuraive nelle quale le due grandezze non coicidono. Si osservi che, per la polizza generica, la differenza fra la forma prospeiva e rerospeiva della riserva è conceualmene analoga alla differenza fra valore monane e valore residuo in una operazione puramene finanziaria: anche in quel caso, se l operazione finanziaria è equa alla daa di valuazione, le due grandezze coincidono. 4.7 La riserva come variabile aleaoria Occorre osservare che la riserva maemaica V x al empo è saa definia per polizze ancora in essere alla daa. Per la polizza generica, ciò significa che la riserva maemaica è saa definia solo per una polizza in cui l assicurao sia in via al empo. In paricolare, prima del empo, la riserva maemaica non è noa ma è una variabile aleaoria, che varrà V x se l assicurao sarà in via al empo, zero se sarà moro al empo. In forma compaa si può scrivere la riserva maemaica in come V x 1 {Tx>}. Di quesa variabile aleaoria si può ] calcolare l aspeaiva: in zero vale ad esempio E 0 [V x 1 {Tx>} = V x p x. c C. Pacai 2005, Appuni IMAAV, sezione 4 (v. 13/12/2005 pag. 32

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita Appuni delle lezioni di isiuzioni di maemaica auariale per le assicurazioni sulla via Claudio Pacai anno accademico 2005 06 Indice 1 Le operazioni di assicurazione e la eoria dell uilià 1 1.1 L operazione

Dettagli

Le polizze rivalutabili

Le polizze rivalutabili Capiolo 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi, con l eccezione delle polizze TCM, hanno compleamene

Dettagli

6 Le polizze rivalutabili

6 Le polizze rivalutabili 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi ui i conrai dei rami via proposi dalla compagnie ialiane, con

Dettagli

La riserva matematica

La riserva matematica Capitolo 4 La riserva matematica 4.1 Introduzione La polizza, come si è visto, viene costruita in modo da essere in equilibrio attuariale alla data di stipula t = 0 e rispetto alla base tecnica del I ordine:

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI Fabio Grasso Direore Diparimeno di Scienze Saisiche Presidene Area Didaica delle Scienze Saisiche, Auariali e Finanziarie Universià degli Sudi di Roma La Sapienza LA PREVIDENZA COMPLEMENTARE: I PROFILI

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

Ottobre 2009. ING ClearFuture

Ottobre 2009. ING ClearFuture Oobre 2009 ING ClearFuure Una crescia cosane. Con una solida proezione nel empo. ING ClearFuure è la soluzione assicuraiva Uni Linked di dirio lussemburghese, realizzaa apposiamene da ING Life Luxembourg

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto Valuazione d azienda La valuazione d azienda: conciliazione ra meodo direo ed indireo di Maeo Versiglioni (*) e Filippo Riccardi (**) La meodologia maggiormene uilizzaa per la valuazione d azienda, è quella

Dettagli

Trasformazioni di Galileo

Trasformazioni di Galileo Principio di Relaivià Risrea (peciale) e si sceglie un dr rispeo al uale le leggi della fisica sono scrie nella forma più semplice (dr ineriale) allora le sesse leggi valgono in ualunue alro dr in moo

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

Corso di. Economia Politica

Corso di. Economia Politica Prof.ssa Blanchard, Maria Laura Macroeconomia Parisi, PhD; Una parisi@eco.unibs.i; prospeiva europea, DEM Universià Il Mulino di 2011 Brescia Capiolo I. Un Viaggio inorno al mondo Corso di Economia Poliica

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

Provincia di Treviso

Provincia di Treviso Treviso, 21 dicembre 2004 OGGETTO: Gesione rifiui urbani e assimilai Servizio pubblico inegraivo di gesione rifiui speciali Adempimeni relaivi alla compilazione di formulari di idenificazione, regisri

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

I possibili schemi di Partenariato Pubblico Privato

I possibili schemi di Partenariato Pubblico Privato OSSERVATORIO collegameno ferroviario Torino-Lione Collegameno ferroviario Torino-Lione I possibili schemi di Parenariao Pubblico Privao Torino, 30 Oobre 2007 Unià Tecnica Finanza di Progeo 1 PPP: analisi

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

SINGOLARITA DELL ANTIMERIDIANO DI GREENWICH(di mortolacarlo)

