ESERCITAZIONI SISTEMI DI CONTROLLO DIGITALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCITAZIONI SISTEMI DI CONTROLLO DIGITALE"

Transcript

1 ESERCITAZIONI SISTEMI DI CONTROLLO DIGITALE Ing. Matteo Sartini D.E.I.S. - Università di Bologna matteo.sartini@unibo.it Home: www-lar.deis.unibo.it/people/msartini Tel Matteo Sartini Progetto per Disretizzazione

2 Speifihe del Progetto: Si onsideri la dinamia del seondo ordine: G(s) = n n n s s Si onsideri un disturbo sull ingresso del Plant del tipo: d (t) = A[ sin( t)] Si rihiede di progettare un regolatore he onsenta di mantenere l usita del proesso il piú piolo possibile in presenza del disturbo e on un inertezza sulla pulsazione naturale del proesso del %. (Reiezione del disturbo pari a. volte) Parametri: n = rad/se, =., A =.3, = rad/se Matteo Sartini - Progetto per disretizzazione

3 Analisi del Problema: Risolviamo il problema tempo ontinuo. Lo shema è: - R(s) d (t) G(s) problemi: Reiezione al disturbo Funzione di Sensitività Stabilizzazione del proesso Margine di Fase PROGETTO NEL DOMINIO DELLE FREQUENZE. Matteo Sartini - Progetto per disretizzazione 3

4 Rihiami di teoria: Margine di fase: E il omplemento a 8 della fase del guadagno d anello alla pulsazione ritia: L(j ) = m [ ] = 8 arg L(j ) Im - m Re Se il margine di fase è positivo il diagramma di Nyquist non ironda sistema losed loop asintotiamente stabile. Matteo Sartini - Progetto per disretizzazione 4

5 Rihiami di teoria: Funzione di sensitività: Nello shema di seguito è la funzione di trasferimento tra l out del proesso ed il disturbo. Y(s) d(t) S(s) = = D(s) R(s)G(s) - R(s) G(s) Si dimostra sempliemente he:, S(j ) = L(j ) L(j ), > y(t) db Il sistema losed loop attenua solo disturbi on omponenti on omponenti spettrali minori della pulsazione ritia!!!! S L Matteo Sartini - Progetto per disretizzazione 5

6 Il Plant: Sistema del seondo ordine, oppia di poli omplessi oniugati on: n = rad/se. =. Bode Diagram Gm = Inf, Pm = 6.59 deg (at.8 rad/se) Phase (deg) Magnitude (db) db m 6 ( =.8 rad/se.) Step Response Amplitude Frequeny (rad/se). 4. Asintotiamente stabile Time (se) Matteo Sartini - Progetto per disretizzazione 6

7 Shema di retroazione lassio: Vogliamo riportari nel lassio shema: - R(s) d(t) G(s) - R(s) G(s) d(t) y(t) d(t) - R(s) G(s) G(s) y(t) - R(s) G(s) I d(t) y(t) Matteo Sartini - Progetto per disretizzazione 7

8 Shema di retroazione lassio: Valutiamo il disturbo equivalente sull usita d (t) = d d = A A sin( t) Gradino Sinusoide Sovrapposizione degli effetti G() = db = G(j ) = db. = (t) = d d = A G() A G(j ) sin( t G(j )) I I I d Gradino Sinusoide Il nuovo disturbo, riportato sull out è anora un gradino di ampiezza.3 più una sinusoide di ampiezza.3 Il plant i aiuta sulle speifihe attenuando di un deimo il disturbo. Matteo Sartini - Progetto per disretizzazione 8

9 Modello Interno: Per ammazzare il disturbo a gradino (avere errore a regime nullo), inseriamo nel ontrollore un integratore (sistema di tipo ). R(s) = s L(s) = R(s)G(s) = ATTENZIONE: m = 57 4 s(s.4s 4) Phase (deg) Magnitude (db) Bode Diagram Gm = db (at rad/se), Pm = deg (at.33 rad/se) -8 Il sistema.l. è instabile!! 8 m -7 - Frequeny (rad/se) Matteo Sartini - Progetto per disretizzazione 9

