p(e 3 ) = 31 [R. c) e d)]

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "p(e 3 ) = 31 [R. c) e d)]"

Transcript

1 CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ - ESERCIZI I.) Anna, Batric Carla fanno una gara di corsa. Stimo ch Anna Carla siano ugualmnt vloci ch Batric abbia probabilità doppia dll altr du di vincr la gara. Qual probabilità attribuisco alla vittoria di ciascuna? [R. 0,5; 0,5; 0,5] ) Ugo Mario si sfidano a dama. Dtrminar la probabilità di ciascuno di tr vnti lmntari: vinc Ugo, parggio, vinc Mario sulla bas dll sgunti informazioni: a) nll ultim 6 partit vi sono stati 9 vittori di Ugo, 5 parggi vittori di Mario; b) mi è indiffrnt ricvr 0 s vinc Ugo, oppur 0 in caso di parggio, oppur 60 s vinc Mario. [R. a) 0,565; 0,35; 0,5; b) 0,6; 0,3; 0,] 3) In una partita di calcio, l probabilità di tr vnti: la squadra di casa vinc, o parggia, o prd sono stimat rispttivamnt con 0,5, 0,3 0,. Avvicinandoci al ritrovo di tifosi locali vdiamo sposta la bandira dlla squadra di casa, il ch accad quando ssa non ha prso. Com valutiamo adsso l probabilità di tr vnti? [R. 0,65; 0,375; 0] 4) Uno spazio è costituito da tr vnti lmntari,, 3. Quali dll sgunti assgnazioni di probabilità costituiscono uno spazio probabilistico? a) p( ) = 0,4 p( ) = 0,5 p( 3 ) = 0, b) p( ) =,6 p( ) = 0, p( 3 ) = 4 c) p( ) = 0,4375 p( ) = 0,875 p( 3 ) = 0,375 d) p( ) = p( ) = p( 3 ) = [R. c) d)] 5) Un dado è truccato in modo ch l facc 4 6 abbiano probabilità doppia dll altr quattro ch sono quiprobabili. Costruir lo spazio probabilistico adguato agli siti dl lancio dl dado calcolar la probabilità di ottnr: a) un numro dispari; b) un numro maggior di 3. [R. 0,375; 0,65] 6) Lo spazio S è costituito da stt vnti lmntari con p( ) = p( ) = p( 3 ) = p( 4 ) = 0, p( 5 ) = p( 6 ) = p( 7 ) = 0,. A B S 7 Dtrminar l probabilità dgli vnti composti A, B, A B, A B. [R. 0,5; 0,4; 0,6; 0,3] 7) Anna, Batric Carla si sfidano a corsa. Indicando l ragazz con l iniziali dl loro nom, l probabilità di possibili ordini di arrivo sono così stimat: posto posto 3 posto probabilità A B C 8% A C B 9% B A C 40% 4

