Soluzioni esercizi di Riepilogo e Autovalutazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzioni esercizi di Riepilogo e Autovalutazione"

Transcript

1 Soluzioni eserizi di Riepilogo e Autovlutzione Mrello D Agostino Corso di Logi Filosofi 2014/ mggio 2015 Copyright 2015 Mrello D Agostino BLOCCO I Domnd 1: Un rispost è l seguente: Un inferenz è orrett qundo l su onlusione è ver in tutti i mondi possiili in ui le premesse sono vere. Quest rispost è equivlente ll seguente: Un inferenz è orrett qundo non h ontroesempi, ioè non esiste un mondo possiile in ui le premesse sono vere e l onlusione è fls. Domnd 2: premesse. Domnd 3: Si dimostr ostruendo un deduzione dell su onlusione prtire dlle sue Esempio di inferenz orrett: Esempio di inferenz sorrett: Tutti i litori sono filosofi Frneso Totti è un litore Dunque: Frneso Totti è un filosofo. Qulhe litore è filosofo Frneso Totti è un litore Dunque: Frneso Totti è un filosofo. Domnd 4: Un ontroesempio è un mondo possiile in ui le premesse di un dt inferenz sono vere e l onlusione fls. Serve mostrre he l inferenz in questione è sorrett. 1

2 LOGICA-TEST pgin 2 di /2014 Domnd 5: () Sì. Esempio: Tutti i tennisti sono spgnoli Ndl è un tennist Ndl è spgnolo () No. Se l onlusione è fls, lmeno un delle premesse deve essere fls. Inftti, se un inferenz e orrett e le premesse sono vere, l onlusione deve essere neessrimente ver. Domnd 6: Vedi Dispens n. 2. Domnd 7: Vedi Dispens n. 1. Domnd 8: Vedi Dispens n. 1. Domnd 9: Vedi Dispens n. 4. Domnd 10: Vedi Dispens n.4, Eserizio 9. Domnd 11: Vedi Dispens n. 2, p. 7. Domnd 12: n. 4. ( ) Vedi Dispens n. 4; (d) vedi Dispens n. 3, pp ; (e) vedi Dispens Domnd 13: vedi Dispens n. 4, p. 28. Domnd 14: Costruendo, prtire d esse, un lero deduttivo in ui tutti i rmi sono hiusi. Vedi Dispens n. 4, pp. 28. Domnd 15: Domnd 16: Vedi Dispens n.4, pp. 31 e seguenti. Vedi Dispens n.4, pp. 28 e seguenti. Domnd 17: () Sorrett. È un flli (negzione dell nteedente). Vedi Dispens n. 3. () Corrett. È un esempio del modus tollens. () Sorrett. È un flli (ffermzione del onseguente). Vedi Dispens n. 3.

3 LOGICA-TEST pgin 3 di /2014 Domnd 18: () Corrett (usre informzioni di sfondo). () Corrett (usre informzioni di sfondo). () Corrett (usre rgionmento per si o rgionmento per ssurdo, on informzioni d sfondo). (d) Sorrett. Domnd 19: () Sorrett (sree orrett se l disgiunzione fosse eslusiv). () Corrett. () Corrett (usre rgionmento per si o rgionmento per ssurdo). (d) Sorrett. Domnd 20: (O(m, 1) O(d, 1)) (O(m, 1) O(t, 1)) (O(d, 1) O(t, 1)) (O(m, 5) O(d, 5)) (O(m, 5) O(t, 5)) (O(d, 5) O(t, 5)) Domnd 21: () O(m, 1) O(m, 3) O(m, 5). () (O(t, 2) O(t, 4) oppure O(t, 2) O(t, 4). () O(m, 1) O(m, 2) O(m, 3) O(m, 4) O(m, 5). (d) (O(m, 1) O(m, 2) O(m, 3) O(m, 4) O(m, 5)) oppure O(m, 1) O(m, 2) O(m, 3) O(m, 4) O(m, 5). Domnd 22: () [ O(t, 1) O(t, 5) ] [ O(m, 1) O(m, 5) ]. () [ O(m, 1) O(m, 2) O(m, 3) O(m, 4) O(m, 5) ] [ O(t, 1) O(t, 2) O(t, 3) O(t, 4) O(t, 5) ]