10 Funzione di sensitività: L(s) = R(s)G(s) = S(s) = L(s) 4 s(s.4s 4) Problemi della soluzione: Non attenua, bisogna aumentare la banda del guadagno d anello. (basta un guadagno). Instabile, bisogna rendere il margine di fase positivo. (serve uno zero he sfasa in antiipo). Phase (deg) Magnitude (db) Bode Diagram Gm = 3.58 db (at rad/se), Pm = 96.4 deg (at.36 rad/se) - Frequeny (rad/se) = db Matteo Sartini - Progetto per disretizzazione

11 Soluzione nel piano s: s z R(s) = K s I parametri del ontrollore vanno alolati i modo da imporre margine di fase del guadagno d anello positivo e valore del modulo del guadagno d anello alla pulsazione del disturbo pari a 4dB in modo he la funzione di sensitività abbia a quella pulsazione una attenuazione di 4dB (.) ome rihiesto da speifihe: K = z =. P has e (de g ) Magnitude (db) Bode Diagram - - Frequeny (rad/se) = Diagramma di Bode del guadagno d anello. 4dB Matteo Sartini - Progetto per disretizzazione

12 Soluzione nel piano s: Vediamo ome si omporta il sistema ontrollato:.6 Disturbo.7 x Disturbo (rosso) Usita (blu) Matteo Sartini - Progetto per disretizzazione

13 Disretizzazione: Selta del tempo di ampionamento: regola empiria: s s 5 T = = mse. Disretizziamo il regolatore ad esempio mediante il metodo di Tustin: z 999 R(z) = z 35 x.5 Matlab: >>Regz=d(Reg,t, tustin ) Simuliamo il plant ontinuo on il regolatore disretizzato: INSTABILE!!! Matteo Sartini - Progetto per disretizzazione 3

14 Disretizzazione: Errore tipio: Non abbiamo onsiderato il ritardo di mezzo tempo di ampionamento dovuto al riostruttore!!!!! Phase (deg) Magnitude (db) Inseriamo nella atena di ontrollo un termine he tiene onto di questo ritardo: Bode Diagram Gm = db (at 8.74 rad/se), Pm = deg (at rad/se) H(s) = T s m = < Frequeny (rad/se) - Analizziamo il nostro ontrollore onsiderando anhe il ritardo. R(s) L(s) = R(s)H(s)G(s) H(s) G(s) I d(t) y(t) Matteo Sartini - Progetto per disretizzazione 4

15 Modifia del progetto nel piano s: Progettiamo in serie al ontrollore già sintetizzato una rete antiipatrie he mi renda il margine di fase positivo erando di mantenere le aratteristihe di sensitività al disturbo desiderate. - R(s) RA(s) H(s) G(s) I d(t) y(t) IMPORTANTE: Nel progetto per disretizzazione oorre sempre onsiderare l effetto della disretizzazione prima di progettare il ontrollore nel ontinuo, altrimenti rishiamo di mandare in instabilità il sistema losed loop senza aorgeri!!!! Matteo Sartini - Progetto per disretizzazione 5

16 Rihiami di teoria: Rete antiipatrie: E un sistema dinamio ad un polo ed uno zero: s D(s) = s p < = > p p Lo zero dà un antiipo di fase he viene ompensato alle alte frequenze dal polo. p m m m m = arsin = p Matteo Sartini - Progetto per disretizzazione 6

17 Progetto della rete antiipatrie: Vogliamo portare il margine di fase da 6 a 44. m m = 6 =.7 = 4 rad/se. Quindi le ostanti di tempo dello zero e del polo sono riavabili da: m = = p p =.64 =.43 In definitiva nel ontinuo il ontrollore totale è: s..64s R TOT (s) = s.43s Phase (deg) Magnitude (db) Bode Diagram Frequeny (rad/se) Matteo Sartini - Progetto per disretizzazione 7