2 B C A 0% C A B % C B A % Calcolar la probabilità ch: a) Batric vinca; b) Batric arrivi sconda; c) Carla arrivi prima di Anna; d) Anna non arrivi ultima. [R. a) 60%; b) 9%; c) 33%; d) 69%].) Un urna contin vnti pallin numrat da a 0. Si stra una pallina. Calcolar la probabilità ch il numro sortggiato sia: a) multiplo di 4 o di 5 b) multiplo di 5 o di 7 [R. 0,4; 0,3] ) Si stra una carta da un mazzo da quaranta. Calcolar la probabilità ch sca: a) una carta di cuori o una figura; b) un asso o una figura. [R. 0,475; 0,4] 3) Si lanciano du dadi. Qual è la probabilità ch scano du numri uguali o la cui somma sia si? [R. 5 8 ] 4) Su 65 alunni di un istituto 5 sono iscritti al cntro sportivo 50 sguono un corso di informatica. Calcolar la probabilità ch un alunno sia iscritto al cntro sportivo o al corso di informatica nll sgunti ipotsi: a) nssun alunno svolg ntramb l attività; b) 75 alunni l svolgono ntramb. [R. a) 0,6; b) 0,48] 5) In bas a rilvazioni statistich stimo con la probabilità ch un 000 automobilista abbia un giorno un incidnt, anch liv. Pr calcolar la probabilità dll vnto E = ni prossimi 000 giorni l autista avrà almno un incidnt, ragiono così: poiché E = E E... E 000 dov E k è l vnto fra k giorni l automobilista avrà un incidnt, pr il torma dlla probabilità total p(e) = p(e ) + p(e ) p(e 000 ) = =. Il risultato è palsmnt contrario al buon snso all intuizion. Prché il ragionamnto sposto è rrato? 6) Calcolar la probabilità di ottnr almno una tsta lanciando una monta: a) tr volt; b) quattro volt. [R. a) 0,875; b) 0,9375] 7) Lancio cinqu volt una monta. Qual è la probabilità ch scano almno du croci. [R. 0,85] 8) Calcolar la probabilità di ottnr com somma di numri usciti almno cinqu lanciando: a) du dadi; b) tr dadi. [R. a) 5 53 ; b) 6 54 ] 9) Dtrminar la probabilità di un vnto dato a 7 contro 9. (Avv.: Nl linguaggio dgli scommttitori l sprssion 7 contro 9 significa ch, su 6 casi, 7 sono favorvoli all vnto 9 all vnto contrario). [R. 0,4375] 0) Pr il prossimo campionato mondial di calcio, la vittoria dl Brasil è data a contro 4 qulla dll Italia a contro 7. Calcolar la probabilità ch una dll du squadr vinca il prossimo mondial. [R. 0,35] 3.) Si straggono du cart da un mazzo da quaranta. Calcolar la probabilità ch siano: a) du figur; b) du assi; c) la prima un asso la sconda una figura; d) la prima una figura la sconda un asso. [R. a) 30 ; b) 30 ); c) 65 ; d) 65 ]

3 ) Riptr l srcizio prcdnt nll ipotsi ch la prima carta stratta vnga rimssa nl mazzo. [R. a) 0,09; b) 0,0; c) 0,03; d) 0,03] 3) In un urna vi sono 7 pallin bianch 3 nr. Si straggono du pallin. Qual è la probabilità ch siano ntramb nr? E la prima nra la sconda bianca? [R ; ] 4) Riptr l srcizio prcdnt nll ipotsi ch la prima pallina stratta vnga rimssa nll urna. [R ; ] 5) In un urna vi sono n pallin nr una bianca. Si straggono du pallin: qual è la probabilità ch siano ntramb nr? Pr qual valor di n tal probabilità val 0,9? [R. n n+ ; 9] 6) Si straggono tr cart da un mazzo da quaranta. Calcolar la probabilità di ottnr: a) tr figur; b) nll ordin: un asso, un stt, una figura. [R. a) 494 ; b) 4 35 ] 7) In un urna vi sono du pallin bianch tr nr. Si straggono tr pallin. Calcolar la probabilità ch siano: a) tutt nr; b) la prima bianca l altr nr. [R. a) 0,; b) 0,] 8) Si lancia otto volt una monta. Qual è la probabilità ch scano tutt tst? [R. circa 0,0039] 9) Quant volt bisogna lanciar una monta affinché la probabilità di ottnr tutt tst sia infrior a 0 6? [R. 0] 0) Qual è la probabilità con una schdina giocata a caso: a) di far 3; b) di non indovinar alcun risultato? [R. a) ; b ) ] ) Quattro amici, uscndo piuttosto alticci da un bar, indossano a caso i cappotti. Qual è la probabilità ch ognuno prnda il suo? [R. 4 ] ) Du giocatori di pari abilità disputano una sri di partit. Vincrà chi pr primo avrà totalizzato quattro vincit. Quando il primo giocator sta conducndo pr tr a zro dcidono di sospndr il gioco dividr la posta, ch è di 64 uro, proporzionalmnt alla probabilità di vittoria di ciascun giocator. Com va ripartita la posta? (Avv.: Convin calcolar la probabilità di vittoria dl scondo giocator). [R. 60 uro al primo giocator 4 al scondo] 4.) Un urna contin stt pallin bianch tr nr. Si straggono du pallin. Calcolar la probabilità ch siano: a) di color divrso; b) dllo stsso color; c) almno una nra. [R. a) 7 5 ; b) 8 5 ; c ) 8 5 ] ) Riptr l srcizio prcdnt nll ipotsi ch la prima pallina stratta vnga rimssa nll urna. [R. a) 0,4; b) 0,58; c) 0,5] 3