4 LOGICA-TEST pgin 4 di /2014 () [ O(m, 1) O(m, 2) O(m, 3) O(m, 4) O(m, 5) ] [ O(t, 1) O(t, 2) O(t, 3) O(t, 4) O(t, 5) ] (d) [ O(t, 1) O(t, 2) O(t, 3) O(t, 4) O(t, 5) ] [ O(m, 1) O(m, 2) O(m, 3) O(m, 4) O(m, 5) ] (nellre nhe dll domnd) Domnd 23: () G(, ) G(, ) G(, ) () G(, ) G(, ) G(, ) () [ G(, ) G(, ) G(, ) ] Domnd 24: () [ G(, ) G(, ) G(, ) ] [ G(, ) G(, ) G(, ) ] () ( G(, ) G(, )) ( G(, ) G(, )) ( G(, ) G(, )) Domnd 25: Inferenze domnd 18: () 1 O(m, 1) O(m, 2) 2 O(t, 1) 3 (O(m, 1) O(t, 1)) IS 4 O(m, 1) elim F2 (3,2) 5 O(m, 2) elim V1 (1,4) () 1 O(m, 1) O(m, 3) 2 O(t, 2) 3 O(m, 1) O(d, 2) 4 (O(d, 2) O(t, 2)) IS 5 O(d, 2) elim F2 (4,2) 6 O(m, 1) elim V2 (3,5) 7 O(m, 3) elim V1 (1,6) () Dimostrzione per ssurdo: 1 O(m, 1) O(m, 2) 2 O(m, 1) O(t, 2) 3 O(m, 1) Negzione dell onlusione 4 O(m, 2) elim V1(1,3) 5 O(t, 2) elim V1(2,3) 6 (O(m, 2) O(t, 2)) IS 7 O(t, 2) elim F(6,4)

5 LOGICA-TEST pgin 5 di /2014 (d) Controesempio: d m t Inferenze domnd 19: () Controesempio: () 1 G(, ) G(, ) 2 (G(, ) G(, )) 3 G(, ) 4 (G(, ) G(, )) (G(, ) G(, )) 5 G(, ) G(, ) elim V1 (4) 6 G(, ) elim F2(2,3) 7 G(, ) elim V2(5,6) 8 G(, ) elim V1(1,7) () Dimostrzione per ssurdo: 1 G(, ) G(, ) 2 G(, ) G(, ) 3 G(, ) Negzione dell onlusione 4 G(, ) elim V2(2,3) 5 G(, ) elim V1(1,4) 6 (3,5) (d) Controesempio: Domnd 26: Vedi Dispens n. 5, p. 4. Domnd 27: () ( x)(c(x) N(x)) () ( x)(c(x) N(x)) () ( x)(c(x) N(x)) oppure ( x)(c(x) N(x)) (d) ( x)(c(x) N(x)) oppure ( x)(c(x) N(x)).

6 LOGICA-TEST pgin 6 di /2014 Domnd 28: () ( x)g(, x) () ( x)( G(x, ) G(, x)) () ( x)(g(, x) G(x, )) (d) ( x)g(, x) (e) ( x)g(x, ) oppure ( x) G(x, ) (f) ome sopr Domnd 29: () ( x)( y)g(x, y) () ( x)( y)g(x, y) () ( x)( y)g(x, y) (d) ( x)( y)g(y, x) (e) ( x)( y)g(x, y) (f) ( x)( y)g(x, y) (g) ( x)( y)( ( z)g(y, z) G(x, y)) (h) ( x)( y)(( z)g(y, z) G(x, y)) (i) ( x)( y)(g(x, y) ( z)g(z, y)) (j) ( x)(g(x, ) G(, x)) (k) ( x)( G(x, ) G(x, x)) Domnd 30: () ( x)(o(x, 2) O(x, 3)) () ( x)(g(x, ) G(x, ))