18 Prestazioni: Bode D iagr a m Gm = 5.89 db (at rad/se), Pm = deg (at 6.58 rad/se) Pha s e (de g ) Magnitude (db) Frequeny (rad/se) Funzione di sensitività. S(j disturbo) = 3.7dB Phase (deg) Magnitude (db) Diagramma di bode del guadagno d anello m 43 Bode Diagram Gm = Inf, Pm = -9.4 deg (at 47. rad/se) db Frequeny (rad/se) Matteo Sartini - Progetto per disretizzazione 8

19 Disretizzazione (ZOH): Disretizzare il ontrollore ottenuto utilizzando il metodo delle differenze all indietro (zoh): per approssimare gli integrali si approssimano le aree on rettangoli all indietro. kt (k )T kt (k )T y(t)dt T y(kt ) x(t)dt T x(kt ) Im D(z) = D(s) z s = T Im piano s piano z Re Re Matteo Sartini - Progetto per disretizzazione 9

20 Disretizzazione (ZOH): Nessun problema di stabilità, notevole distorsione frequenziale: Matlab: >>Regz=d(Reg,t, zoh ) 8 Bode Diagram.5 R(z) -3 x = 373z 765z 346 z.z.997 Phase (deg) Magnitude (db) Frequeny (rad/se) Matteo Sartini - Progetto per disretizzazione

21 Disretizzazione (FOH): Disretizzare il ontrollore ottenuto utilizzando il metodo delle differenze all avanti (foh): per approssimare gli integrali si approssimano le aree on rettangoli all avanti. kt ( k )T kt ( k )T y(t)dt T y((k )T ) x(t)dt T x((k )T ) Im D(z) = D(s) z s = T Im piano s piano z Re Re Matteo Sartini - Progetto per disretizzazione

22 Disretizzazione (FOH): Possibili problemi di stabilità: Matlab: >>Regz=d(Reg,t, foh ) 88 Pole-Zero Map R(z) = 69z 977z 368 z.z x 3.5 Imag Axis Real Axis Matteo Sartini - Progetto per disretizzazione

23 Disretizzazione (Corrispondenza p-z): Disretizzare il ontrollore ottenuto utilizzando la relazione tra piano s e Piano z at (s a) ( e z ) at at (s a ± jb) ( e os(bt )z e z ) Fattorizzare D(s) Trasformare i singoli poli zeri. Introdurre tanti zeri in quanto è il grado relativo della D(s) (orrispondono a zeri all infinito in s). Sistemare il guadagno statio alle basse (filtri passa-basso) o alle alte frequenze (filtri passa-alto) Matlab: >>Regz=d(Reg,t, mathed ) Matteo Sartini - Progetto per disretizzazione 3

24 Disretizzazione (Corrispondenza p-z): Im Im piano s piano z Re Re x.5 R(z) = 596z 946z 35 z.z Matteo Sartini - Progetto per disretizzazione 4

25 Disretizzazione (Z-Trasformata on ZOH): Disretizzare il ontrollore ottenuto utilizzando il metodo della zeta trasformata on zero order hold signifia rihiedere al regolatore disreto e a quello ontinuo la stessa usita negli istanti di ampionamento quando in ingresso rievano un gradino. st e D(s) ( ) D(z) = Z D(s) = z s s ATTENZIONE AI FENOMENI DI ALIASING!!!! Filtro antialiasing. Matteo Sartini - Progetto per disretizzazione 5

26 Disretizzazione (Tustin): Disretizzare il ontrollore ottenuto utilizzando il metodo della trasformazione bilineare (Tustin): D(z) = D(s) = z s T z Im Im piano s piano z Re Re Matteo Sartini - Progetto per disretizzazione 6

27 Disretizzazione (Tustin): ATTENZIONE: la trasformazione bilineare introdue alle alte frequenze un fenomeno di distorsione frequenziale!!! 7 5 Bode Diagram 7 T tan = T Se le frequenze di interesse (banda passante del filtro) sono tali he ( ) T, allora tan T T e quindi. Phase (deg) Magnitude (db) Frequeny (rad/se) Matteo Sartini - Progetto per disretizzazione 7

