Lezione 22. Fattorizzazione di ideali.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 22. Fattorizzazione di ideali."

Transcript

1 Lezioe Peequisiti: Lezioi 0, Fattoizzazioe di ideali Teoema Sia A u domiio di Dedekid, e sia I u suo ideale popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei positivi,, tali che La decomposizioe (*) si dice fattoizzazioe di I I = P P (*) Dimostazioe: Poviamo dappima l esisteza Suppoiamo pe assudo che l isieme S degli ideali popi o ulli di A che o ammettoo ua decomposizioe (*) sia o vuoto Essedo, i base alla Defiizioe 08, A oetheiao, i vitù della codizioe b) della Defiizioe 8, S ammette alloa u elemeto massimale I Sia I 0 u ideale massimale coteete I Alloa I 0 è u ideale pimo o ullo Quidi, pe la Poposizioe 8, esiste u ideale fazioaio J tale che A J e I0J = A Segue che I = IA IJ I0J = A, quidi IJ è u ideale iteo Iolte IJ I : lo si dimosta pocededo come ell ultima pate della dimostazioe della Poposizioe 8 Ifie, IJ è u ideale popio Ifatti, se fosse IJ = A, alloa saebbe I0 J = IJ, da cui I0 JI = IJI, e duque I0 = I, il che è impossibile, dato che I0 S State la massimalità di I, IJ è quidi podotto di ideali pimi o ulli Alloa lo stesso vale pe IJI0 = I, assudo Poviamo oa l uicità della decomposizioe (*) Suppoiamo che si abbia ove m P Q P i, Q j soo ideali pimi o ulli e i m j m s s P = Q, (), soo itei positivi Poiché il podotto a pimo membo è coteuto i P, lo stesso vale pe il podotto a secodo membo Duque, i vitù della Poposizioe b), si ha che Q j P pe qualche j Ma, essedo Q j u ideale massimale i vitù della Defiizioe 08, segue che Q j = P Pe cocludee la dimostazioe, si moltiplichio etambi i membi di () pe P e si poceda pe iduzioe Ossevazioe Il Teoema stabilisce, pe i domii di Dedekid, ua popietà di fattoizzazioe uica valida o pe gli elemeti (o ulli e o ivetibili), ma pe gli ideali (divesi dall ideale ullo e dall aello stesso) La dimostazioe icalca fedelmete quella del Teoema Fodametale dell Aitmetica, oppue l aaloga agometazioe co cui si pova che l aello dei poliomi i u idetemiata a coefficieti i u campo è u UFD (vedi Algeba, Teoema 97) I effetti, i u PID (che, i base alla Poposizioe 94 di Algeba, è sempe u UFD) gli ideali pimi o ulli soo tutti e soli gli ideali della foma ( p ), ove p è u elemeto pimo: e deiva che l esisteza ed uicità della fattoizzazioe di u geeico ideale popio o ullo (a) equivale alla aaloga popietà dell elemeto a (che è ecessaiamete o ullo e o ivetibile): se

2 è la fattoizzazioe di a, alloa a = p p ( a) = ( p) ( p ) è la fattoizzazioe dell ideale (a) L esisteza ed uicità della fattoizzazioe stabilite dal Teoema valgoo peò, pe ua classe di aelli più ampia di quella dei PID e degli UFD: l Ossevazioe 06 mosta, ifatti, che o tutti i domii di Dedekid soo UFD Coollaio Pe ogi ideale o ullo I di u domiio di Dedekid A esiste u ideale fazioaio J tale che IJ = A Dimostazioe: Se I = A, J = A Sia I A Se I = P P è ua fattoizzazioe di I, alloa si può pedee J = P P (essedo P = ( P ) ) Si icoda che l iveso di u ideale pimo o ullo esiste i vitù della Poposizioe 8 Esempio 4 Nel domiio di Dedekid Z [ poviamo che vale la seguete fattoizzazioe 4 ( 6) = P P P P, () ove P =, + i 5), P = (, i 5), P = (, + i 5), P = (, 5) soo ideali pimi ( 4 i di Z [ Si veifica ifatti che Z, e Z P P P P4 (povae pe esecizio) Poviamo () Si ha che P P = (() + ( + i 5))(() + ( i 5)) = (9) + ( + i 5) + ( i 5) + (6) () () 4 = dove l ultima uguagliaza si pova facilmete veificado le due iclusioi Aalogamete si pova che Quidi, ifie, P P () (4) = P P P P = ()() (6) 4 = La decomposizioe () è uica, i vitù del Teoema No è peò uica la decomposizioe di 6 i fattoi iiducibili i Z [ Ifatti, come sappiamo dall Ossevazioe 88 di Algeba, 6 = = ( + i 5)( i 5) soo due distite decomposizioi Esse coispodoo alle segueti decomposizioi dell ideale (6):