7 LOGICA-TEST pgin 7 di /2014 Domnd 31: () () () (d) (e) (f) Come sopr Domnd 32: () () ()

8 LOGICA-TEST pgin 8 di /2014 (d) (e) (f) (g) (h) (i) (j) (k) Domnd 33: () orrett () orrett

9 LOGICA-TEST pgin 9 di /2014 () orrett (d) sorrett (e) sorrett (f) orrett (g) sorrett (h) orrett (i) orrett (j) sorrett (k) sorrett (l) orrett (m) sorrett Domnd 34: () 1 ( x)(c(x) N(x)) 2 ( x)(u(x) C(x)) 3 ( x)(u(x) N(x)) Negzione dell onlusione 4 U(p) C(p) elim V (2) 5 U(p) elim V1 (4) 6 C(p) elim V2 (4) 7 C(p) N(p) elim V (1) 8 N(p) elim V1 (7,6) 9 (U(p) N(p)) elim F (3) 10 N(p) elim F1 (9,5) 11 (8,10) () 1 ( x)(c(x) N(x)) 2 ( x)(g(x) C(x)) 3 ( x)(g(x) N(x)) Negzione dell onlusione 4 ( x)(g(x) N(x)) elim F (3) 5 G(p) N(p) elim V (4) 6 G(p) elim V1 (5) 7 N(p) elim V2 (5) 8 (C(p) N(p)) elim F (1) 9 C(p) elim F2 (8,7) 10 G(p) C(p) elim V (2) 11 C(p) elim V1 (10,6) 12 (8,11)

10 LOGICA-TEST pgin 10 di /2014 () 1 ( x)(c(x) N(x)) 2 ( x)(p (x) N(x)) 3 ( x)(p (x) C(x)) Negzione dell onlusione 4 P (p) N(p) elim V (2) 5 P (p) elim V1 (4) 6 N(p) elim V2 (4) 7 (C(p) N(p)) elim F (1) 8 C(p) elim F2 (7) 9 (P (p) C(p)) elim F (3) 10 P (p) elim F2 (9,8) 11 (5,10)

11 LOGICA-TEST pgin 11 di /2014 (d) Controesempio: C B G C=orviB=oseinheG=nimlinellgi (e) Controesempio: (f) 1 ( x)g(x, ) 2 ( x)g(x, ) 3 ( x)(g(x, ) G(x, )) Negzione dell onlusione 4 ( x)(g(x, ) G(x, )) elim F (3) 5 G(p, ) G(p, ) elim V (4) 6 G(p, ) elim F (1) 7 G(p, ) elim V1 (5,6) 8 G(p, ) elim F (2) 9 (8,9) (g) Controesempio: (h) 1 ( x)g(x, ) 2 ( x)g(x, ) 3 ( x)(g(x, ) G(x, ) Negzione dell onlusione 4 ( x)(g(x, ) G(x, )) elim F (3) 5 G(p, ) elim F (1) 6 G(p, ) G(p, ) elim V (4) 7 G(p, ) elim V (6) 8 (5,7)

12 LOGICA-TEST pgin 12 di /2014 (i) I(x) = x è itlino ; L(x) = x m l liri ; G(x) = x gio nell Inter. 1 ( x)(i(x) L(x)) 2 ( x)(g(x) I(x)) 3 ( x)(l(x) G(x)) Negzione dell onlusione 4 G(p) I(p) elim V (2) 5 G(p) elim V1 (4) 6 I(p) elim V2 (4) 7 I(p) L(p) elim V (1) 8 L(p) elim V1 (7,6) 9 (L(p) G(p)) elim F (3) 10 G(p) elim F1 (9,8) 11 (5,10) (j) Controesempio: I S I=itliniO=personeheodinoillioS=spetttoridello stdio O (k) Controesempio: Un sequenz infinit in ui isun elemento us i suessivi, m non h né un inizio né un fine: 1 2 n n+1

13 LOGICA-TEST pgin 13 di /2014 (l) 1 ( x)(a(x) B(x)) 2 ( x)(c(x) A(x)) 3 ( x)(b(x) C(x)) Negzione dell onlusione 4 A(p) B(p) elim V (1) 5 A(p) elim V1 (4) 6 B(p) elim V2 (4) 7 (C(p) A(p)) elim F (2) 8 C(p) elim F (7,5) 9 (B(p) C(p)) elim F (3) 10 B(p) elim F2 (9,8) 11 (6,11)) (m) Controesempio: B C A

Esercizi di Riepilogo e Autovalutazione Modulo 2

Esercizi di Riepilogo e Autovalutazione Modulo 2 Esercizi di Riepilogo e Autovalutazione Modulo 2 Marcello D Agostino Istituzioni di Logica 2016-2017 Copyright c 2013 Marcello D Agostino Classificazione delle domande * = difficoltà bassa ** = difficoltà

Dettagli

Esercizi di Riepilogo e Autovalutazione

Esercizi di Riepilogo e Autovalutazione Esercizi di Riepilogo e Autovalutazione Marcello D Agostino Corso di Logica Filosofica 2014/2015 27 maggio 2015 Copyright c 2015 Marcello D Agostino Classificazione delle domande * = difficoltà bassa **