28 Disretizzazione (Tustin): Nel nostro aso, dato he il disturbo interviene una deade prima, per Siurezza effttuiamo il prewarp alla frequenza del disturbo: 5dB Phase (deg) Magnitude (db) Bode Diagram Matlab: >>Regz=d(Reg,t, prewarp,w) D(z) = D(s) per s= z T tan z =, si ha = Frequeny (rad/se) T R(z) = 863z 3439z 577 z.989z.7 Matteo Sartini - Progetto per disretizzazione 8

29 Filtro Antialiasing: Aliasing: fenomeno per il quale, mediante ampionamento si generano nuove armonihe alla stessa omponente della omponente spettrale del segnale di partenza. Tali armonihe impedisono la orretta riostruzione del segnale di partenza. Si può avere aliasing solo nel aso in ui la ondizione di Shannon non sia verifiata: s > Anhe il rumore, tipiamente segnale ad alta frequenza può, per effetto dell aliasing introdurre omponenti di segnale non desiderate nella banda utile. E quindi neessario introdurre filtri he eliminino tali omponenti. Filtri di Butterworth: filtri he presentano un guadagno il più possibile ostante nella banda passante. Il quadrato dell ampiezza in funzione della pulsazione è: Fa ( ) = n f ( ) = pulsazione di taglio, f n = ordine del filtro. Matteo Sartini - Progetto per disretizzazione 9

30 Filtro Antialiasing: Dato he: I poli sono alolabili da: ( ) ( ) ( ) F s = F s F s = a a a n ( s ) j f s j s j f n f ovvero: = = = j j k e e, k,,... j jk n n e e, k,,... = = = = j(n ) (n) jk n s fe e, k,,... I poli appartengono tutti al erhio entrato nell origine e di raggio E sono egualmente spaziati da un angolo di n f Matteo Sartini - Progetto per disretizzazione 3

31 Filtro Antialiasing: Matlab: >>[num,den]=butter(n,w) >>filt=tf(num,den,t) (w ompreso tra e on pari a Metà della pulsazione di ampionamento) Bode Diagram - Nel nostro aso: n = 4 f = 3π Phase (deg) Magnitude (db) Frequeny (rad/se) Matteo Sartini - Progetto per disretizzazione 3

32 Simulazione:.3.6 Disturbo (rosso) ed usita del.5 sistema (blu) x Matteo Sartini - Progetto per disretizzazione 3

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito del 3/IX/2002

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito del 3/IX/2002 CONTROLLI AUTOMATICI (0AKS, 0FSQ) ATM, INF Soluzione della tipologia di ompito del 3/IX/00 Eserizio Progetto di un ontrollore Sia dato il sistema di ontrollo riportato in figura on: 0.65 G p ( s) =, Tp

Dettagli

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1 ezione 15. Stabilità di sistemi retroazionati F. Previdi Automatia ez. 15 1 Shema 1. Stabilità di sistemi retroazionati 2. Stabilità & inertezza 3. Margine di guadagno 4. Margine di fase 5. Criterio di

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica

Dettagli

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito dell 8/VII/2002

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito dell 8/VII/2002 CONTROLLI AUTOMATICI (0AKS, 0SQ) ATM, IN Soluzione della tipologia di ompito dell 8/VII/00 Eserizio Progetto di un ontrollore Sia dato il sistema di ontrollo riportato in figura on: ( 30 3s + 3 =, ( =,

Dettagli

Lezione 9. Prestazioni dinamiche dei sistemi di controllo

Lezione 9. Prestazioni dinamiche dei sistemi di controllo Lezione 9 Prestazioni dinamihe dei sistemi di ontrollo Caratterizzazione delle prestazioni dinamihe Le prestazioni dinamihe fanno riferimento al omportamento del sistema di ontrollo durante i transitori,