4 3) Un urna contin tr pallin bianch, quattro nr, du ross. Si straggono du pallin. Calcolar la probabilità ch siano: a) una rossa una di un altro color; b) dllo stsso color; c) di color divrso. [R. a) 7 8 ; b) 5 3 ; c) 8 8 ] 4) Un urna contin a pallin azzurr, b pallin bianch, c pallin clsti. Si straggono du pallin, rimttndo la prima stratta nll urna. Calcolar la probabilità ch siano: a) dllo stsso color; b) di color divrso. [R. a) a + b + c (ab+ ac+ bc) b) (a+ b+ c) (a+ b+ c) ] 5) Da ciascuno di du mazzi da quaranta si stra una carta. Qual è la probabilità ch almno una dll du cart sia una figura? [R. 0,5] 6) Sono dat du urn. La prima contin 4 pallin bianch nra, la sconda bianca nr. Si prnd una carta da un mazzo da quaranta. S è una figura si stra una pallina dalla prima urna, altrimnti dalla sconda. Qual è la probabilità di ottnr una pallina nra? [R ] 7) Una popolazion è formata da si lmnti. Du di ssi prsntano la carattristica A quattro la carattristica B (ad smpio, su si prson du sono maschi quattro fmmin; su si pallin du sono bianch quattro nr, così via). Sclti a caso tr lmnti, qual è la probabilità ch tal campion rispcchi sattamnt la composizion dlla popolazion, cioè ch un lmnto prsnti la carattristica A du prsntino la carattristica B? [R. 0,6] 8) In una fabbrica vi sono tr macchin automatich. L probabilità ch richidano in un ora l intrvnto di un opraio sono rispttivamnt 0,, 0,4 0,5. Dir qual è la probabilità ch in un ora l opraio dbba intrvnir: a) su nssuna macchina; b) su almno una macchina. [R. a) 0,4; b) 0,76] 9) Claudia sfida Viola a tnnis a ping-pong. Ambdu l gar si concludranno con una vittoria o con una sconfitta, snza parggio. La probabilità ch Claudia vinca a tnnis è 0,3, ch vinca a ping-pong è 0,8. Calcolar la probabilità ch Claudia vinca: a) sattamnt una gara; b) almno una gara. [R. a) 0,6; b) 0,86] 0) La probabilità ch una prsona di 5 anni giunga in vita all tà 75 è 0,57 pr una donna 0,5 pr un uomo. Du vnticinqunni si sposano. Qual è la probabilità ch giunga in vita all tà 75: a) uno solo di du; b) nssuno di du; c) almno uno di du? [R. a) 0,497; b) 0,064; c) 0,7936] ) Una cuoca, non troppo sprta, prpara il pranzo. Vi è la probabilità 5 ch la minstra risulti salata, ch risulti insipida, 6 ch l arrosto si bruci. Qual è la probabilità ch il pranzo risca bn? [R. 4 ] ) In una class formata da stt ragazzi nov ragazz si sortggiano tr prson da mandar in gita prmio. Qual è la probabilità ch il gruppo: a) sia formato da du maschi una fmmina; b) comprnda almno un maschio? [R. a) 0,3375; b) 0,85] 4