3 ( 6) = () () = ( + i 5)( i 5) Queste o soo, peò, decomposizioi i ideali pimi: ad esempio, l ideale () o è pimo peché o è u elemeto pimo di Z [ Esse scatuiscoo dalla () agguppado oppotuamete i fattoi, ifatti, olte alla () e alla (4) si ha: ( + i 5) = P P = P P, ( i 5) 4 Nota stoica La modea teoia degli ideali asce da qui: l idea di itodue gli ideali pe ecupeae, pe gli aelli D K che o soo UFD, ua popietà di fattoizzazioe uica, isale all Ottoceto, ed è del matematico tedesco Est Eduad Kumme (80-89) Egli studiò i campi ciclotomici (ossia i campi umeici del tipo K = Q(ω ), ove ω è u adice p-esima dell uità, essedo p u umeo pimo) el tetativo di dimostae l Ultimo Teoema di Femat I dettagli possoo essee tovati i [Ri], mete u ceo alla teoia di Kumme è coteuto i [B], Capitoli e A Kumme isale ache il seguete citeio patico di fattoizzazioe di alcui ideali degli ideali D K Nel suo euciato viee pesupposta la popietà stabilita ella Poposizioe 98 **Teoema 5 (Citeio di Kumme) Sia K u campo umeico, e sia D K = α ] Sia f ( x) x] il poliomio miimo di α su Q Sia, iolte, p u umeo pimo (i Z) Idicata co f ( x ) la iduzioe di f ( x ) modulo p, siao f ( x),, f ( x) ] moici tali che f ( ),, ( ) x f x x siao iiducibili i Z p [x], a due a due distiti, e, pe oppotui itei positivi,,, si abbia ( ) ( ) ( ) f x f x f x Alloa, posto, pe ogi i =,,, P = ( p, ( α)), i f i ( p) = P P è ua fattoizzazioe dell ideale picipale (p) i Z [α ] I paticolae, se f (x) è iiducibile i Z p [x], alloa l ideale (p) è pimo i Z [α ] Dimostazioe: [Mi], Theoem 4 Ossevazioe 6 Il Teoema 5 pemette di detemiae la fattoizzazioe di ogi ideale picipale (m) di D K, ove m è u iteo maggioe di Se è la fattoizzazioe di m i Z, alloa si ha m = p u p u s s u ( ) ( p ) s u s m = ( p )

4 Si applica quidi il Teoema 5 ad oguo degli ideali ( p i ) Vediamo alcue applicazioi Esempio 7 Ricaviamo la fattoizzazioe di (6) i Z [, già esamiata ell Esempio 4 Dalla fattoizzazioe 6 = i Z, si icava la decomposizioe ( 6) = () () Il poliomio miimo di α = i 5 su Q è f ( x) = x + 5, la cui iduzioe modulo ha la fattoizzazioe f ( x) = x + = ( x + ), mete la fattoizzazioe modulo è f ( x) = x + = ( x + )( x + ) I base al Teoema 5 si ha che ( ) = (, + i 5), Si icava la fattoizzazioe ( ) = (, + i 5)(, + i 5) (6) = (, + i 5) (, + i 5)(, + i 5), che coicide co quella pecedetemete tovata: ifatti (, + i 5) = (, i 5), e (, + i 5) = (, i 5) Il pocedimeto che abbiamo appea effettuato si estede facilmete ad u abitaio campo quadatico Diamo di seguito, seza dimostazioe, u isultato i tal seso Poposizioe 8 Sia m u iteo pivo di quadati tale che m o m (mod 4) Sia K = Q( m) Sia p u umeo pimo a) Se esiste a Z tale che a m (mod p), alloa b) Altimeti (p) è u ideale pimo ( p) = ( p, a + m) ( p, a m) Esecizio 9 Detemiae i umei pimi che soo elemeti pimi di Z [i] Svolgimeto: Sia p u umeo pimo Alloa p è u elemeto pimo di Z [i] se e solo se ( p ) è u ideale pimo di Z [i] I base alla Poposizioe 8 ciò avviee se e solo se la cogueza