Dettagli

Controlli Automatici LB Esempio di regolatore

Controlli Automatici LB Esempio di regolatore Controlli Automatici LB Esempio di regolatore Matteo Sartini DEIS-Università di Bologna Tel. 051 2093872 Email: matteo.sartini@unibo.it URL: www-lar.deis.unibo.it/people/msartini/ Problema G(s) = 15000

Dettagli

Gianmaria De Tommasi A.A. 2008/09

Gianmaria De Tommasi A.A. 2008/09 Controllo Gianmaria De Tommasi A.A. 2008/09 1 e discretizzazione del controllore 2 Controllore tempo-discreto e suo equivalente tempo- Nell ipotesi di segnale di errore e(t) a banda limitata, nell intervallo

Dettagli

Esempio guida per il progetto di regolatori

Esempio guida per il progetto di regolatori Esempio guida per il progetto di regolatori Eseritazioni di Controlli Automatii LB Ing. oberto Naldi problema ontrollo della veloità di rotazione di un tappeto per allenamento speifihe veloità ompresa

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html it/~lbiagiotti/sistemicontrollo html ANALISI DEI SISTEMI IN RETROAZIONE E

Dettagli

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta Sistemi di Controllo Esempio di domande teoriche a risposta multipla Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti hanno più risposte

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 3--24 Numero di matricola =ρ =ɛ =β Si consideri il razzo vettore riportato in fig.. Figure : Vettore ARIANE-V. La dinamica planare semplificata e linearizzata

Dettagli

Controlli Automatici 2 22/06/05 Compito a

Controlli Automatici 2 22/06/05 Compito a Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Nome e Cognome:........................... Matricola...........................

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Schema a blocchi

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html it/~lbiagiotti/sistemicontrollo html ANALISI DEI SISTEMI IN RETROAZIONE E

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Realizzazione digitale di controllori analogici

Realizzazione digitale di controllori analogici Realizzazione digitale di controllori analogici Digitalizzazione di un controllore analogico Sistema di controllo r(t) uscita + - desiderata e(t) segnale di errore C(s) controllore analogico u(t) ingresso

Dettagli

Controlli Automatici (Parte B) Ingegneria Meccanica e Ingegneria del Veicolo

Controlli Automatici (Parte B) Ingegneria Meccanica e Ingegneria del Veicolo Cognome: Nome: N. Matr.: Controlli Automatici Ho superato la Parte A in data (mese/anno) Controlli Automatici (Parte B) Ingegneria Meccanica e Ingegneria del Veicolo Compito del 2 dicembre 27 - Quiz Per

Dettagli

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4 I modelli di Chebyshev Si può ottenere una veloità di aduta più rapida in prossimità della frequenza di taglio rispetto a quella del modello di Butterworth, a disapito di una diminuzione di monotoniità

Dettagli

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Analisi dei sistemi in retroazione

Analisi dei sistemi in retroazione Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: amacchelli@deis.unibo.it

Dettagli

Controllo in retroazione: Analisi e Sensitività. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Controllo in retroazione: Analisi e Sensitività. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Controllo in retroazione: Analisi e Sensitività Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Progetto Reti Correttrici CA 217 218 Prof. Laura Giarré 2 Regolatori standard

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

RETI CORRETTRICI. Regolatori standard Alcune strutture standard di regolatori reti correttrici anticipo o ritardo 1 polo ed uno zero reali

RETI CORRETTRICI. Regolatori standard Alcune strutture standard di regolatori reti correttrici anticipo o ritardo 1 polo ed uno zero reali CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm RETI CORRETTRICI Ing. Luigi

Dettagli

ANALISI DEI SISTEMI IN RETROAZIONE E FUNZIONI DI SENSITIVITA

ANALISI DEI SISTEMI IN RETROAZIONE E FUNZIONI DI SENSITIVITA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html ANALISI DEI SISTEMI IN RETROAZIONE E FUNZIONI DI SENSITIVITA Schema di riferimento