Dettagli

Esercizi di Riepilogo e Autovalutazione Modulo 1

Esercizi di Riepilogo e Autovalutazione Modulo 1 Esercizi di Riepilogo e Autovalutazione Modulo 1 Marcello D Agostino Istituzioni di Logica 2016-2017 Copyright c 2013 Marcello D Agostino Classificazione delle domande * = difficoltà bassa ** = difficoltà

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Come ragionare (se proprio dovete) I Elementi di Logica

Come ragionare (se proprio dovete) I Elementi di Logica Come ragionare (se proprio dovete) I Elementi di Logica Marcello D Agostino Dispensa 5, Lezioni 13 15 Copyright 2013 Marcello D Agostino Indice I quantificatori 2 I quantificatori come parole logiche 2

Dettagli

Formalizzazione: (funz. parziale)

Formalizzazione: (funz. parziale) ESERCIZI DI FORMALIZZAZIONE: funzioni Funzioni Parziali Definizione: Siano A e B due insiemi, una funzione parziale F : A B è un insieme di coppie a,b (con a A e b B) in cui ogni elemento di A è in coppia

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

George Boole ( )

George Boole ( ) Mtemtic Alger di Boole Cpitolo 5 Ivn Zivko George Boole (1815-1864) Mtemtico inglese del dicinnovesimo secolo, ffrontò in modo originle prolemi di logic. Le sue teorie trovno forte ppliczione un secolo

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

MD3 Disequazioni di primo grado ad una sola incognita

MD3 Disequazioni di primo grado ad una sola incognita MD3 Disequzioni di primo grdo d un sol incognit Introduzione Gli intervlli [; ] [; [ ]; ] ]; [ [; + [ ]; + [ x x < < x < x < x x > [ ] [ [ ] ] ] [ [. ]. ] ; ] x ] ; [ x < - ] - [ Qulche esempio [ 2; 4]

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

TRADUZIONI NEL LINGUAGGIO PREDICATIVO DEL PRIMO ORDINE: SOLUZIONI

TRADUZIONI NEL LINGUAGGIO PREDICATIVO DEL PRIMO ORDINE: SOLUZIONI TRADUZIONI NEL LINGUAGGIO PREDICATIVO DEL PRIMO ORDINE: SOLUZIONI Giorgio ama Maria. g=giorgio; m=maria; Axy=x ama y Agm Giovanni è seduto tra Aldo e Daria. g=giovanni; a=aldo; d=daria; Sxyz=x è seduto

Dettagli

CALCOLO DEI PREDICATI DEL I ORDINE

CALCOLO DEI PREDICATI DEL I ORDINE CALCOLO DEI PREDICATI DEL I ORDINE Dizionario Simboli descrittivi lettere o variabili proposizionali: p, q, r, A, B, C, lettere o variabili predicative: P, Q, R, lettere o variabili individuali: a, b,

Dettagli

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze:

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze: Codii di Huffmn Codii di Huffmn I odii di Huffmn vengono mpimente usti nell ompressione dei dti (pkzip, jpeg, mp3). Normlmente permettono un risprmio ompreso tr il 2% ed il 9% seondo il tipo di file. Sull

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 6-myhill-nerode- Esercizi di Informtic Teoric Linguggi regolri: espressioni regolri e grmmtiche, proprietà decidiili e teorem di Myhill-Nerode Teorem di Myhill-Nerode richimi teorem si L un linguggio sull

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2 Tenihe i Progettzione Digitle Progettzione e lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

Algoritmi greedy II parte. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Algoritmi greedy II parte. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Algoritmi greedy II prte Progettzione di Algoritmi.. 2016-17 Mtriole ongrue 1 Doente: Annlis De Bonis 40 Prolem del hing offline ottimle Ching. Un he è un tipo di memori ui si può edere molto veloemente.