5 3) Si straggono du cart da un mazzo da quaranta. Calcolar la probabilità di ottnr, nll ordin, una figura una carta di cuori. [R. 0,075] 4) Compilando una schdina a caso, qual è la probabilità di indovinar almno un risultato? [R ] 5) Qual è la probabilità ch, su quattro prson, almno du fstggino il complanno lo stsso ms? (Trascurar il fatto ch l nascit possono ssr più frqunti in crti msi piuttosto ch in altri). [R ] 6) Dtrminar qual è il minimo valor di n pr cui è suprior a 0,5 la probabilità ch, su n prson, almno du compiano gli anni lo stsso giorno. [R. 3] 7) Dimostrar ch, lanciando du volt una monta truccata, la probabilità ch si prsntino du facc uguali supra la probabilità ch si prsntino du facc divrs. (Avv.: Dtt p la probabilità ch sca tsta q qulla ch sca croc, ci si riconduc alla disuguaglianza (p q) > 0, smpr vra pr p q). 8) «Siano A B du vnti incompatibili indipndnti. Sapndo ch p(a B) = 0,7 p(a B) = 0,, dtrminar p(a) p(b). [R. p(a) = 0,3 p(b) = 0,4 oppur p(a) = 0,4 p(b) = 0,3]». Qual rror è contnuto nl tsto di qusto srcizio? 9) Inizio a giocar a battaglia naval. Dopo avr sparato a caso il primo colpo, s apprndo dall avvrsario ch è andato a sgno, crco col scondo colpo di colpir di nuovo la nav individuata. Nlla situazion: qual probabilità ho di affondar la nav più piccola con i primi du colpi. [R ] 0) Du giocatori di pari abilità disputano una sri di partit. Vincrà chi pr primo avrà totalizzato quattro vincit. Quando il primo giocator sta conducndo pr a, dcidono d intrrompr la partita dividr la posta, ch è di 64 uro, proporzionalmnt alla probabilità di vittoria di ciascun giocator. Com va ripartita la posta? (Avv.: Aiutarsi con il sgunt schma calcolar la probabilità di vittoria dl scondo giocator, tnndo prsnt ch sul - ntrambi i giocatori hanno la stssa probabilità di vittoria: 5

6 vinc il primo giocator vinc il scondo giocator vinc il scondo giocator [R. 44 uro al primo giocator 0 al scondo] 5.) Costruir lo spazio di probabilità rlativo al lancio di un dado, condizionato all vnto sc un numro minor di 5. ) Un dado truccato ha la sgunt distribuzion di probabilità: vnti sc sc sc 3 sc 4 sc 5 sc 6 lmntari probabilità 0, 0,04 0, 0,06 0,5 0, Costruir lo spazio di probabilità condizionato all vnto è uscito un numro dispari. [R. scono l o il 3 o il 5 rispttivamnt con probabilità 0,5; 0,5; 0,65] 3) Si lanciano quattro mont. Costruir lo spazio di probabilità rlativo al numro di tst uscit condizionato all vnto è uscita tsta nlla prima monta. [R.,, 3, 4 tst rispttivamnt con probabilità 0,5; 0,375; 0,375; 0,5] 4) Pr una partita di calcio, l probabilità di tr vnti, X, sono stimat rispttivamnt con 0,4; 0,36; 0,4. Costruir lo spazio di probabilità condizionata all vnto non c è stato un parggio. [R. con probabilità 0,65 con probabilità 0,375] 5) Si lanciano du dadi. Gli vnti è uscito almno un la somma di numri usciti è 6 sono indipndnti? [R. no] 6) Si lanciano du dadi. Gli vnti col primo dado è uscito un numro pari la somma di du numri usciti è 7 sono indipndnti? [R. sì] 7) Fra gli studnti di un istituto, il 6% ha dbito formativo in italiano il 5% in matmatica. Dir s i du vnti sono indipndnti nll ipotsi ch la prcntual dgli studnti con dbito formativo in ntramb l matri sia: a) il 0%; b) il 4%. [R. a) no; b) sì] 8) Si stra una carta da un mazzo da quaranta. Gli vnti sc una carta di picch sc una figura sono indipndnti? [R. sì] 6