5 x (mod p) o ha soluzioe, se e solo se p (mod 4) : l ultima equivaleza è u oto isultato di teoia dei umei elemetae (vedi, ad esempio, [PC], pag 95 e segueti) Quidi i umei itei che soo pimi i i] soo:, 7, 9,,, Ad esempio, il umeo 5 o è pimo, peché o è iiducibile: ifatti ua sua decomposizioe o baale è 5 = ( + i)( i) Ricodiamo che Z [i] è u domiio euclideo (vedi Algeba, Poposizioe 64) quidi è u PID (vedi Algeba, Poposizioe 65), e i u PID le ozioi di elemeto pimo ed elemeto iiducibile coicidoo (vedi Algeba, Coollaio 8) Esecizio 0 Sapedo che, pe K = Q( ), D = ], tovae ua fattoizzazioe di (5) i Z [ ] Svolgimeto: Applichiamo il Teoema 5 Il poliomio miimo di su Q è f ( x) = x La sua iduzioe modulo 5 è K ed ha, i Z 5, adice Si ha alloa f x ( ) x = +, f ( x) = ( x + )( x + x + 4), dove il secodo fattoe è iiducibile su Z 5, peché ivi pivo di adici Segue che (5) = (5, + )(5,4 + Estediamo oa il isultato stabilito el Teoema ad u qualuque ideale fazioaio popio o ullo di u domiio di Dedekid Poposizioe Sia A u domiio di Dedekid Sia I u suo ideale fazioaio popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei o ulli,, tali che + 4) I = P P (**) Dimostazioe: Basta suppoe che I sia u ideale fazioaio popio o iteo Sia a u deomiatoe di I, così che I = ( a) ai Gli ideali itei (popi, o ulli) (a) ed ai di A si decompogoo, i vitù del Teoema, el podotto di ideali pimi o ulli Ciò pova l esisteza di ua decomposizioe (**) L uicità si pova come ella dimostazioe del Teoema, passado ad espoeti positivi (pe moltiplicazioi co oppotui ideali pimi) Ossevazioe Abbiamo così stabilito che ogi ideale fazioaio o ullo di u domiio di Dedekid A ammette u iveso: si ha che A = A, e, se I è u ideale fazioaio popio o ullo, di fattoizzazioe I = P P, alloa I = P P Abbiamo quidi aggiuto lo scopo che ci eavamo pefissi al temie della lezioe pecedete Coollaio L isieme degli ideali fazioai o ulli di u domiio di Dedekid A è u guppo abeliao moltiplicativo (deotato I ( )