Dettagli

Successioni di Funzioni e Serie di Potenze

Successioni di Funzioni e Serie di Potenze Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni Nel corso di nlisi di bse si sono studite le successioni numeriche. Qui considerimo un

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

Unità D1.2 Selezione e proiezione

Unità D1.2 Selezione e proiezione (A) CONOSCENZA TEMINOLOGICA Dre un reve esrizione ei termini introotti: ienominzione Selezione Proiezione Composizione i operzioni (B) CONOSCENZA E COMPETENZA isponere lle seguenti omne proueno nhe qulhe

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Aniello Murano NP- Completezza (seconda parte)

Aniello Murano NP- Completezza (seconda parte) Aniello Murno NP- Completezz (second prte) 15 Lezione n. Prole chive: Np-completezz Corso di Lure: Informtic Codice: Emil Docente: murno@ n.infn.it A.A. 2008-2009 Definizione di NP- COMPLETEZZA Si ricordi

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

La dimostrazione per assurdo

La dimostrazione per assurdo L dimostrzione per ssurdo L dimostrzione per ssurdo in mtemtic è uno strumento utile per dimostrre certi teoremi. Ess procede secondo i seguenti pssi: 1. Si suppone che il teorem si flso. Si f vedere,

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

Questo materiale è stato prodotto dal progetto Programma di informazione e comunicazione a sostegno degli obiettivi di Guadagnare Salute del

Questo materiale è stato prodotto dal progetto Programma di informazione e comunicazione a sostegno degli obiettivi di Guadagnare Salute del Questo mterile è stto prodotto dl progetto Progrmm di informzione e omunizione sostegno degli oiettivi di Gudgnre Slute del Ministero dell Slute /CCM, in ollorzione ol Ministero dell Istruzione, dell Università

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

T11 Codifica di sorgente, di canale e di linea

T11 Codifica di sorgente, di canale e di linea T11 Codifi di sorgente, di nle e di line T11.1 Nell trsmissione dti, l fine di ridurre il tsso di errore si effettu l odifi: di sorgente di nle di line T11.2 - Qule delle seguenti ffermzioni è fls? L selt

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( )

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( ) Amiguità D 11 = ( ( ( ) ( (( )) ( (( )) ( (( )) () ( (( )) ( ) ( (( )) ( )! ( ) ( )! Un Grmmti si die migu se medesime stringhe sono generte d leri sintttii di differente struttur ovvero on due distinte

Dettagli

( x 1 )A 2 1 x2, f1 1 (x 1 ) )

( x 1 )A 2 1 x2, f1 1 (x 1 ) ) Università di Bergamo Anno accademico 20162017 Ingegneria Informatica Foglio 5 Algebra e Logica Matematica Logica del primo ordine Esercizio 5.1. Identicare le occorrenze libere e vincolate delle variabili

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

UKUPAN BROJ OSVOJENIH BODOVA

UKUPAN BROJ OSVOJENIH BODOVA ŠIFRA DRŽAVNO TAKMIČENJE IX rzred UKUPAN BROJ OSVOJENIH BODOVA Test pregledl/pregledo...... Podgori,... 2010. godine ASCOLTO I Asolt un volt il testo. Leggi ttentmente l prov propost. Asolt di nuovo il

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

T16 Protocolli di trasmissione

T16 Protocolli di trasmissione T16 Protoolli di trsmissione T16.1 Cos indi il throughput di un ollegmento TD?.. T16.2 Quli tr le seguenti rtteristihe dei protoolli di tipo COP inidono direttmente sul vlore del throughput? Impossiilità

Dettagli

Test di autovalutazione

Test di autovalutazione Test di utovlutzione 0 0 0 0 0 50 0 70 0 0 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle 5 lterntive. n Confront le tue risposte on le soluzioni. n Color, prtendo d

Dettagli

Logica dei predicati

Logica dei predicati IV Logica dei predicati 14. FORMULE PREDICATIVE E QUANTIFICATORI 14.1. Dalla segnatura alle formule predicative Il simbolo (x).ϕ(x) [per ogni x, ϕ(x) è vera] denota una proposizione definita, e non c è

Dettagli

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare

Dettagli

I-Compitino LOGICA MATEMATICA 12 dicembre 2016

I-Compitino LOGICA MATEMATICA 12 dicembre 2016 I-Compitino LOGICA MATEMATICA 12 dicembre 2016 nome: cognome: - Scrivete in modo CHIARO. Elaborati illegibili non saranno considerati. - NON si considerano le BRUTTE copie. - Ricordatevi di ESPLICITARE

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

CAPITOLO SECONDO - LOGICA DEI PREDICATI 1. Dalla logica proposizionale alla logica dei predicati. Nel primo capitolo abbiamo esaminato come si