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici Esercizi sul luogo delle radici Gli esercizi che seguono faranno riferimento allo schema a blocchi riportato di seguito. r k G(s) y Esercizio. Sia data la seguente funzione di trasferimento s(s+). Verificare

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

TEOREMA DEL CAMPIONAMENTO

TEOREMA DEL CAMPIONAMENTO 1 TEOREMA DEL CAMPIONAMENTO nota per il orso di Teleomuniazioni a ura di F. Benedetto G. Giunta 1. Introduzione Il proesso di ampionamento è di enorme importanza ai fini della realizzazione dei dispositivi

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Relazione tra specifiche e proprietà di L(s) Nell analisi dei sistemi in retroazione

Dettagli

Sistemi di misura digitali Segnali campionati - 1. Segnali campionati

Sistemi di misura digitali Segnali campionati - 1. Segnali campionati Sistemi di misura digitali Segnali ampionati - 1 Segnali ampionati 1 - Il teorema del ampionamento Campionamento ideale Il ampionamento (sampling di un segnale analogio onsiste nel prenderne solo i valori

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Soluzione degli esercizi del Capitolo 9

Soluzione degli esercizi del Capitolo 9 Soluzione degli esercizi del Capitolo 9 Soluzione dell Esercizio 9.1 Il diagramma polare associato alla funzione L(s) = µ/s, µ > comprende l intero semiasse reale negativo. È quindi immediato concludere

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI Fondamenti Segnali e Trasmissione Numerizzazione dei segnali Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono di tipo numerio, normalmente

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. RETI CORRETTRICI

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.  RETI CORRETTRICI SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html RETI CORRETTRICI Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il polinomio caratteristico desiderato è ϕ (s) = (s + 4) (s + ) = s 2 + 4s + 4 Uguagliando i coefficienti quelli del polinomio caratteristico

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h Cognome Nome Matricola Esercizio 3: Si determini, motivando brevemente, la corrispondenza

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 21 Luglio 2003

Regolazione e Controllo dei Sistemi Meccanici 21 Luglio 2003 Regolazione e Controllo dei Sistemi Meccanici 2 Luglio 23 Numero di matricola = α = β = γ = δ Si consideri un sistema termodinamico costituito da un frigorifero posto all interno di un ambiente a temperatura

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

CONTROLLO IN RETROAZIONE

CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CONTROLLO IN RETROAZIONE Ing. Federica Grossi Tel. 59 256333 e-mail: federica.grossi@unimore.it

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /33 SISEMI DIGIALI DI CONROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Banda passante e sviluppo in serie di Fourier

Banda passante e sviluppo in serie di Fourier CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Spettri e banda passante

Spettri e banda passante Banda passante - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Spettri e banda passante DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1 Lezione 19. Stabilità robusta F. Previdi - Fondamenti di Automatica - Lez. 19 1 Schema 1. Stabilità & incertezza 2. Indicatori di stabilità robusta 3. Margine di guadagno 4. Margine di fase 5. Criterio

Dettagli

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 0 Luglio 2007 - Parte A - (6 p.) - Illustra il metodo della formula di inversione per il calcolo dell antitrasformata

Dettagli

INTRODUZIONE AL CONTROLLO DIGITALE

INTRODUZIONE AL CONTROLLO DIGITALE CONTROLLI AUTOMATICI LS Ingegneria Informatica INTRODUZIONE AL CONTROLLO DIGITALE Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 051 2093034 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/people/cmelchiorri

Dettagli

Sintesi per tentativi nel dominio della frequenza

Sintesi per tentativi nel dominio della frequenza Sintesi per tentativi nel dominio della frequenza Viene utilizzata per sistemi a fase minima affinchè sia valido il criterio di Bode e le relazioni approssimate tra le specifiche siano sufficientemente

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Corso di Laurea in Ingegneria Meccatronica RETI CORRETTRICI

