Approfondimenti di statistica e geostatistica



Documenti analoghi
CONCETTI BASE DI STATISTICA

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

Metodi statistici per l analisi dei dati

Elementi di matematica finanziaria

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Le carte di controllo

Campi vettoriali conservativi e solenoidali

Sistemi e Tecnologie della Comunicazione

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

Analisi statistica dell Output

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

Statistica 1 A.A. 2015/2016

Campionamento stratificato. Esempio

Principi base di Ingegneria della Sicurezza

Successioni. Grafico di una successione

1 Limiti di successioni

Il test parametrico si costruisce in tre passi:

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Appunti sulla MATEMATICA FINANZIARIA

Esercitazioni di Statistica

STATISTICA DESCRITTIVA

V Tutorato 6 Novembre 2014

EQUAZIONI ALLE RICORRENZE

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

Anno 5 Successioni numeriche

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del

Economia Internazionale - Soluzioni alla IV Esercitazione

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1. f(x) = arcsin 1 2 log 2 x.

La stima per capitalizzazione dei redditi

Selezione avversa e razionamento del credito

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica di base. Luca Mari, versione

8. Quale pesa di più?

Terzo appello del. primo modulo. di ANALISI

SUCCESSIONI NUMERICHE

Random walk classico. Simulazione di un random walk

LA DERIVATA DI UNA FUNZIONE

Sintassi dello studio di funzione

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

SUCCESSIONI E SERIE NUMERICHE

Esercizi riguardanti limiti di successioni

Corso di Laurea in Ing. Edile Politecnico di Bari A.A Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

IL CALCOLO COMBINATORIO

PARTE QUARTA Teoria algebrica dei numeri

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

STIMA DEL FONDO RUSTCO

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

DISTRIBUZIONI DOPPIE

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

Guida pratica per la convalida, il controllo qualità e lo studio delle incertezze di un metodo di analisi enologico

Interesse e formule relative.

La matematica finanziaria

PARAMETRI DEL MOTO SISMICO

Successioni ricorsive di numeri

Random walk classico. Simulazione di un random walk

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni

Alcuni parametri statistici di base

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

Complementi di Matematica e Statistica

Foglio di esercizi N. 1 - Soluzioni

Limiti di successioni

Teorema 13. Se una sere converge assolutamente, allora converge:

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

4. Metodo semiprobabilistico agli stati limite

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs , n. 30)

Soluzioni esercizi Capitolo 7

I appello - 29 Giugno 2007

Analisi Fattoriale Discriminante

Successioni. Capitolo Definizione

Disposizioni semplici. Disposizioni semplici esercizi

Capitolo 27. Elementi di calcolo finanziario EEE

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

REGRESSIONE LINEARE E POLINOMIALE

Formula per la determinazione della Successione generalizzata di Fibonacci.

Transcript:

Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici

Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La Geostatistica studia i feomei aturali che si sviluppao su base spaziale a partire dalle iformazioi derivati da u loro campioameto. I particolare studia la variabilità spaziale dei parametri che descrivoo tali feomei. Defiizioi Variabile regioalizzata (VR): è ua gradezza espressa come ua fuzioe umerica z(x) il cui valore dipede dalla localizzazioe ovvero dal vettore x (x, y) delle coordiate spaziali. Campo: è il domiio all itero del quale si studia la variabilità della variabile z. Supporto: è l etità geometrica sulla quale vegoo misurati i valori della variabile z. Quado le dimesioi soo molto piccole (rispetto alla scala del lavoro) il supporto può cosiderarsi putuale.

Aalisi spaziale Approccio probabilistico Perché u approccio probabilistico? Necessità di passare da dati putuali (misurati) ad u dato omogeeo e cotiuo el domiio di studio. Variabile aleatoria (VA): Z(x 0 ) rappreseta l isieme dei valori che può assumere la variabile regioalizzata z(x) el puto x 0 (x 0, y 0 ) del domiio di studio, ovvero è ua variabile che assume dei valori umerici apparteeti ad u certo itervallo secodo ua legge di desità di probabilità f 0 (Z). Fuzioe aleatoria (FA): FA Z(x) è l isieme di tutte le variabili aleatorie Z(x) per ogi puto x (x, y) del domiio di studio, ovvero l isieme di tutti i valori che può assumere la variabile regioalizzata z(x) el domiio di studio. Approccio Probabilistico Valori misurati di z(x) Fuzioe aleatoria FA Z(x) Fuzioe aleatoria FA Z(x) Stima di z(x) ell itero domiio 3