6 Defiizioe 4 Sia A u domiio d itegità, sia K u suo campo dei quozieti U ideale fazioaio di A si dice picipale se è del tipo A α pe qualche α K Sciveemo, pe semplicità, (α ) Poposizioe 5 L isieme P ( degli ideali fazioai picipali o ulli di u domiio di Dedekid A è u sottoguppo di I ( Dimostazioe: Poiché A = (), A P( Siao I = ( α ), J = ( β ) P( Alloa IJ = ( α )( β ) = ( αβ ) P( Defiizioe 6 Il guppo quoziete Cl ( = I ( è detto guppo delle classi di ideali di P( A Il suo odie è detto umeo delle classi di ideali Il guppo moltiplicativo abeliao Cl ( ci dà ua misua di quato u domiio di Dedekid A si discosti dall essee u PID (o, equivaletemete, u UFD, i base al Coollaio 00) Poposizioe 7 U domiio di Dedekid A è u PID se e solo se Cl ( = Dimostazioe: Sia A u PID Alloa ogi ideale iteo di A è picipale Sia I u ideale fazioaio o ullo di A e sia a u suo deomiatoe Alloa ai è u ideale iteo, pe cui ai = (b) pe qualche Cl ( = b b A Segue che I = ( a ) è u ideale fazioaio picipale Quidi I ( = P(, cioè Vicevesa, sia Cl ( = Alloa, i paticolae, ogi ideale iteo I di A è u ideale fazioaio picipale, ossia I = (α ) pe qualche α K Ma alloa α I A, quidi I è l ideale picipale iteo di A geeato da α Quidi A è u PID Veificheemo più avati che, ad esempio, Cl( Z [ ) = Ossevazioe 8 Si può dae ua defiizioe alteativa di Cl( A ) Sull isieme It ( degli ideali itei o ulli del domiio di Dedekid A (co campo dei quozieti K) itoduciamo la seguete elazioe biaia: I, J It(, I ~ J α K tale che I = αj È facile veificae che ~ è ua elazioe di equivaleza Cosideiamo l applicazioe ϕ : It( I( = Cl( P( I IP( Poviamo che ϕ è suiettiva Sia I u ideale fazioaio di A Alloa esiste ai sia u ideale iteo di A, e quidi ϕ ( ai ) = aip( = I( a) P( = IP(, a A o ullo tale che

7 dove l ultima uguagliaza segue dal fatto che ( a) P( Iolte, pe ogi I, J It(, si ha che ϕ ( I ) = ϕ( J ) se e solo se IJ P( se e solo se esiste α K tale che IJ = ( α), se e solo se esiste α K tale che I = αj se e solo se I ~ J Segue che ϕ iduce ua biiezioe * ϕ : It( Cl( ~ Poedo, pe ogi I, J It(, [ I][ J ] = [ IJ ], ad imitazioe dell'idetità ( IP( )( JP( ) = IJP( di Cl (, si muisce It( di ua stuttua di guppo moltiplicativo isomofo a Cl ( Essa è ~ ua ealizzazioe equivalete del guppo delle classi di ideali di A Pima di pocedee co la teoia del guppo delle classi di ideali, vediamo di stabilie u impotate popietà dell aitmetica degli ideali ei domii di Dedekid, che coispode a ua be ota popietà di divisibilità dei umei itei: u umeo che divide alti due umei divide ache la loo somma Questa popietà ci saà utile ella Lezioe 5 Pemettiamo la seguete: Ossevazioe 9 Sia A u domiio di Dedekid, siao I, J suoi ideali o ulli Se I divide J, cioè esiste u ideale I ' tale che II ' = J, alloa J I Vicevesa, se J I, alloa sia L = I J I I = A L è u ideale di A tale che J = LI, pe cui I divide J Abbiamo così povato la egola fodametale: I divide J I cotiee J Esecizio 0 Sia A u domiio di Dedekid Siao I,J,L ideali di A Povae che se L divide I e L divide J, alloa L divide I + J Svolgimeto: Suppoiamo che L divida I Alloa I + J L, cioè L divide I + J I L Se L divide J, alloa J L Quidi

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Il teorema di Gauss e sue applicazioni

Il teorema di Gauss e sue applicazioni Il teoema di Gauss e sue applicazioi Cocetto di flusso Cosideiamo u campo uifome ed ua supeficie piaa pepedicolae alle liee di campo. Defiiamo flusso del campo attaveso la supeficie la uatità : = (misuata

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA TETI FINNZIRI. Defiizioi 2. Iteesse semplice 3. Iteesse composto cotiuo 4. Iteesse composto discotiuo auo Spostameto dei valoi el tempo ualità Peiodicità 5. Iteesse composto discotiuo covetibile atematica

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Si presentano qui alcune nozioni sugli anelli, sia come modello di. strutture con due operazioni binarie, sia per l importanza di queste strutture in

Si presentano qui alcune nozioni sugli anelli, sia come modello di. strutture con due operazioni binarie, sia per l importanza di queste strutture in NOZIONI ELEMENTARI SUGLI ANELLI Si presetao qui alcue ozioi sugli aelli, sia come modello di strutture co due operazioi biarie, sia per l importaza di queste strutture i tutte le sezioi della Matematica

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

Analisi di fattibilita. AdF: elemento base della progettazione.