Corso di Laurea in Ingegneria Meccatronica RETI CORRETTRICI Automation Robotics and System CONTROL Corso di Laurea in Ingegneria Meccatronica RETI CORRETTRICI CA 1 - RetiCorrettrici Università degli Studi di Modena e Reggio Emilia Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili MODELLO COMPLETO PER IL CONTROLLO D m (s) D r (s) Y o (s) U(s) P (s) Y (s) d m (t): disturbi misurabili d r (t): disturbi non misurabili y o (t): andamento desiderato della variabile controllata u(t):

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti Regolatori

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html it/~lbiagiotti/sistemicontrollo html REGOLATORI STANDARD PID Ing. e-mail:

Dettagli

Esercizi di Controlli Automatici

Esercizi di Controlli Automatici Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e

Dettagli

Azione Filtrante. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Azione Filtrante. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Azione Filtrante Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sviluppo in serie di Fourier Qualunque funzione periodica di periodo T può essere rappresentata mediante sviluppo

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Introduzione a MATLAB Principali comandi MATLAB utili per il corso di Controlli Automatici (01AKS e 02FSQ) Politecnico di Torino Sistema in catena chiusa Il comando feedback genera il sistema LTI SYS con

Dettagli

Analisi di segnali campionati

Analisi di segnali campionati Analisi nel dominio della frequenza Analisi di segnali ampionati - 1 Analisi di segnali ampionati 1 Analisi dei segnali nel dominio della frequenza I prinipali metodi di analisi dei segnali di misura possono

Dettagli

Confronto tra vari metodi di discretizzazione

Confronto tra vari metodi di discretizzazione Confronto tra vari metodi di discretizzazione Marco Ariola Università degli Studi di Napoli 14 novembre 2005 Marco Ariola (Univ. Napoli) Confronto metodi discretizzazione 14 novembre 2005 1 / 7 La funzione

Dettagli

Controlli Automatici T. Analisi del sistema in retro e Funzioni di sensitività. Parte 8 Aggiornamento: Settembre Prof. L.

Controlli Automatici T. Analisi del sistema in retro e Funzioni di sensitività. Parte 8 Aggiornamento: Settembre Prof. L. Parte 8 Aggiornamento: Settembre 2010 Parte 8, 1 Analisi del sistema in retro e Funzioni di sensitività Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Formulazione delle specifiche. G(s)

Formulazione delle specifiche. G(s) Formulazione delle specifiche Formulazione delle specifiche: sistema in retroazione unitaria (1 grado di liberta`) r + e D(s) u - G(s) caratterizzazione della f.d.t. a catena chiusa si fa in genere riferimento

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Fondamenti di Controlli Automatici

Fondamenti di Controlli Automatici Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono

Dettagli

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura.

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura. Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni 2001 Il candidato scelga e sviluppi una tra

Dettagli

Analisi dei sistemi retroazionati

Analisi dei sistemi retroazionati Parte 9, 1 Sistemi di controllo -Anello aperto Parte 9, 2 Analisi dei sistemi retroazionati controllore attuatore processo Ipotesi: sistemi dinamici lineari Sistemi di controllo Parte 9, 3 Prestazioni

Dettagli

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s

Dettagli

t (sec) t (sec)

t (sec) t (sec) Nome e Cognome: Anno di frequenza: Esame di Regolazione e Controllo dei Sistemi Meccanici { {{ Numero di matricola { { =, =, =, =, A (pt. ) Per descrivere la dinamica delle sospensioni di un veicolo che

Dettagli

Il luogo delle radici

Il luogo delle radici Il luogo delle radici Andrea Munafò Università di Pisa April 14, 2012 Luogo delle radici (Evans 1948) Il luogo delle radici è uno strumento grafico per l analisi e la sintesi di sistemi di controllo a

Dettagli

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica REGOLATORI PID Modello dei regolatori PID Metodi di taratura automatica Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 MODELLO DEI REGOLATORI PID Larga diffusione in ambito

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

FORMULARIO DI CONTROLLI AUTOMATICI

FORMULARIO DI CONTROLLI AUTOMATICI FORMULARIO DI CONTROLLI AUTOMATICI Sistema x (t) = A x (t) + B u (t) y (t) = C x (t) + D u (t) Funzione di trasferimento G (s) = y (s) / u (s) = C (si A) -1 B + D Sistema Serie G (s) = i G i (s) prodotto