SINGOLARITA DELL ANTIMERIDIANO DI GREENWICH(di mortolacarlo) SINGOLARITA DELL ANTIMERIDIANO DI GREENWICH(di orolacarlo) La peculiariàdella doppia daa di cui gode l anieridiano di Greenwic è noa, ance ai non addei ai lavori;per esepio a ci a leo il libro di avvenura

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Teoria delle leggi finanziarie Inensià di ineresse L inensià di ineresse relaiva al periodo da x ad y è definia come adimensionale I( xy, ) 1 ixy (, ) γ ( xy, ) = = C y x ( dimensione di empo -1 ) L inensià

Dettagli

I RENDIMENTI LE SERIE STORICHE FINANZIARIE

I RENDIMENTI LE SERIE STORICHE FINANZIARIE I EDIMETI LE SEIE STOICHE FIAZIAIE Aivià finanziarie Azioni es. Capialia, Mediase,... Tioli di sao BOT, BT, Tassi di cambio Euro/Dollaro, Euro/Serlina, Indici di Borsa S&/MIB, CAC4, ETF Tassi di ineresse

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti Prof. R.R. Cerciara La Riassicurazione Prof. Cerciara Rocco Robero email: rocco.cerciara@unical.i Maeriale e Riferimeni 1. Lucidi disribuii in aula. Daboni, pagg. 13-17 e 137-148 (Leggere Riassicurazione

Dettagli

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Liuc Papers n. 33, Serie Economia e Impresa 8, seembre 1996 LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Angelo Marano Inroduzione Le dimensioni anomale che il debio pubblico

Dettagli

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI Prof. Ing. R. M. Poro A cura della TELECOMUNICAZIONI Con il ermine elecomunicazioni

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

Differenziazione di prodotto e qualità in monopolio

Differenziazione di prodotto e qualità in monopolio Economia Indusriale Capiolo 7 Differenziazione di prodoo e qualià in monopolio Beoni Michela Gallizioli Giorgio Gaverina Alessandra Rai Nicola Signori Andrea AGENDA Concei di differenziazione vericale

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

Distribuzione Weibull

Distribuzione Weibull Disribuzione Weibull f() 6.6.4...8.6.4. 5 5 5 3 Disribuzione di Weibull Una variabile T ha disribuzione di Weibull di parameri α> β> se la sua densià di probabilià è scria nella forma: f ( ) exp da cui

Dettagli

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO 27 nrouzione Per i pali si può fare un iscorso analogo a quello viso per le fonazioni superficiali. Si è viso che nel caso elle fonazioni superficiali l analisi ella eformabilià ella sruura non poeva essere

Dettagli

2. Duration. Stefano Di Colli

2. Duration. Stefano Di Colli 2. Duraio Meodi Saisici per il Credio e la Fiaza Sefao Di Colli Tassi di ieresse e redimei La reddiivià di u obbligazioe è misuraa dal asso di redimeo o dal asso di ieresse U idicaore del redimeo deve

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Maemaica nella Socieà e nella Culura Sabrina Mulinacci Valuazione del prezzo delle opzioni Americane: meodi probabilisici Bolleino dell Unione Maemaica

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale

REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale REGIMI FINANZIARI USUALI: Ineressi seplici Ineressi coposi Ineressi anicipai Giulio Diale INTERESSI SEMPLICI I C L ineresse è proporzionale al capiale e alla duraa dell ipiego I = C i Denoinazioni di i:

Dettagli

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006 - 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2 COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA Ecco una piccola e semplice guida che illusra come risolvere, a grandi linee gli esercii proposi agli esami di Analisi Maemaica (del DM 509/99, cioè successione

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

Strumenti derivati: aspetti introduttivi. Outline. Il contratto forward. Generalità sugli strumenti derivati. Payoff del contratto forward

Strumenti derivati: aspetti introduttivi. Outline. Il contratto forward. Generalità sugli strumenti derivati. Payoff del contratto forward Srumeni derivai: aspei inroduivi Ouline Conrai forward, fuures e opzioni: descrizione degli srumeni ed esempi di sraegie operaive Prof. Fabio Bellini fabio.bellini@unimib.i Universià di Milano Bicocca

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

Teoria delle opzioni e Prodotti strutturati

Teoria delle opzioni e Prodotti strutturati L FIME a.a. 8-9 9 eoria elle opzioni e Prooi sruurai Giorgio onsigli giorgio.consigli@unibg.i Uff 58 ricevimeno merc:.-3. Programma. Mercao elle opzioni e conrai erivai. eoria elle opzioni 3. ecniche i

Dettagli

INTERBANCA Codice ISIN IT0004041478

INTERBANCA Codice ISIN IT0004041478 REGOLAMENTO DEL PRESTITO OBBLIGAZNAR INTERBANCA 2006/2011 Discoun Dynamic Index 24 fino a EUR 250.000.000 Ar. 1 - TITOLI Il presio obbligazionario Inerbanca 2006/2011 Discoun Dynamic Index 24 fino a EUR

Dettagli

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica.