Il Variogramma Icremeti: ε(h) = Z(x i h) - Z(x i ) Esprimoo la variazioe della variabile spaziale co la posizioe ovvero al variare del vettore h Dispersioe (variaza) degli icremeti : aumeta al crescere di h e quidi decresce co la distaza l iflueza della distaza stessa sulla variazioe di Z(x) Variogramma: Esprime la correlazioe (variaza) di Z(x) co la distaza h γ(h) = ½ var [Z(xh) - Z(x)] 4

5 Elemeti del Variogramma Variogramma sperimetale Variogramma modello γ(h) = (h) i= [ z(x h) z(x) ] (h) [γ(h)] semivariace 0 5 Sill Nugget: variabilità casuale o correlata alla distaza (es. errori di misura) Sill: variabilità alla distaza correlata Rage Nugget Rage: distaza oltre la quale o si osserva più correlazioe spaziale distace 500 000 500 [h] 5

Stima del variogramma modello I dati presetao u tred: occorre elimiare l effetto del tred (detredizzare) 500 000 500 90 35 60 40 0 semivariace 60 0 45 Aisotropia: diversa correlazioe a secoda della direzioe (45 vs 35 ) 40 0 500 000 500 distace

Modelli di iterpolazioe dei dati Modelli di iterpolazioe y 330000 33000 33000 333000 330000 33000 33000 333000 78500 79000 79500 80000 80500 8000 8500 Dato putuale x Iterpolazioe 78000 79000 80000 8000 8000 Dato cotiuo 7

Modelli di iterpolazioe dei dati Modelli di iterpolazioe Per otteere ua rappresetazioe spaziale cotiua el domiio di studio di ua VR occorre: stimare i valori della VR ai vertici di ua griglia regolare sufficietemete fitta sulla base dei valori misurati (operazioe di stima); iterpolare sui lati della griglia i valori della VR sulla base dello stimatore selezioato (operazioe di iterpolazioe). Stimatori lieari La stima della VR ei vertici della griglia z*(x 0 ) è ua combiazioe lieare dei valori misurati ei puti vicii z(x α ) z * (x 0 z(x i puti x α rappresetao rispetto a x 0 il cosiddetto viciaggio di stima; i coefficieti λ α soo i pesi della combiazioe lieare. ) = λ α α= α ) 8

Correttezza ed accuratezza della stima Errore della stima Differeza el puto x 0 tra valore vero e valore stimato: 0 0 0 λ α α α= * ε = z(x ) z (x ) = z(x ) z(x Correttezza della stima La stima è corretta se la media degli errori di stima è ulla. E [] ε = E z(x ) z(x ) 0 0 λ α α = α= Accuratezza della stima La stima ètato più accurata quato più bassa è la dispersioe degli errori ovvero della variaza di stima: ) σ s = D [] ε = α= λ α γ(x α x 0 ) α= β= λ α λ β γ(x α x β ) 9

Modelli determiistici I pesi λ α della combiazioe lieare soo fuzioi matematiche date. I valori stimati soo quidi calcolati a partire dai dati misurati sulla base di precise leggi matematiche che o tegoo coto della legge di autocorrelazioe spaziale (variogramma). I modelli più comuemete utilizzati soo: Poligoi di iflueza (Nearest Neighbour Aalysis NNR) Media mobile Iverso delle distaze (Iverce Distace Weighted IDW) Regressioi Poliomiali Splie Il risultato forito dai modelli determiistici è uicamete ua mappa delle previsioi. E possibile comuque determiare l accuratezza della stima calcolado la variaza di stima i base al variogramma. 0

00% x 0 0% Poligoi di iflueza (NNR) Il valore stimato è pari al valore del puto più vicio all itero del viciaggio di stima. 3 0% z*(x 0 ) = z l = 00% = l i = 0% = 0 4 0% 5 0% L iflueza è quidi limitata ad u solo dato ovvero al puto più vicio. Si trascurao gli altri cotributi.