Dettagli

Indice Prefazione Problemi e sistemi di controllo Sistemi dinamici a tempo continuo

Indice Prefazione Problemi e sistemi di controllo Sistemi dinamici a tempo continuo Indice Prefazione XI 1 Problemi e sistemi di controllo 1 1.1 Introduzione 1 1.2 Problemi di controllo 2 1.2.1 Definizioni ed elementi costitutivi 2 1.2.2 Alcuni esempi 3 1.3 Sistemi di controllo 4 1.3.1

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-200 p. /32 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento,

Dettagli

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it INTRODUZIONE STABILITÀ DEI SISTEMI Metodo

Dettagli

# MODELLI APPROSSIMATI DI SISTEMI DINAMICI

# MODELLI APPROSSIMATI DI SISTEMI DINAMICI # MODELLI APPROSSIMATI DI SISTEMI DINAMICI # Riferimento per approfondimenti: Bolzern-Scattolini-Schiavoni: Fondamenti di Controlli Automatici, McGraw-Hill, 998 Cap. 7. Il problema della determinazione

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Controlli Automatici LA Analisi di sistemi di controllo Funzioni di sensitività Stabilità e Prestazioni Errori a regime e tipo di sistema

Controlli Automatici LA Analisi di sistemi di controllo Funzioni di sensitività Stabilità e Prestazioni Errori a regime e tipo di sistema Controlli Automatici LA Analisi di sistemi di controllo Funzioni di sensitività Stabilità e Prestazioni Errori a regime e tipo di sistema Prof. Carlo Rossi DEIS-Università di Bologna Tel. 51 2932 Email:

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte V Realizzazione digitale di

Dettagli

MATLAB (MATrix LABoratory) è un linguaggio di programmazione per applicazioni scientifiche (elaborazione numerica dei segnali, progetto di

MATLAB (MATrix LABoratory) è un linguaggio di programmazione per applicazioni scientifiche (elaborazione numerica dei segnali, progetto di MATLAB MATLAB (MATrix LABoratory) è un linguaggio di programmazione per applicazioni scientifiche (elaborazione numerica dei segnali, progetto di simulatori, sintesi di sistemi di controllo, ecc.) MATLAB

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 16 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

Prova scritta di Controlli Automatici e sistemi elettrici lineari

Prova scritta di Controlli Automatici e sistemi elettrici lineari Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 23 24 9 Giugno 24 NOTA BENE: In caso di punteggio inferiore od uguale a /3 nel compito scritto,

Dettagli

Progetto del controllore

Progetto del controllore Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

Controlli Automatici T Esempi di progetto

Controlli Automatici T Esempi di progetto Parte 12 Aggiornamento: Dicembre 10 Parte 12, 1 Esempi di progetto Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lorenzo.marconi@unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output)

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output) 8.1 GENERALITÀ La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema f.d.t. = U(s) E(s) Stabilità BIBO (Bound Input Bounded Output) Un sistema lineare

Dettagli

a.a. 2015/2016 Docente: Stefano Bifaretti

a.a. 2015/2016 Docente: Stefano Bifaretti a.a. 2015/2016 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

Azioni in feed-foreward: la precompensazione del segnale di riferimneto

Azioni in feed-foreward: la precompensazione del segnale di riferimneto Azioni in feed-foreward: la precompensazione del segnale di riferimneto Definizione: Azioni di controllo in catena aperta basata sul riferimento da inseguire ed il modello (nominale) del sistema da pilotare.

Dettagli

Analisi dei segnali campionati

Analisi dei segnali campionati Analisi dei segnali ampionati - 1 Analisi dei segnali ampionati 1 - Il teorema del ampionamento Campionamento ideale Il ampionamento (sampling) di un segnale analogio s( onsiste nel prenderne solo i valori

Dettagli