Analisi di fattibilita. AdF: elemento base della progettazione. Uivesità degli Studi di Cagliai D.I.M.C.M. Aalisi di fattibilita AdF: elemeto base della pogettazioe. La aalisi di fattibilità è u elemeto fodametale che deve sussistee a mote della fase di pogettazioe.

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3.

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3. Corsi di Laurea i Igegeria Edile e Architettura Prova scritta di Aalisi Matematica del 6// ) Mostrare che + si( ) cos () si( ) log(( + ) / ) = 3. Possibile soluzioe: Cosiderado dapprima il deomiatore otiamo

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

FRAZIONI CONTINUE DISCENDENTI E ASCENDENTI

FRAZIONI CONTINUE DISCENDENTI E ASCENDENTI Bollettio dei Doceti di Matematica (995), 85-9 FRAZIONI CONTINUE DISCENDENTI E ASCENDENTI GIORGIO T. BAGNI L ALGORITMO DI EUCLIDE U efficace pocedimeto pe detemiae il massimo comue divisoe di due atuali

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che:

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che: ARITMETICA 1 U importate ramo della matematica è l aritmetica, o teoria dei umeri, qui itesi come umeri iteri. Ci si poe il problema di stabilire se certe relazioi possao essere soddisfatte da umeri iteri,

Dettagli

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero Lezioe 9- - Problema del trasporto Prof. Cerulli Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, ) A o violi

Dettagli

UNIVERSITA DEGLI STUDI DI TRIESTE - A u r e l i o A m o d e o

UNIVERSITA DEGLI STUDI DI TRIESTE - A u r e l i o A m o d e o UNIVERSITA DEGLI STUDI DI TRIESTE - FAOLTA DI INGEGNERIA A u e l i o A m o d e o Elemeti didattici di matematica fiaziaia Dipatimeto di Igegeia ivile e Ambietale Tieste, settembe 5 La fialità di questi

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

ESAME DI STATO 2005, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO-TECNOLOGICO "BROCCA")

ESAME DI STATO 2005, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO-TECNOLOGICO BROCCA) Achimede 00 ESAME DI STATO 00, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO-TECNOLOGICO "BROCCA") Il cadidato isolva uo dei due poblemi e dei 0 quesiti i cui

Dettagli

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n SERIE NUMERICHE Esercizi risolti. Applicado la defiizioe di covergeza di ua serie stabilire il carattere delle segueti serie, e, i caso di covergeza, trovare la somma: = + b) = + +. Verificare utilizzado

Dettagli

INTERI L insieme Z degli interi positivi viene definito da

INTERI L insieme Z degli interi positivi viene definito da ALGEBRA I Meegazzo & Pablo ma ache (f(gh(t = f(g(h(t INTERI L isieme Z degli iteri positivi viee defiito da Z := (N N/ ove (a, b (c, d a + d = b + c Scegliedo come rappresetati le coppie i cui almeo uo

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh.

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh. Prerequisiti: Lezioe Gruppi Lezioe 2 Z Gruppi isomorfi Gruppi S e A Riferimeti ai testi: [FdG] Sezioe ; [H] Sezioe 26; [PC] Sezioe 58 Sottogruppi ormali Gruppi quoziete L Esempio 7 giustifica la seguete

Dettagli

Rendita perpetua con rate crescenti in progressione aritmetica

Rendita perpetua con rate crescenti in progressione aritmetica edita perpetua co rate cresceti i progressioe aritmetica iprediamo l'esempio visto ella scorsa lezioe di redita perpetua co rate cresceti i progressioe arimetica: Questa redita può ache essere vista come

Dettagli

3.1 Il principio di inclusione-esclusione

3.1 Il principio di inclusione-esclusione Capitolo 3 Calcolo combiatorio 3.1 Il pricipio di iclusioe-esclusioe Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota il umero di elemeti. Questo può dar luogo ad iteressati

Dettagli

Formula per la determinazione della Successione generalizzata di Fibonacci.