7 9) Si straggono du cart da un mazzo da quaranta. Gli vnti scono du cart di picch scono du figur sono indipndnti? [R. no] 6.) Si lancia dodici volt una monta. Calcolar la probabilità ch scano cinqu, oppur si, oppur stt tst. [R ] ) Si lancia vnti volt una monta. Calcolar la probabilità ch il numro dll tst sia suprior a quattro infrior a sdici. (Avv.: Dtrminar prima la probabilità dll vnto contrario). [R. circa 0,988] 3) In un urna vi sono quattro pallin bianch du nr. Si straggono quattro pallin. Qual è la probabilità ch siano du bianch du nr? E s si rimtt ogni volta la pallina stratta nll urna? [R. 5 ; 8 7 ] 4) In un urna vi sono cinqu pallin bianch cinqu nr. Si straggono si pallin. Qual è la probabilità ch siano tr bianch tr nr? E s si rimtt ogni volta la pallina stratta nll urna? [R. 0 ; 5 6 ] 5) In un urna vi sono cinqu pallin bianch cinqu nr. Estraggo cinqu pallin. Qual è la probabilità ch siano tr di un color du dll altro? [R ] 6) Si sprimnta su otto pazinti l fficacia di un farmaco, ottnndo i sgunti risultati: guariti non guariti hanno assunto il 3 farmaco non hanno assunto 3 il farmaco Qual è la probabilità ch l fficacia dl farmaco sia solo apparnt, sia stata ottnuta pr puro caso? (Avv.: È com strarr quattro pallin da un urna ch n contin quattro bianch quattro nr, d ottnrn almno tr bianch) [R. 7 70, troppo lvata pr potr considrar fficac il farmaco] 7) Un satllit trasmtt sgnali in codic binario {0, }. La probabilità ch un sgnal vnga intrprtato corrttamnt è 0,8 ( di consgunza è 0, la probabilità ch vnga intrprtato in modo rrato, cioè s è 0 0 s è ). Ogni sgnal è riptuto cinqu volt a trra è intrprtato a maggioranza (cioè oppur 0 a sconda di com è la maggioranza di sgnali). Qual è la probabilità ch il sgnal cosi riptuto vnga intrprtato in modo rrato? [R. 0,0579] 8) Lanciando tr dadi, scommttndo sulla somma di numri usciti, convin puntar sul nov o sul dici? [R. sul dici; l du probabilità sono ] 9) Du giocatori di pari abilità disputano una sri di cinqu partit, ognuna dll quali si concludrà ncssariamnt con una vittoria. Qual è la probabilità ch la gara trmini con un solo punto di distacco dl vincitor sul prdnt? [R. 0,65] 0) In uno scatolon sono posti, alla rinfusa, cinqu paia di scarp. Scgliamo a caso quattro scarp. Qual è la probabilità di ottnr: a) du paia di scarp; b) nssun paio di scarp; c) sattamnt un paio di scarp; d) almno un paio di scarp? 7

8 (Avv.: Una volta risposto ad a) b), si può rispondr facilmnt a c) ricordando il torma dlla probabilità dll vnto contrario; d) è l vnto contrario a b) pr cui...). [R. ; 8 ; 4 7 ; 3 ] ) Si prson si distribuiscono a caso in tr scompartimnti di una vttura frroviaria. Qual è la probabilità ch si dispongano: a) tutt in un solo scompartimnto; b) du pr scompartimnto; c) tr, du una pr scompartimnto? (Avv.: Indicati con a, b, c i tr scompartimnti, ad smpio la squnza a a b a b c significa... pr cui i casi possibili sono...) [R. 43 ; 0 8 ; 40 8 ] ) Si prndono quattro cart da un mazzo da quaranta. Qual è la probabilità ch: a) nssuna sia una figura; b) sattamnt una sia una figura; c) sattamnt du siano figur; d) almno tr siano figur? [R. a) 0,4; b) 0,430; c) 0,73; d) 0,073 circa] 3) Si prndono quattro cart da un mazzo da quaranta. Qual è la probabilità ch siano: a) tutt di sm divrso; b) du di cuori du di fiori; c) du di un sm du di un altro? [R. circa 0,09; 0,0; 0,33] 4) Gioco a pokr con tr amici con 3 cart: 7, 8, 9, 0, J, Q, R, A. Qual è la probabilità ch ricva srvito: a) una scala ral; b) un pokr; c) color (tutt l cart dllo stsso sm); d) un full; ) un tris? [R. a) ; b) 899 ; c) 899 ; d) ); ) ] RISPOSTE AD ALCUNI ESERCIZI 4.) Può smbrar corrtta la soluzion = ottnuta moltiplicando l 3 probabilità ch la minstra non sia salata, ch la minstra non sia insipida ch l arrosto non sia bruciato. Essa è tuttavia rrata. Ci si può convincr di qusto fatto ossrvando ch, s la minstra risultass salata con probabilità insipida con probabilità, allora la probabilità ch la minstra vada bn sarbb vidntmnt 0, non =. L rror consist nl supporr i du vnti indipndnti. Invc, s la 4 minstra non è salata, la probabilità ch non sia insipida diminuisc. La soluzion corrtta si ottin ossrvando ch la probabilità ch la minstra sia salata o insipida è 5 + = 7 7, quindi la probabilità ch la minstra vada bn risulta 0 0 = 3 0. La probabilità richista è prtanto: = ) Supponiamo ch l prson siano (n = ). La prima è nata in un crto giorno. La probabilità ch la sconda non sia nata in qul giorno (non si considrano anni bisstili) 8