CAPITOLO SECONDO - LOGICA DEI PREDICATI 1. Dalla logica proposizionale alla logica dei predicati. Nel primo capitolo abbiamo esaminato come si CAPITOLO SECONDO - LOGICA DEI PREDICATI 1. Dalla logica proposizionale alla logica dei predicati. Nel primo capitolo abbiamo esaminato come si riconosce la correttezza delle regole del calcolo proposizionale,

Dettagli

6y y = p 2z = q² : q² = 4z 6z = 8c + 6c = a 9 = 8n : 4n = m : m = y + y² = m + 3m = q : 9 = a a = n 7n = z ( 3n) = p + p = q² + q² = b b² = 5 + z =

6y y = p 2z = q² : q² = 4z 6z = 8c + 6c = a 9 = 8n : 4n = m : m = y + y² = m + 3m = q : 9 = a a = n 7n = z ( 3n) = p + p = q² + q² = b b² = 5 + z = Verifica n 1 Alunno Data 6y y = p 2z = q² : q² = 4z 6z = 8c + 6c = a 9 = 8n : 4n = m : m = y + y² = m + 3m = q : 9 = a a = n 7n = z ( 3n) = p + p = q² + q² = b b² = 5 + z = m a = n b = 10b³ : 7b = pq pq

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

TRAGEDY OF COMMONS. p = x 1 + x 2 + + x n

TRAGEDY OF COMMONS. p = x 1 + x 2 + + x n TRAGEDY OF COMMONS Consideriamo un esempio che mette in evidenza come l altruismo ottiene più dell egoismo. Partiamo da un villaggio in cui abitano n allevatori; ogni estate gli allevatori portano le loro

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Ragionamento Automatico Calcolo dei Sequenti. Lezione 5 Ragionamento Automatico Carlucci Aiello, 2004/05 Lezione 5 0. Il calcolo dei sequenti

Ragionamento Automatico Calcolo dei Sequenti. Lezione 5 Ragionamento Automatico Carlucci Aiello, 2004/05 Lezione 5 0. Il calcolo dei sequenti Il calcolo dei sequenti Ragionamento Automatico Calcolo dei Sequenti Materiale cartaceo distribuito in aula Il calcolo dei sequenti nella logica proposizionale Il calcolo dei sequenti nella logica predicativa

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Come ragionare (se proprio dovete) I Elementi di Logica

Come ragionare (se proprio dovete) I Elementi di Logica Come ragionare (se proprio dovete) I Elementi di Logica Marcello D Agostino Dispensa 2, Lezioni 4 6 Copyright 2013 Marcello D Agostino Indice Interludio 1 2 Tavole di verità 2 Disgiunzione inclusiva vs

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Come ragionare (se proprio dovete) Istituzioni di Logica

Come ragionare (se proprio dovete) Istituzioni di Logica Come ragionare (se proprio dovete) Istituzioni di Logica Marcello D Agostino Dispensa 2 Copyright 2013 Marcello D Agostino Indice Interludio 1 2 Tavole di verità 2 Disgiunzione inclusiva vs digiunzione

Dettagli

Lezione 7. Traduzioni/1. Linguaggi booleani/1. Traduzioni/3. Traduzioni/2. Linguaggi booleani. Traduzioni/4

Lezione 7. Traduzioni/1. Linguaggi booleani/1. Traduzioni/3. Traduzioni/2. Linguaggi booleani. Traduzioni/4 Traduzioni/1 Lezione 7 Linguaggi booleani/1 Il linguaggio formale delle piccionaia è sufficientemente potente da esprimere un gran numero di informazioni: 1. La celletta n.1 è occupata O(m,1) O(d,1) O(t,1)

Dettagli

LOGICA DEL PRIMO ORDINE: PROOF SYSTEM. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

LOGICA DEL PRIMO ORDINE: PROOF SYSTEM. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini LOGICA DEL PRIMO ORDINE: PROOF SYSTEM Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini LOGICA DEL PRIMO ORDINE: RIASSUNTO Sintassi: grammatica libera da contesto (BNF), parametrica rispetto

Dettagli

ISTITUTO COMPRENSIVO DI ZANICA SCUOLA SECONDARIA DI PRIMO GRADO ERNESTINA BELUSSI COMUN NUOVO. Relazione

ISTITUTO COMPRENSIVO DI ZANICA SCUOLA SECONDARIA DI PRIMO GRADO ERNESTINA BELUSSI COMUN NUOVO. Relazione Relzione Le lssi 1^ A e 1^ B dell Suol Seondri di primo grdo di Comun Nuovo, nell mito di un perorso nnule legto ll eologi (rifiuti e loro riilo), hnno rolto i dti reltivi llo stile di vit di un mpione