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica. Opporunià di arbiraggio nel mercao del BTP Fuures: una verifica empirica. Andrea Giacomelli Grea, Venezia Domenico Sarore Universià Ca' Foscari e Grea, Venezia Michele Trova Inesa Asse Managemen Come è

Dettagli

Le basi della valutazione secondo i cash flow. Aswath Damodaran

Le basi della valutazione secondo i cash flow. Aswath Damodaran Le basi della valuazione secondo i cash flow Aswah Damodaran Valuazione secondo i cash flow: le basi dell'approccio Valore = = n CF = 1 1+ r ( ) dove, n = anni di via dell'aivià CF = Cash flow nel periodo

Dettagli

I): informazione perfetta: lavoratori e imprese conoscono P e W:

I): informazione perfetta: lavoratori e imprese conoscono P e W: Il Monearismo Il mercao del lavoro secondo i monearisi Conrai a breve ermine si aggiusano velocemene I): informazione perfea: lavoraori e imprese conoscono e W: W i prezzi : da a = 2 W - domanda: da a

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Telecontrollo via internet del processo SBR con tecniche di intelligenza artificiale

Telecontrollo via internet del processo SBR con tecniche di intelligenza artificiale Universià degli Sudi di Firenze Facolà di Ingegneria Tesi di laurea magisrale in Ingegneria per l'ambiene e il Terriorio 20 Aprile 2006 Teleconrollo via inerne del processo SBR con ecniche di inelligenza

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

Soluzione degli esercizi del Capitolo 2

Soluzione degli esercizi del Capitolo 2 Sisemi di auomazione indusriale - C. Boniveno, L. Genili, A. Paoli 1 degli esercizi del Capiolo 2 dell Esercizio E2.1 Il faore di uilizzazione per i processi in esame è U = 8 16 + 12 48 + 6 24 = 1. L algorimo

Dettagli

Il Project Financing - Aspet t i finanziari

Il Project Financing - Aspet t i finanziari Parenariao Pubblico Privao Le modalià di coinvolgimeno dei capiali privai nel seore pubblico e gli srumeni finanziari di invesimeno Il Projec Financing - Aspe i finanziari Roma, 21 Febbraio 2006 Gabriele

Dettagli

Appunti di Matematica e tecnica finanziaria. Ettore Cuni, Luca Ghezzi

Appunti di Matematica e tecnica finanziaria. Ettore Cuni, Luca Ghezzi Appuni di Maemaica e ecnica finanziaria Eore Cuni, Luca Ghezzi Universià Carlo Caaneo LIUC Casellanza 2010 Universià Carlo Caaneo LIUC C.so Maeoi, 22-21053 Casellanza (VA) Tel. +39-0331-572.1 www.liuc.i

Dettagli

VERSO STANDARD CONTABILI INTERNAZIONALI PER LE ASSICURAZIONI VITA. ASPETTI ATTUARIALI

VERSO STANDARD CONTABILI INTERNAZIONALI PER LE ASSICURAZIONI VITA. ASPETTI ATTUARIALI UNIVERSIA DEGLI SUDI DI RIESE FACOLA DI ECONOMIA CORSO DI LAUREA IN SCIENZE SAISICHE ED AUARIALI ESI DI LAUREA IN MAEMAICA AUARIALE VERSO SANDARD CONABILI INERNAZIONALI PER LE ASSICURAZIONI VIA. ASPEI

Dettagli

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda UNIVERSITA DEGLI STUDI DI SASSARI FACOLTA DI SCIENZE POLITICHE MASTER IN STATISTICA APPLICATA L approccio ime series per l analisi e la previsione della disoccupazione sarda Relaore: Prof. Paolo Maana