9 è 364 0,9976, quindi ch abbiano lo stsso complanno è 0,9976 = 0, Supponiamo ora ch l prson siano 3 (n = 3). La probabilità ch du qualsiasi di ss non abbiano lo stsso complanno è ,998, quindi ch almno du 365 abbiamo lo stsso complanno è circa 0,998 = 0,008. In gnral, la probabilità ch di n prson du non abbiamo stsso complanno è n+ ( ) 365 n. Al crscr di n tal probabilità diminuisc val circa 0,543 pr n = 0,497 pr n = 3. Quindi, pr n =, la probabilità ch du prson abbiano lo stsso complanno è circa 0,543 = 0,4757, pr n = 3, è circa 0,497 = 0,5073, ossia maggior di 0,5. In altr parol, prs a caso 3 prson, è più probabil ch almno du abbiano lo stsso complanno piuttosto ch il contrario. A titolo di curiosità, tal probabilità sal a circa 0,7063 pr n = 30, a 0,89 pr n = 40, a 0,9703 pr n = 50. Qusto smpio è considrato un paradosso dlla probabilità: dal punto di vista intuitivo, non smbra accttabil ch bastino 3 prson pr rndr maggior di 0,5 la probabilità ch almno du di ss siano nat nllo stsso giorno. Ciò driva dal fatto ch è raro incontrar prson ch fstggino il complanno nl nostro stsso giorno. Bisogna tuttavia tnr distinto il problma di trovar fra n prson du ch siano nat lo stsso giorno qullo di trovar una prsona ch sia nata nllo stsso giorno di una sclta fra l n. In qusto scondo caso, la probabilità ch, sclta una di n prson, l n 364 altr siano nat in giorni divrsi da ssa è quindi ch v n sia almno una 365 con lo stsso complanno di qulla sclta è 364 n. Anch qust ultimo valor 365 crsc con n, ma molto più lntamnt. Pr n = 50 è circa 0,58, pr n = 80 è circa 5 divnta maggior di solo pr n = 54. Inoltr, pr n = 366 è circa tnd a solo 3 al tndr di n all infinito (nl caso prcdnt è pr n = 366). 4.8) S du vnti sono incompatibili, allora sono dipndnti; il ralizzarsi di uno di du rnd nulla la probabilità dll altro. 4.0) Calcoliamo la probabilità di vittoria dl scondo giocator quando il puntggio è - in favor dl primo giocator. Dopo un altra partita, con probabilità il puntggio passa sul 3- con probabilità sul -. Nl primo caso, com mrg dal diagramma ad albro, la probabilità di vittoria dl scondo giocator è, mntr nl scondo, 8 ssndo i giocatori in parità, è. In dfinitiva, la probabilità di vittoria dl scondo giocator è 8 + = 5. Qulla dl primo è quindi la posta va ripartita in 6 6 parti proporzionali a 5. Problmi com qusto hanno avuto un ruolo important nlla storia dlla toria dlla probabilità. Erano dtti problmi dlla suddivision dlla posta consistvano appunto nllo stabilir com du giocatori, in caso di intrruzion di una partita, dovssro spartirsi la posta. Nlla sua soluzion si cimntarono con siti dludnti molti 9