Dettagli

Verifica 10 ESPONENZIALI E LOGARITMI

Verifica 10 ESPONENZIALI E LOGARITMI Verific 0 SPONNZIALI LOGARITMI TST I FIN APITOLO Qule delle seguenti figure non rppresent un funzione? A È dt l funzione f : R R, descritt dll legge 4. Qunto vle l immgine di 0? A 0... 4. 4. L funzione

Dettagli

Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin

Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin October 8, 2013 0.1. La filosofia della scienza esamina le strutture concettuali e le argomentazioni in uso nelle varie scienze;

Dettagli

RBE4MT RICEVITORE MULTIUTENZA CARATTERISTICHE TECNICHE

RBE4MT RICEVITORE MULTIUTENZA CARATTERISTICHE TECNICHE NELLI UTOMTII TOMO SERIES SÉRIE TOMO UREIHE TOMO SERIE TOMO RIEVITORE MULTIUTENZ GER REMT Documentazione Tecnica T rev.. 0/00 ME NELLI UTOMTII 9RT-I I RTTERISTIHE TENIHE Ricevitore quadricanale a frequenza

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

Analisi di stabilità

Analisi di stabilità Anlisi di stilità Stilità intern modi propri degli stti utovlori di A Stilità estern modi propri dell usit poli dell fdt.-. Stilità : se tutti i modi propri rimngono limitti per ogni t. Stilità : se tutti

Dettagli

Istituto Marconi, classe prima BC, Fisica 12 dicembre 2014

Istituto Marconi, classe prima BC, Fisica 12 dicembre 2014 Istituto Mroni, lsse prim BC, Fisi 12 iemre 2014 Un e un sol elle quttro ffermzioni è orrett. Inirl on un roe. È onsentit un sol orrezione per ogni omn: per nnullre un rispost ritenut errt rhiuerl in un

Dettagli

LE REGOLE DI DEDUZIONE

LE REGOLE DI DEDUZIONE LE REGOLE DI DEDUZIONE II concetto di regola di deduzione Ci proponiamo di formulare alcune regole, dette regole di deduzione o ragionamento, in virtù delle quali, a partire da certe P1, P2,..., Pn, sia

Dettagli

Come ragionare (se proprio dovete) I Elementi di Logica

Come ragionare (se proprio dovete) I Elementi di Logica Come ragionare (se proprio dovete) I Elementi di Logica Marcello D Agostino Settimana 3, Lezioni 7 9 Interludio 2 Relazioni notevoli fra congiunzione e disgiunzione Le regole di eliminazione e di introduzione

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Come ragionare (se proprio dovete) I Elementi di Logica

Come ragionare (se proprio dovete) I Elementi di Logica Come ragionare (se proprio dovete) I Elementi di Logica Marcello D Agostino Dispensa 3, Lezioni 7 9 Copyright 2013 Marcello D Agostino Indice Interludio 2 2 Relazioni notevoli fra congiunzione e disgiunzione

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 pumping lemm proprietà di chiusur dei linguggio regolri notzioni sul livello degli esercizi:(*)fcile, (**) non difficile

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

Come ragionare (se proprio dovete) I Elementi di Logica

Come ragionare (se proprio dovete) I Elementi di Logica Come ragionare (se proprio dovete) I Elementi di Logica Marcello D Agostino Dispensa 4, Lezioni 10 12 Copyright 2013 Marcello D Agostino Indice Il condizionale: Parte II 2 Il condizionale booleano come

Dettagli

PREFERENZE COME RELAZIONI D ORDINE

PREFERENZE COME RELAZIONI D ORDINE PREFERENZE COME RELAZIONI D ORDINE RELAZIONI Si S un insieme finito. Un relzione inri R è un sottoinsieme dell insieme prodotto crtesino S S, insieme delle coppie ordinte di elementi di S: R S S x,y R

Dettagli

Come ragionare (se proprio dovete) I Elementi di Logica

Come ragionare (se proprio dovete) I Elementi di Logica Come ragionare (se proprio dovete) I Elementi di Logica Marcello D Agostino Settimana 4, Lezioni 10 12 Il condizionale: Parte II Il condizionale booleano come approssimazione del condizionale ordinario

Dettagli