Media mobile 0% 3 0% x 0% 0 Il valore stimato è pari alla media dei valori dei puti all itero del viciaggio. I pesi soo uguali e dipedoo dal umero di puti cosiderati. zi * i z (x0) = = λ i = / λ i = /5 = 0% 4 0% 5 0% L iflueza sulla stima (pesi) o dipede é dalla distaza del puto x 0 rispetto ai puti all itero del viciaggio, é dai valori assuti dalla variabile ei puti stessi.

38% 4 5% x 0 5 0% % Applicazioe dell aalisi di Rischio ai siti Cotamiati Iverso delle distaze (IDW) 3 5% I pesi λ i soo iversamete proporzioali alla distaza dell i-esimo puto del viciaggio rispetto al puto x 0. z ϕ * (x ( d ) i 0 ) = = d i= i= zi ϕ ϕ ( d ) i ( d ) i λ i = i= ϕ d ( ) ϕ i ( d ) Iverso della distaza i ϕ ( d ) = d i Iverso del quadrato della distaza L iflueza sulla stima è data dalla distaza del puto x 0 rispetto ai puti all itero del viciaggio e o dai valori assuti dalla variabile ei puti stessi. 3

Quale modello scegliere? Poligoi di iflueza Iverso delle distaze Media mobile Iverso del quadrato delle distaze 4

Quale modello scegliere? Il modello da scegliere è quello che miimizza la variaza di stima σ s = D [] ε = α= λ α γ(x α x 0 ) α= β= λ α λ β γ(x α x β ) Modello σ s Poligoi di iflueza (NNR) 3,4 Media Mobile 3,0 Iverso delle distaze (IDW),83 Iverso del quadrato delle distaze (IDW),8

Modelli statistici I pesi λ α della combiazioe lieare soo determiati i modo da miimizzare la variaza di stima σ s. I valori stimati quidi tegoo coto della legge di autocorrelazioe spaziale (variogramma). I modelli di stima statistici soo geericamete idicati come Krigig ed i particolare e esistoo diverse applicazioi: Krigig Semplice Krigig Ordiario Uiversal Krigig CoKrigig geostatistica uivariata geostatistica multivariata Il risultato forito dai modelli determiistici è ua mappa delle previsioi isieme ad ua mappa delle icertezze. La mappa delle icertezze mostra la variaza di stima determiata i base al variogramma. 6

Foc - Mappa delle previsioi Applicazioe dell aalisi di Rischio ai siti Cotamiati Modelli statistici Foc - Mappa delle icertezze 7

Krigig ordiario e Krigig semplice Krigig ordiario (KO) Si applica el caso di fuzioi aleatorie stazioarie, ossia el caso i cui la media dei residui sia costate i tutto il domiio di studio Miimizzazioe della variaza di stima: σ s = 0 λ γ(x x ) µ = γ(x x0) α = β α β α,..., λ α β= sistema di equazioi i icogite (pesi λ α e lagragiao µ) L ultima equazioe per risolvere il sistema si ottiee dalla codizioe di correttezza della stima i caso di fuzioi aleatorie stazioarie: E[] ε = E z(x0 ) λ β z(xβ ) = 0 λβ = β= β= Krigig semplice (KS) Si applica el caso di fuzioi aleatorie stazioarie co media dei residui costate e ota. Necessita di u elevato umero di dati misurati. E più preciso del KO el caso di u elevato umero di misurazioi. s ( KS) σ ( KO) σ < s 8

Uiversal Krigig Si applica el caso di fuzioi aleatorie o stazioarie itriseche, ossia el caso i cui la media dei residui o è costate e la legge di autocorrelazioe preseta u tred. La fuzioe aleatoria Z(x) può essere cosiderata i ogi puto x del domiio come la sovrapposizioe di due compoeti: Il tred m(x) che rappreseta la parte determiistica Il residuo Y(x) che rappreseta la parte aleatoria Z(x) = Y(x) m(x) m(x) Se il residuo Y(x) è ua fuzioe stazioaria e o è correlata al tred allora è possibile applicare la procedura di Krigig al residuo e quidi effettuare lo Uiversal Krigig (UK). 9