10 matmatici (tra cui Luca Pacioli, Niccolò Tartaglia, Grolamo Cardano): solo i fondatori dl calcolo dll probabilità, Blais Pascal Pirr d Frmat, lo risolsro in modo soddisfacnt. C 6.),5 +C,6 +C,7. ( ) 6.) C 0,0 +C 0, +C 0, +C 0,3 +C 0, ) 6.4) C 4, C, C 6,4 ( C 5,3 ) C 0,6 C 4, 3 C 6, ) C 5,3 C 5, C 0,5. 6.6) C 4,4 +4 C 4,3. C 8,4 6.7) 0, , 4 0,8+C 5, 0, 3 0,8. 6.8) La risoluzion di qusto srcizio ha l su radici nlla pristoria dl calcolo dll probabilità com protagonista Galilo Galili. Alcuni giocatori gli avvano posto il sgunt qusito rlativo alla probabilità di ottnr un crto puntggio lanciando tr dadi. Essi si rano accorti ch il 9 ra svantaggiato risptto al 0, ma non sapvano rndrsn ragion prché sia il 9 sia il 0 potvano ssr ottnuti con 6 possibilità: pr il 9: pr il 0: Il punto è, com ossrva Galilo, ch i casi con tr siti divrsi, com --6, si possono ralizzar in si modi (++6, +6+, ++6, +6+, 6++, 6++), i casi con du siti uguali, com -4-4, in tr modi (+4+4, 4++4, 4+4+) i casi con tr siti uguali, com 3-3-3, in un modo solo (3+3+3). Di 6 possibili siti v n sono 5 favorvoli al 9 7 favorvoli al ) C 5,3 +C 5, 5 = 0, ) Indichiamo con A, A, B, B, C, C, D, D, E, E l dici scarp. N straiamo 4. I casi possibili sono C 0,4 = 0 a) L combinazioni ch contngono sattamnt du paia di scarp: A A B B,A A C C,... D D E E sono C 5, = 0, pr cui la probabilità è 0 0 =. b) Pr dtrminar l combinazioni ch non contngono alcuna coppia, scgliamo 4 tra A, B, C, D, E, ciò può ssr fatto in 5 modi. Poi mttiamo gli indici in tutti i modi possibili:,,,;,,,;,,,;...,,, ch sono 6. I casi favorvoli sono 5. 6 = 80, pr cui la probabilità è 8. 0

11 c) + 8 = 4 7. d) = 3. Al punto b) si può rispondr più rapidamnt con la rgola dlla probabilità composta. Scglir la prima scarpa qualsiasi, la sconda di un paio divrso dalla prima, la trza di un paio divrso dall prim du la quarta di un paio divrso dall prim tr ha probabilità = 8. 6.) Indicati con a, b, c i tr scompartimnti, la squnza a a b a b c significa prima prsona in a, sconda in a, trza in b, quarta in a, quinta in b ssta in c. I casi possibili sono quant l squnz, ossia l disposizioni con riptizion di 3 oggtti a 6 a 6 = 3 6 = 79. a) I casi favorvoli sono vidntmnt 3, pr cui la probabilità è 43. b) I casi favorvoli sono C 6, C 4,, pr cui la probabilità è 0 8. c) I casi favorvoli sono C 6,3 C 3, 3!, pr cui la probabilità è ) a) C 8,4 ; b) C 8,3 ; c) C, C 8, ; d) 8 C,3 + C,4 C 40,4 C 40,4 C 40,4 C 40,4 C 40,4 la somma di quanto ottnuto in a), b) c). ch è ugual a 6.3) a) 04 C 40,4 0,09. b) C 0, C 0, C 40,4 0,0. c) C 4, C 0, C 0, C 40,4 0, ) I casi possibili sono C 3,5 = a) Pr ciascun sm l scal rali sono 5, pr cui la probabilità è = b) Un pokr si ottin accostando a quattro 7, o a quattro 8, o a quattro 9,... (8 8 8 possibilità) una dll rstanti 8 cart; la probabilità è = C c) 8, = 899. d) Un full si ottin scglindo un tris qualsiasi (8. 4 possibilità) una coppia di altro valor (7. 6 possibilità), pr cui la probabilità è = ) Pr avr srvito un tris d assi, i casi favorvoli si ottngono scglindo un tris d assi (4 possibilità) du cart fra l rimannti 8, ossia C 8, = 378. Pr scludr il caso dl full, bisogna ch l du cart non formino una coppia. Ciò riduc i casi a 336. La probabilità è = 6. Pr passar al caso di un tris qualsiasi, basta 899 moltiplicar pr 8 la probabilità è