Formula per la determinazione della Successione generalizzata di Fibonacci. Formula per la determiazioe della uccessioe geeralizzata di Fiboacci. A cura di Eugeio Amitrao Coteuto dell articolo:. Itroduzioe......... uccessioe di Fiboacci....... 3. Formula di Biet per la successioe

Dettagli

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

Navigazione tramite numeri e divertimento

Navigazione tramite numeri e divertimento 60 Chapter 6 Navigazioe tramite umeri e divertimeto Vladimir Georgiev Itroduzioe La ovità pricipale el ostro approccio e l avviciameto del lavoro dei ostri Lab ai problemi della vita reale tramite la parte

Dettagli

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente Corso di Laurea i Matematica LEZIONI PER IL CORSO DI ANALISI MATEMATICA..2 A.A. 2007-2008 ARGOMENTO: SERIE NUMERICHE Dott.ssa Sadra Lucete Idice :. Prime geeralità sulle serie. 2. Serie a termii o egativi:

Dettagli

V. SEPARAZIONE DELLE VARIABILI

V. SEPARAZIONE DELLE VARIABILI V SEPARAZIONE DEE VARIABII 1 Tasfomazioni Otogonali Sia u = u 1, u 2, u 3 una tasfomazione delle vaiabili in R 3, dove x = x 1, x 2, x 3 sono le coodinate catesiane, u j = u j x 1, x 2, x 3 j = 1, 2, 3

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Università degli Studi di Napoli Federico II

Università degli Studi di Napoli Federico II Uivesità degli tudi di Napoli Fedeico II Facoltà di cieze Matematiche, Fisiche e Natuali Tesi di Lauea i Fisica o ccademico 004-005 Modelli pe il pocesso di misua i Meccaica Quatistica Relatoe Pof. R.

Dettagli

Investimento. 1 Scelte individuali. Micoreconomia classica

Investimento. 1 Scelte individuali. Micoreconomia classica Investimento L investimento è l aumento della dotazione di capitale fisico dell impesa. Viene effettuato pe aumentae la capacità poduttiva. ECONOMIA MONETARIA E FINANZIARIA (5) L investimento In queste

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Matematica finanziaria applicata all estimo

Matematica finanziaria applicata all estimo Matematica fiaziaia applicata all estimo Pate Uità Nozioi di iteesse e di capitale Uità 2 Aualità costati Uità 3 Peiodicità o poliaualità Uità 4 Poblemi sui edditi tasitoi e pemaeti di u immobile Itoduzioe

Dettagli

cerchiamo di convincerci che ha senso sommare infiniti numeri! INSIEME INFINITO non INSIEME ILLIMITATO maggiorante limitato B 1/4 + 1/16 + 1/64

cerchiamo di convincerci che ha senso sommare infiniti numeri! INSIEME INFINITO non INSIEME ILLIMITATO maggiorante limitato B 1/4 + 1/16 + 1/64 By Luca Torchio Prima di defiire i modo rigoroso ua somma di ifiiti umeri, che tra l altro i matematici chiamao Serie, cerchiamo di covicerci che ha seso sommare ifiiti umeri! La cosa, i effetti, fa u

Dettagli

P i Pf. = P=P f -P i =0,2 atm. tot = =

P i Pf. = P=P f -P i =0,2 atm. tot = = Stato gassoso 1) La camera d aria di uo peumatico viee riempita fio alla pressioe di,5 atmosfere alla temperatura di 5 C; i movimeto, la temperatura ella camera d aria sale fio a 65 C ed il volume aumeta

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Lezione 5. Gli anelli

Lezione 5. Gli anelli Lezioe 5 Prerequisiti: Lezioe, Lezioe 3. Gli aelli I questa lezioe diamo il secodo esempio di struttura algebrica astratta, che si aggiuge a quella di gruppo, defiita ella Lezioe. Questa uova struttura,