CoKrigig La stima della la variabile pricipale (target) o si basa solo sui valori della variabile esamiata ma prede i cosiderazioe ache altre variabili ausiliarie. La codizioe ecessaria per l applicazioe del CoKrigig è che la variabile target z (x) e le variabili ausiliarie z (x) siao spazialmete correlate. Lo stimatore della variabile target è dato da: * 0 α= α α α= α α z (x ) = λ z (x ) ω z(x La codizioe di correttezza della stima è data da: λ α = ω α= α= α = 0 U possibile campo di applicazioe è quello a dati di caratterizzazioe/moitoraggio riferiti a periodi diversi. E possibile quidi utilizzare u maggior umero di dati ache se o riferiti alla stessa campaga di idagie. ) 0

Quale modello scegliere? Modelli determiistici Vataggi Semplicità di utilizzo Possoo essere utilizzati ache co pochi dati misurati No richiedoo ipotesi sulla distribuzioe spaziale dei dati No dipedoo dal modello scelto per il variogramma Vataggi Tegoo coto della variabilità spaziale del dato Foriscoo ua mappa delle icertezze associate alla stima putuale del dato Dao stime più precise co u umero discreto di misure Modelli statistici Svataggi No tegoo coto della variabilità spaziale No foriscoo ua mappa delle icertezze Spesso o tegoo coto dei valori assuti dalla variabile ei puti di misura Svataggi Soo più complessi Richiedoo ipotesi sulla distribuzioe spaziale dei dati (stazioarietà, tred, ecc.) Dipedoo dal modello scelto per il variogramma Hao poco potere previsioale se si dispoe di pochi dati

Esperieze applicative Nell ambito della boifica dei siti cotamiati la geostatistica viee applicata soprattutto per: Carta delle isopieze Carte di isococetrazioe (soprattutto per la falda) I geere i risultati otteuti risultao careti i quato: La geostatistica viee spesso applicata co pochi dati a disposizioe. Raramete viee idicato il modello di stima e di iterpolazioe utilizzato. Spesso o vegoo idicati i puti utilizzati per l iterpolazioe e/o i valori che la variabile assume i tali puti, é il domiio di studio. A volte vegoo utilizzate codizioi al cotoro ell area (puti fittizi) che o rispecchiao dati reali misurati. Raramete vegoo applicati più modelli di stima allo stesso set di dati ed effettuato il cofroto fra le variaze di stima. Quado vegoo utilizzati modelli statistici (krigig), o viee riportata la determiazioe del variogramma sperimetale e del variogramma modello utilizzato, é viee prodotta la mappa delle icertezze.

Esempi di errori frequeti () Carta delle isopieze Qual è il domiio di studio? E il sito o u area più ampia? Quali soo i valori riscotrati ei piezometri? No è stato riportato il modello di stima ( forse IDW?) Icertezza della stima? 3

Esempi di errori frequeti () Carta di isococetrazioe ei suoli Modello utilizzato: Krigig Al cofie del sito (domiio di studio) soo stati itrodotti dei puti fittizi (SF ) ai quali è stata assegata ua cocetrazioe arbitraria o misurata. La cocetrazioe ei puti fittizi è stata posta a volte pari al valore del puto più vicio e a volte pari a zero. Le aree i viola idicao le zoe a cocetrazioe iferiore a zero! Variogramma? Icertezza della stima? 4

Esempi di errori frequeti (3) Carta di isococetrazioe i falda >0, µg/l Qual è il domiio di studio? Perché i piezometri MW8 e MW o soo stati cosiderati ell iterpolazioe? Le curve di isococetrazioe o rispecchiao i dati misurati! 5

Cosiderazioi coclusive La geostatistica è uo strumeto utile e potete e viee utilizzata spesso el campo dei siti cotamiati. L esperieza ella valutazioe degli elaborati progettuali relativi ai siti cotamiati di iteresse azioale purtroppo mostra che il livello di utilizzo di questo strumeto è acora carete i quato: spesso ci si limita ad ua mera applicazioe di u software seza adeguati cotrolli e valutazioi dei risultati; alcui modelli (es. poligoi di iflueza) soo riteuti più coservativi di altri, ma alla fie possoo sottostimare la situazioe reale del sito; spesso si voglioo usare modelli complessi (es. krigig) o applicabili ai dati dispoibili o co limitati set di dati. Occorre soprattutto o limitarsi solo a forire delle mappe, ma idicare tutte le valutazioi che le hao prodotte oltre all icertezza dei risultati. 6