Dettagli

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA Valeria D Amao Doorao in Maemaica per l Analisi economica e la Finanza XX Ciclo Coordinaore: Prof. Emilia Di Lorenzo Tuor: Prof. Emilia

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007 POLIECNICO DI ILNO IV FCOLÀ Ingegneria erospaziale Fisica Sperimenale + - I ppello 6 Luglio 007 Giusificare le rispose e scriere in modo chiaro e leggibile. Sosiuire i alori numerici solo alla fine, dopo

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

UNITà E. Biblioteca di Telepass + 2 biennio TOMO 3 ESERCIZIO. La contabilità generale: le operazioni d esercizio 1/11

UNITà E. Biblioteca di Telepass + 2 biennio TOMO 3 ESERCIZIO. La contabilità generale: le operazioni d esercizio 1/11 Biblioeca di Telepass + 2 biennio TOMO 3 UNITà E La conabilià generale: le operazioni d esercizio Cosiuzione di azienda, acquisi e vendie: scriure in P.D. Tuorial ESERCIZIO In daa 27 marzo 20.. il signor

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli

5 LA MATRICE DEI FLUSSI DI FONDI

5 LA MATRICE DEI FLUSSI DI FONDI 94 Capiolo V 5 LA MATRICE DEI FLUSSI DI FONDI Ricapioliamo brevemene la srada percorsa ino a qui. Siamo parii nel primo capiolo analizzando una semplice economia di barao con re ageni. In queso coneso

Dettagli

USO DELL OSCILLOSCOPIO

USO DELL OSCILLOSCOPIO Con la collaborazione dell alunno Carlo Federico della classe IV sez. A Indirizzo Informaica Sperimenazione ABACUS Dell Isiuo Tecnico Indusriale Saele A. Monaco di Cosenza Anno scolasico 009-010 Prof.

Dettagli

MODELLI AFFLUSSI DEFLUSSI

MODELLI AFFLUSSI DEFLUSSI MODELLI AFFLUSSI DEFLUSSI Al ecnico si presenano moli casi in cui non è sufficiene la deerminazione delle massime porae ramie i crieri di similiudine idrologica, precedenemene esposi. Si ciano, a iolo

Dettagli

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES)

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) Monica Billio Universià Ca Foscari e GRETA, Venezia Michele Paron GRETA, Venezia Inroduzione. Moli meodi di analisi ecnica

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1)

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1) Serie Sorice e Processi Socasici Federico Andreis Inroduzione Desiderando inrodurre inuiivamene il conceo di serie sorica basa fare riferimeno a qualsiasi fenomeno misurabile ce varia nel empo e la cui

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

Il modello di Black-Scholes. Il modello di Black-Scholes/2

Il modello di Black-Scholes. Il modello di Black-Scholes/2 Il modello di Black-Scholes Si raa sosanzialmene del modello in empo coninuo che si oiene facendo endere a 0 nel modello binomiale. Come vedremo, è un modello di fondamenale imporanza, e per esso a Myron

Dettagli

Esercitazione Scritta di Controlli Automatici 08-02-2006

Esercitazione Scritta di Controlli Automatici 08-02-2006 Eserciazione Scria di Conrolli Aomaici 8--6 Esercizio Si consideri la serie composa da n aaore ed n sisema meccanico (figra ). U A(s) F G(s) Y Figra : Connessione serie ra aaore e sisema meccanico. Enrambe

Dettagli

La Finanza di Progetto per la realizzazione e gestione di un parco Eolico

La Finanza di Progetto per la realizzazione e gestione di un parco Eolico SUSTAINABLE ENERGY FORUM - Le nuove froniere della produzione di energia pulia La Finanza di Progeo per la realizzazione e gesione di un parco Eolico Roma, 6 Giugno 2007 Gabriele FERRANTE Unià ecnica Finanza

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parhenope Facolà di Ingegneria Corso di Comunicazioni Eleriche docene: Prof. Vio Pascazio 2 a Lezione: 13/03/2003 Sommario Schema di un Sisema di TLC Schema di un Sisema di TLC digiale

Dettagli

Azionamenti Elettrici

Azionamenti Elettrici Azionameni Elerici 2.4. CONVERTITORI DC/DC... 33 2.4.1. Conrollo dei converiori DC/DC... 33 2.4.2. FullBridge converer (DC/DC)... 34 2.4.2.1. PWM con commuazione di ensione bipolare...35 2.4.2.2. PWM con

Dettagli