Dettagli

Archimede, chi era costui..? (In onore della geometria) Area del segmento parabolico

Archimede, chi era costui..? (In onore della geometria) Area del segmento parabolico Achimede, chi ea costui..? (I ooe della geometia) Aea del segmeto paabolico La medaglia Fields, pemio istituito el 96, è cosideato il "Nobel della matematica" ed è assegato, ogi quatto ai, a matematici

Dettagli

Un modello di ricerca operativa per le scommesse sportive

Un modello di ricerca operativa per le scommesse sportive Un modello di iceca opeativa pe le commee potive Di Citiano Amellini citianoamellini@aliceit Supponiamo di dove giocae una ceta omma di denao (eempio euo ulla patita MILAN- JUVE Le quote SNAI ono quelle

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

1. Generalità sull energia potenziale elettrica. Supponiamo di avere un sistema di due cariche elettriche positive, Q

1. Generalità sull energia potenziale elettrica. Supponiamo di avere un sistema di due cariche elettriche positive, Q UNITÀ 9 IL POTENZIALE ELETTRICO. Geealità sull eegia poteziale elettica.. L eegia poteziale elettica di due caiche putifomi e di più caiche putifomi.. Il poteziale elettico. 4. Poteziale elettico geeato

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

CAPITOLO 10 La domanda aggregata I: il modello IS-LM

CAPITOLO 10 La domanda aggregata I: il modello IS-LM CAPITOLO 10 La domanda aggegata I: il modello IS-LM Domande di ipasso 1. La coce keynesiana ci dice che la politica fiscale ha un effetto moltiplicato sul eddito. Infatti, secondo la funzione di consumo,

Dettagli

n + 2n 3 ; (1) lim n 2 log n + n (2) lim 2 n + 5 n = (3) lim Soluzione. (1). Riscrivendo oppportunamente la successione, si ha n2 (1 + 1/n 2 ) = n

n + 2n 3 ; (1) lim n 2 log n + n (2) lim 2 n + 5 n = (3) lim Soluzione. (1). Riscrivendo oppportunamente la successione, si ha n2 (1 + 1/n 2 ) = n Limiti di Successioi Ifiiti ed Ifiitesimi Esercizio Calcolare se esistoo i segueti iti: + + ; log + + + 5 ;! + +! Soluzioe Riscrivedo oppportuamete la successioe si ha + a = = + / = + Poichè + = + + =

Dettagli

APPENDICE 1 Richiami di algebra lineare

APPENDICE 1 Richiami di algebra lineare APPENDICE Richiami di algebra lieare vettore: isieme ordiato di elemeti (umeri reali, umeri complessi, variabili, fuzioi,...) B = b b M b 2 { } = b, co i =, L, i il vettore sopra defiito è detto ache vettore

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli

Matematiche Complementari 24 gennaio 2012

Matematiche Complementari 24 gennaio 2012 Matematiche Complemetari 4 geaio 01 1. Euciare gli assiomi di Peao e dimostrare che due sistemi che li soddisfao soo fra loro isomorfi.. Data la successioe (di Fiboacci): a = 0 a a 0 1 = 1 = a 1 + a per

Dettagli

Forme Bilineari 1 / 34

Forme Bilineari 1 / 34 Forme Bilieari 1 / 34 Defiizioe applicazioe Dicesi forma bilieare su uo spazio vettoriale V, ua ϕ : V V R che è lieare i etrambi gli argometi, ossìa tale che u,v,w V e a,b R si abbia: ϕ(au + bv,w) =aϕ(u,w)

Dettagli

Disposizioni semplici. Disposizioni semplici esercizi

Disposizioni semplici. Disposizioni semplici esercizi Disposizioi semplici Ua disposizioe (semplice) di oggetti i k posti (duque 1 < k < ) è ogi raggruppameto di k oggetti, seza ripetizioi, scelti fra gli oggetti dati, cioè ciascuo dei raggruppameti ordiati

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli