3. Il coefficiente di riflessione all interfaccia dipende dalle impedenze caratteristiche dei due mezzi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3. Il coefficiente di riflessione all interfaccia dipende dalle impedenze caratteristiche dei due mezzi"

Transcript

1 SRCIIO In figura è mosraa un onda piana (omogenea) che ide orogonalmene su un inerfaccia piana posa in Deerminare il massimo e il minimo del modulo del campo elerico nel puno P al variare di x[ 3]. z 0. PROCDIMNTO. Definire le variabili simboliche e x, z, come variabili reali, uilizzando al ermine della definizione la parola real per indicare che possono assumere solo valori reali s. syms a b c real syms x z lambda real k = *pi/lambda; Non è necessario andare a definire le variabili per indicare la frequenza f, ϵr e x, poiché si sa andando a uilizzare un meodo di risoluzione simbolico che permee di scrivere direamene le espressioni.. Definire le impedenze caraerisiche dei mezzi 0 0 r 0 0 x x z = 0*pi/; z = 0*pi/x; % 0*pi = 377 ohm 3. Il coefficiene di riflessione all inerfaccia dipende dalle impedenze caraerisiche dei due mezzi G = (z-z)/(z+z); 0 0 x 0 0 x x x Definire ale grandezza e uilizzare la funzione prey(gamma) per visualizzare l espressione. In seguio riassegnare alla variabile il valore resiuio dalla funzione facor() con un isruzione del ipo Gamma = facor(gamma) che ne semplifica la forma. Riuilizzare prey(gamma) per verificare il risulao. G = facor(g); prey(g) %per oere la formula simbolica anziché un veore di re elemeni, si %moliplicano ra di loro i 3 elemeni di G: G=G()*G()*G(3); 4. Definire il campo nel mezzo, dao dalla somma di un onda idene e una riflessa. Il campo riflesso può essere calcolao da quello idene dalla relazione r. () z e e valida per z 0 jkz jkz r

2 dove k = *exp(-j*k*z) + G**exp(j*k*z); 5. Ci ineressa il campo nel puno P, ovvero in z 3 precedenemene definio, uilizzando la funzione subs() z = subs(, z, -lambda/3); ( 3) e e, per cui sosiuire queso valore di j j 3 3 z nel campo 6. Nel deerminare i valori massimi e minimi del campo è spesso conveniene lavorare con il modulo quadro del campo sesso. Definire il modulo quadro nella nuova variabile square come prodoo del campo per il suo complesso coniugao ( es. *conj() ). Visualizzarlo con prey(square). Uilizzare l isruzione square = simplify(square) e visualizzare il risulao con prey(square). % Lavoriamo col modulo quadro square = z*conj(z); prey(square); % Svolgiamo i prodoi square = simplify(square); prey(square); 7. La funzione diff(expr) calcola la derivaa dell espressione simbolica expr che gli viene passaa come argomeno. Calcolare la derivaa del modulo quadro del campo e passarla alla funzione solve() per deerminare i valori di x per cui si annulla. % Troviamo evenuali massimi e minimi annullando la derivaa derivaa = diff(square); soluzioni = solve( derivaa ). Tale valore cade fuori dall inervallo x [ 3] indicao dal eso. Queso significa che nell inervallo indicao (esremi esclusi) il modulo quadro del campo non 8. Il valore resiuio dalla funzione solve() è 3 ha puni di massimo o minimo (ne flessi). Tali valori vanno dunque cercai sugli esremi dell inervallo, ovvero per x. Deerminare il massimo e il minimo del modulo del campo (e non del modulo quadro!) nel puno P. x e 3 % solve() rova un'unica soluzione ma è fuori dal range di ineresse % (il eso chiede valori nel'inervallo [ 3]). Il massimo e il minimo % vanno quindi cercai sugli esremi dell'inervallo (quindi per x = e % per x = 3) = double(abs(subs(z, [ x], [00 ]))); = double(abs(subs(z, [ x], [00 3]))); if ( > ) disp(['valore massimo del campo (per x = ): ' numsr( ) ' V/m' ]) disp(['valore minimo del campo (per x = 3): ' numsr( ) ' V/m' ]) else disp(['valore massimo del campo (per x = 3): ' numsr( ) ' V/m' ]) disp(['valore minimo del campo (per x = ): ' numsr( ) ' V/m' ]) end

3 Si oiene il seguene risulao finale: Valore massimo del campo (per x = 3):.3553 V/m Valore minimo del campo (per x = ): V/m SRCIIO La figura mosra un onda piana (omogenea) che ide orogonalmene ad un inerfaccia piana posa in disanza D dal puno P in cui è minimo. z 0. Deerminare la minima PROCDIMNTO. Definire le variabili simboliche D, ed, ue reali z, k z = 0*pi; z = 0*pi/sqr(.6); D = sym('d', 'real'); z = sym('z', 'real'); lambda = sym('lambda', 'real'); % lunghezza d'onda nel mezzo = sym('', 'real'); k = sym('k', 'real'); G = (z-z)/(z+z); syms G real. Definire il campo nel mezzo, somma di due onde, l idene e la riflessa () z e e jkz jkz per z 0 = *exp(-j*k*z) + G**exp(j*k*z); 3. Anche savola lavoriamo col modulo quadro di z () * ( z) ( z) ( z) square = *conj(); Uilizzare simplify() per sviluppare il prodoo e semplificare l espressione. % Svolgiamo i prodoi e valuiamo il campo in -D square = simplify(square); 4. Ci ineressa valuare il campo ad una disanza D dall inerfaccia (nel mezzo ). Sosiuire a z il valore D nell espressione del campo. square = subs(square, z, -D);

4 5. Derivare l espressione oenua rispeo alla variabile D, uilizzando diff() nella seguene forma: diff(expr, var) dove expr è l espressione da derivare e var è la variabile rispeo al quale fare la derivaa. Visualizzare la derivaa cosi calcolaa usando prey(derivaa). Si dovrebbe oenere l espressione. 4 ksin ( Dk) % Troviamo evenuali massimi e minimi annullando la derivaa % La variabile n verrà uilizzaa per enere cono della periodicià della % funzione seno n = sym('n', 'real'); derivaa = diff(square, D); derivaa=simplify(derivaa); prey(derivaa); 6. Deerminare i valori di D che annullano la derivaa, uilizzando solve() nella forma solve(expr, var) che resiuisce le soluzioni dell equazione expr=0 risola rispeo alla variabile var. In queso esercizio la funzione solve resiuisce 0 come unico valore. Va noao però (dal puno precedene) che D compare nell argomeno di una funzione seno e la soluzione resiuia da solve si riferisce proprio all argomeno (e non direamene a D ). Possiamo quindi uilizzare la periodicià del seno per deerminare alre soluzioni non nulle n Dk 0 n k k n k n D D n k In MATLAB, definire una variabile simbolica n. Alla soluzione resiuia da solve(derivaa, D) aggiungere. Dividere uo per. Sosiuire a la sua espressione in funzione di. soluzioni = solve( derivaa ) + *n*pi; k = *pi/lambda; D = soluzioni/(*k) SRCIIO 3 In figura il campo idene è composo dalle due componeni (orogonali ra loro), rasverso magneico () e rasverso elerico (). i i Deerminare il rapporo i S P rasmesso in polarizzazione circolare. S P per avere il campo Il campo rasmesso ha la sessa forma del campo idene, ovvero i i. La ' ' condizione di polarizzazione circolare richiede che il campo sia composo da due componeni orogonali ra loro che abbiano modulo uguale e siano sfasai di 90. ssendo le componeni e orogonali ra loro, possiamo imporre le due condizioni direamene su ed

5 Assumendo (quindi condizione sui moduli 90 condizione sulle fasi a fase nulla (quindi reale), la condizione di sfasameno di 90 equivale a moliplicare per ). j ssendo la polarizzazione indipendene dalla componene, possiamo calcolare i campi rasmessi separaamene. Per il caso (il cui campo è angene all inerfaccia), imponendo la coninuià del campo nel mezzo all inerfaccia, quindi per z 0 ( S S ) e nel mezzo ( S S ) si ha () Nel caso il campo ha una componene angene e una normale all inerfaccia. La coninuià dei campi va cos imposa sulla sola componene angene. Per cui Meendo in evidenza S nella () ed P cos cos cos cos P P j, che sosiuendo i valori divena cos cos j cos () da cui P P nella () e facendo il rapporo si oiene S P cos S P j j cos cos j cos PROCDIMNTO. In MATLAB, dalla legge di Snell sin sin r r arcoseno, asin(x) che è l inverso della funzione seno)., ricavare l angolo (3) (4). (Uilizzare la funzione syms e0 er = ; er = ; hea_ = 30 * pi/80; % Dalla legge si Snell sqr(er)*sin(hea_) = sqr(er)*sin(hea_) % ricavo l'angolo di rasmissione hea_ = asin( sqr(er)*sin(hea_)/sqr(er) );. Calcolare i coefficieni di riflessione nel caso e, ricordando che sono cos 0 r e cos 0 cos cos r, dove le impedenze = 0*pi/cos(hea_); = 0*pi/( sqr(er)*cos(hea_) ); G = (-)/(+); = 0*pi*cos(hea_); = 0*pi*cos(hea_)/sqr(er); G = (-)/(+); au = +G; au = +G; 3. Calcolare infine il rapporo S P raio = j * au*cos(hea_)/( au*cos(hea_) )

6 sercizio 4 Si consideri l idenza di un onda piana ad un inerfaccia, come mosrao in figura. I campi nel mezzo e nel mezzo sono facilmene calcolabili una vola noi i coefficieni di Fresnel e l onda idene sull inerfaccia. Ricordando che il coefficiene di riflessione Γ, nel caso in cui μ = μ, per il caso e è definio dalle relazioni ζ = n μ ε ε μ ε = ε μ ε per μ= μ - - Γ = Γ = + + ζ = = ζ cosθ cosθ ζ = = ζ n sin θ n n sin θ fare il grafico di Γ e di conseguenza Γ (sovrapposi) nel caso in cui il mezzo sia aria (ovvero ε r = e quindiε = εrε0 = ε0e ζ = ζ ε = ζ = π ) r. ε = 4ε e in un alro grafico il caso in cui. ε ε 4 (confronare i grafici oenui con quelli delle figure 4 e 5 a pagina delle dispense BioMC7_8_9.pdf ).

7 ε = ε 3. ε = 8ε 4. ε = ε ε = ε Deerminare l angolo di Brewser nei vari casi.

8 PROCDIMNTO Risoluzione in maniera simbolica: syms hea epsilon_r epsilon_r Definizione delle relazioni: zea = 0*pi/sqr(epsilon_r); zea = 0*pi/sqr(epsilon_r); = zea/cos(hea); = zea*cos(hea); n = epsilon_r/epsilon_r; = zea/sqr( n-sin(hea)^ ); = zea * sqr( n-sin(hea)^ )/n; Gamma = (-)/(+); Gamma = (-)/(+); h = [0:0.0:pi/]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%% CASO %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eps_r_ = ; eps_r_ = 4; Gamma_ = subs(gamma, [epsilon_r epsilon_r hea],... {eps_r_ eps_r_ h}); Gamma_ = subs(gamma, [epsilon_r epsilon_r hea],... {eps_r_ eps_r_ h}); f = figure(); cla; % plo(h*80/pi, abs( Gamma_ ), 'LineWidh', 3); % plo(h*80/pi, abs( Gamma_ ), 'r', 'LineWidh', 3); plo(h*80/pi, abs( Gamma_ ), h*80/pi, abs( Gamma_ ), 'LineWidh', 3); se(f, 'WindowSyle', 'docked') se(gca, 'FonWeigh', 'bold', 'FonSize', 3) hold on grid(gca, 'on') ile('andameno di \Gamma per \epsilon_{r} = 4*\epsilon_{r}') L = legend('\gamma_{}', '\Gamma_{}'); se(l, 'Locaion', 'NorhWes') Brewser = aan(sqr(eps_r_/eps_r_))*80/pi; display([ 'Angolo di Brewser nel caso : ' numsr( Brewser ) ' [gradi]']) Si oengono i segueni risulai per il caso :

9 Andameno di per r = 4* r Angolo di Brewser = [gradi] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%% CASO %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eps_r_ = 4; eps_r_ = ; Gamma_ = subs(gamma, [epsilon_r epsilon_r hea],... {eps_r_ eps_r_ h}); Gamma_ = subs(gamma, [epsilon_r epsilon_r hea],... {eps_r_ eps_r_ h}); Gamma = subs(gamma, [epsilon_r epsilon_r ], {eps_r_ eps_r_ }); f = figure(); cla; % plo(h*80/pi, abs( Gamma_ ), 'LineWidh', 3); % plo(h*80/pi, abs( Gamma_ ), 'r', 'LineWidh', 3); plo(h*80/pi, abs( Gamma_ ), h*80/pi, abs( Gamma_ ), 'LineWidh', 3); se(f, 'WindowSyle', 'docked') se(gca, 'FonWeigh', 'bold', 'FonSize', 3) ile('andameno di \Gamma per \epsilon_{r} = \epsilon_{r}/4') hold on grid(gca, 'on') legend('\gamma_{}', '\Gamma_{}'); Brewser = aan(sqr(eps_r_/eps_r_))*80/pi; display([ 'Angolo di Brewser nel caso : ' numsr( Brewser ) ' [gradi]']) Si oengono i segueni risulai per il caso :

10 Andameno di per r = r / Angolo di Brewser = 6.56 [gradi]

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli. Si esprima la pare reale di x() = e ( +j) j, R nella forma Ae a cos(ω + ϕ) con A, a, ω, φ reali con A > e π < φ π. Svolgimeno. Applicando la

Dettagli

Moto in una dimensione

Moto in una dimensione INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moo in una dimensione Sposameno e velocià Sposameno Il moo di un puno maeriale è deerminao se si conosce, isane

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Radiazione e Relativita Ristretta

Radiazione e Relativita Ristretta Radiazione e Relaivia Risrea V Radiazione di mulipolo 16/1/8 E.Menichei 1 Campi eleromagneici variabili Campi associai a cariche mobili variabili Diverse zone spaziali ineressae Vicino alle sorgeni: zona

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A Universià degli Sudi di Bergamo orso di Geomeria e Algebra Lineare (vecchio programma) 7 giugno Tema A Tempo a disposizione: ore. alcolarici, libri e appuni non sono ammessi. Ogni esercizio va iniziao

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y ANALISI VETTORIALE ESERCIZI SU EQUADIFF Esercizio Calcolare l inegrale generale dell equazione differenziale = ( ) e deerminare quali soluzioni sono definie su uo R. Risposa Fuori dagli equilibri = 0 e

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

ha il seguente grafico:

ha il seguente grafico: P.1 Un filo reilineo, di lunghezza eoricamene infinia, percorso da correne crea un campo magneico, le cui linee di forza sono circonferenze, pose su piani perpendicolari al filo e con cenro sul filo. Applicando

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011 GEOMETRIA svolgimeno di uno scrio del Gennaio ) Trovare una base per lo spaio delle soluioni del seguene sisema omogeneo: + + 9 + 6. Il sisema può essere scrio in forma mariciale nel modo seguene : 9 6

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

FORMULE GONIOMETRICHE

FORMULE GONIOMETRICHE FORMULE GONIOMETRICHE sapendo che sen e 90 < < 80 calcolare sen, cos Ricordiamo le formule: sen cos cos sen per poer procedere dobbiamo quindi calcolare il coseno: ± sen ± ± 8 l ambiguià del segno può

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del Analisi Maemaica II Corso di Ingegneria Gesionale Compio A del -6-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 7-8 Ingegneria Meccanica - Edile - Informaica Eserciazione 7 CICUII I EGIME SIUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 06/07 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Analisi e Geometria 2 Docente: 2 luglio 2015

Analisi e Geometria 2 Docente: 2 luglio 2015 Analisi e Geomeria Docene: luglio 15 Cognome: Nome: Maricola: Ogni risposa deve essere giusificaa. Gli esercizi vanno svoli su quesi fogli, nello spazio soo il eso e, in caso di necessià, sul rero. I fogli

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE Universià degli Sudi di assino - FOTÀ DI GGNI OSO DI U GGNI GSTION TTOTNI - prova scria del // SIZIO I - on riferimeno al seguene circuio, operane in regime sinusoidale, calcolare:. il circuio equivalene

Dettagli

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27 ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA SETTIMANA 27.. Convergenza di inegrali generalizzai. () Per ognuno dei segueni inegrali impropri deerminae qual è l insieme dei valori del paramero α > per

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

0.1 Formula di Gauss e formula di Stokes

0.1 Formula di Gauss e formula di Stokes 1.1 Formula di Gauss e formula di Sokes Siano Ω un apero di R 3, F un campo veoriale definio su Ω, S una superficie la cui chiusura è conenua in Ω. Supponiamo inolre che in S si possano disinguere due

Dettagli

Meccanica Applicata alle Macchine Compito A 14/12/99

Meccanica Applicata alle Macchine Compito A 14/12/99 page 1a Meccanica Applicaa alle Macchine Compio A 14/12/99 1. La figura mosra una pressa per la formaura per soffiaura di coneniori in maeriale plasico. Il meccanismo è sudiao in modo che in aperura (mosraa

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Prova del 27 Gennaio 2004

Corso di Fondamenti di Segnali e Trasmissione - Prova del 27 Gennaio 2004 Corso di Fondameni di Segnali e Trasmissione - Prova del 7 Gennaio 004 Gli esercizi devono essere risoli solo sui fogli dei colori indicai. Si consiglia una leura aena del eso degli esercizi. Per esii

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Universià degli Sudi di Firenze Corso di Laurea riennale in Fisica e Asrofisica Analisi Maemaica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Seconda prova inercorso ( Dicembre 5). Dimosrare che per ogni

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

N09 (Quesito Numerico)

N09 (Quesito Numerico) N09 (Quesio Numerico): La "legge di graviazione universale" afferma che l'inerazione ra due oggei assimilabili a puni maeriali, di masse m 1 ed m 2 posi a disanza r 12 si esplica ramie una forza il cui

Dettagli

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoidale are www.die.ing.unibo.i/pers/masri/didaica.hm versione del 3-0-05 Funzioni sinusoidali a cos ampiezza fase iniziale radiani, rad < pulsazione rad/s f frequenza herz, Hz T periodo

Dettagli

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo Accelerazione Il moo reilineo uniformemene accelerao è il moo di un puno sooposo ad

Dettagli

Circuiti del I ordine

Circuiti del I ordine ircuii del I ordine 9 Un circuio è deo del I ordine se coniene un solo elemeno dinamico, condensaore o induore, e per il reso è cosiuio da componeni elerici di ipo algebrico privi di memoria, ovvero generaori

Dettagli

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino 2006 Cinemaica moo armonico Appuni di Fisica Prof. Calogero Conrino : definizione Il moo di un puno maeriale P è deo armonico se soddisfa le segueni condizioni: La raieoria è un segmeno. Le posizioni occupae

Dettagli

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3 10 SRCITAZION sercizi svoli: Capiolo 15 Curva di Phillips sercizio 2 Capiolo 16 Disinflazione, disoccupazione e crescia sercizio 3 1 CAPITOLO 15 CURVA DI PHILLIPS Curva di Phillips Relazione che lega inflazione

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

Esercizi 5. Sistemi lineari

Esercizi 5. Sistemi lineari Esercizi 5 10\04\017 Sisemi lineari David Barbao Esercizio 1 (Appello 014-015 ese 3). Dao il sisema lineare: x 1 + x + 3x 3 + 4x 4 = 0 x + x 3 + 3x 4 = 0 x 1 x x 3 x 4 = 0 (1) sia T lo spazio delle soluzioni

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione RISPOSTA IN FREQUENZA DEI SISTEMI LTI Fondameni Segnali e Trasmissione Risposa in requenza dei sisemi LTI Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso l

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale Esercizi inroduivi ES Esprimere la correne i ( in ermini di fasore nei segueni re casi: a) = sin( ω ) b) = 0sin( ω π) c) = 8sin( ω + π / ) isulao: a) = ep( j) b) = 0 c) = 8 j ES aluare (in coordinae caresiane

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti Recupero 1 compiino di Analisi Maemaica Ingegneria Eleronica. Poliecnico di Milano Es. Puni A.A. 18/19. Prof. M. Bramani 1 Tema n 1 3 4 5 6 To. Cognome e nome in sampaello codice persona o n di maricola

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2 Problema 2 B varia secondo la legge: B = k ( 2 +a 2 ) Soluzione 3 r con r R e con a e k posiive [a]=[s] a ha le dimensioni di un empo, perché deve poersi sommare con, affinché la formula abbia senso. [k]=

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

T.E. del 5 febbraio Risultati. Autore: Dino Ghilardi

T.E. del 5 febbraio Risultati. Autore: Dino Ghilardi T.E. del 5 febbraio 2018. Risulai Auore: Dino Ghilardi 7 febbraio 2018 1 0.1 E1, T.E. del 05-02-2018, prof D Amore 0.1.1 Teso 0.1.2 Soluzione Puno 1: calcolo dell induanza. Riluanza di un ronco: R T =

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

5 Soluzioni numeriche di equazioni differenziali

5 Soluzioni numeriche di equazioni differenziali 5 Soluzioni numeriche di equazioni differenziali 5. Meodo di Eulero per la soluzione approssimaa di equazioni differenziali del primo ordine in forma normale Dao un problema di Cauch { = f (,) ( ) =, il

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Uniersià degli Sudi di assino serciazioni di leroecnica: circuii in eoluzione dinamica nonio Maffucci er seembre ircuii dinamici del primo ordine S onsiderao il seguene circuio che o all isane laora in

Dettagli

Controllo del pendolo inverso

Controllo del pendolo inverso Capiolo. INTRODUZIONE 5. Conrollo del pendolo inverso Esempio. Sia dao il seguene sisema fisico. y u() M V θ H m J mg L x Calcolare una reroazione dinamica dell uscia θ che sabilizzi il sisema nell inorno

Dettagli

Generazione di corrente alternata - alternatore

Generazione di corrente alternata - alternatore . la forza eleromorice può essere indoa: a)..; b)..; c) variando l angolo ra B e la normale alla superficie del circuio θ( (roazione di spire o bobine) ezione Generazione di correne alernaa - alernaore

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE - Campo roane - Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià cosane che ruoa aorno ad un asse con

Dettagli

Meccanica Applicata alle Macchine Compito 27/12/99

Meccanica Applicata alle Macchine Compito 27/12/99 page 1a Meccanica Applicaa alle Macchine Compio 27/12/99 1. Il disposiivo mosrao in figura serve per il sollevameno di veicoli. Il corpo indicao con 1 si appoggia al erreno (considerarlo solidale con il

Dettagli

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione Corso di Geomeria e Algebra Lineare: Geomeria Lineare 6^ Lezione Luoghi geomerici del piano. Rea. Equazione caresiana. Equazione esplicia. Forme paricolari dell equazione della rea. Equazione segmenaria

Dettagli

Vediamo come si sviluppa la soluzione esplicita del problema. ( t)

Vediamo come si sviluppa la soluzione esplicita del problema. ( t) Analisi ransioria L'analisi dinamica ransioria (dea anche analisi emporale) è una ecnica che consene di deerminare la risposa dinamica di una sruura soggea ad una generica ecciazione emporale Gli effei

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo appello 14 Febbraio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo appello 14 Febbraio 2011 Poliecnico di Milano Ingegneria Indusriale Analisi e Geomeria Primo appello 4 Febbraio 0 Cognome: Nome: Maricola: Compio A Es. : 7 puni Es. : 0 puni Es. 3: 7 puni Es. 4: 6 puni Es. 5: 3 puni Toale. a Scrivere

Dettagli

I metodi di valutazione degli interventi

I metodi di valutazione degli interventi Corso di Traspori e Terriorio prof. ing. Agosino Nuzzolo I meodi di valuazione degli inerveni Pare prima: l analisi l finanziaria 1 La valuazione degli inerveni Esame e confrono di inerveni (progei) alernaivi

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: m con m x arcsin m k6 x 8 arcsin m k6 x k6 x 5 k6 sin(f (x)) sin(g(x)) f (x) g(x) k6 o f(x) 8 g(x) k6 sin(x ) sin(x ) x x k6 o x 8 (x ) k6

Dettagli

Meccanica Applicata alle Macchine compito del 15/4/99

Meccanica Applicata alle Macchine compito del 15/4/99 Compio 15//99 pagina 1 Meccanica Applicaa alle Macchine compio del 15//99 A) Chi deve sosenere l'esame del I modulo deve svolgere i puni 1 e. B) Chi deve sosenere l'esame compleo deve svolgere i puni 1,

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

x(t) y(t) 45 o x x(t) -2T

x(t) y(t) 45 o x x(t) -2T Eserciazione 0 - Processi casuali Esercizio Si consideri lo schema di fig., dove =A cos(!0 + ) e e una cosane. Si consideri il paramero A come una variabile casuale uniformemene disribuia ra 0 e.calcolare

Dettagli