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4 Radioattività - Radioattività - - - Un prparato radioattivo ha un attività A 0 48 04 dis / s. A quanti μci (microcuri) si riduc l attività dl prparato dopo du tmpi di dimzzamnto? Sapndo ch: ch un microcuri

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

PROGETTAZIONE DIDATTICA PER COMPETENZE

PROGETTAZIONE DIDATTICA PER COMPETENZE ISTITUTO TECNICO INDUSTRIALE STATALE G. M. MONTANI CONVITTO ANNESSO AZIENDA AGRARIA 63900 FERMO Via Montani n. 7 - Tl. 0734-622632 Fax 0734-622912 www.istitutomontani.it -mail aptf010002@istruzion.it Coc

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

Guida allʼesecuzione di prove con risultati qualitativi

Guida allʼesecuzione di prove con risultati qualitativi TitoloTitl Guida allʼscuzion di prov con risultati qualitativi Guid to prform tsts with qualitativ rsults SiglaRfrnc DT-07-DLDS RvisionRvision 00 DataDat 0602203 Rdazion pprovazion utorizzazion allʼmission

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 36. Riduzione durevole di valore delle attività

Comunità Europea (CE) International Accounting Standards, n. 36. Riduzione durevole di valore delle attività Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 36 Riduzion durvol di valor dll attività Riduzion durvol di valor dll attività SOMMARIO Finalità 1 Ambito di applicazion

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

Parcheggi e altre rendite aeroportuali

Parcheggi e altre rendite aeroportuali Argomnti Parchggi altr rndit aroportuali Marco Ponti Elna Scopl La rgolamntazion dl sistma aroportual italiano fino al 2007 non ha vitato la formazion di rndit ingiustificat. In particolar l attività non-aviation,

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine.

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine. Capitolo 2 Numri rali In qusto capitolo ci occuprmo dll insim di numri rali ch indichrmo con il simbolo R: lfunzionidfinitsutaliinsimiavaloriralisonol oggttodistudiodll analisi matmatica in una variabil.

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO Distrtto Scolastico N 53 Nocra Infrior (SA) SCUOLA MEDIA STATALE Frsa- Pascoli Vial Europa ~ 84015 NOCERA SUPERIORE (SA) Tl. 081 933111-081 931395- fax: 081 936230 C.F.: 94041550651 Cod: Mcc.: SAMM28800N

Dettagli

1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO

1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO 1. La struttura di rlazioni tra manifattura srvizi all imprs in un contsto uropo 11 1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO La quota di srvizi sul commrcio

Dettagli

Progetto I CARE Progetto CO.L.O.R.

Progetto I CARE Progetto CO.L.O.R. Attori in rt pr la mobilità di risultati dll apprndimnto Dirtta WEB, 6 dicmbr 2011 Progtto I CARE Progtto CO.L.O.R. Elmnti distintivi complmntarità Michla Vcchia Fondazion CEFASS gli obittivi Facilitar

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Art. 1. - Campo di applicazione e definizioni Art. 2. - Classificazione di reazione al fuoco

Art. 1. - Campo di applicazione e definizioni Art. 2. - Classificazione di reazione al fuoco DM 10 marzo 2005 Classi di razion al fuoco pr i prodotti da costruzion da impigarsi nll opr pr l quali ' prscritto il rquisito dlla sicurzza in caso d'incndio. (GU n. 73 dl 30-3-2005) IL MINISTRO DELL'INTERNO

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

CORSO. FIM Via. associazione geometri liberi professionisti. della provincia di Modena. Sede. Costi. Colleg. 2 Pia. rispettivi tecnica.

CORSO. FIM Via. associazione geometri liberi professionisti. della provincia di Modena. Sede. Costi. Colleg. 2 Pia. rispettivi tecnica. CORSO MASTER associazion gomtri libri profssionisti dlla provincia Modna novmbr, cmbr 2014 gnnaio, fbbraio PERCORSO FORMATIVO DI 48 ORE Sd Il corsoo è organizzato prsso la sala convgni dl Collg io Gomm

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albr d coprtur mnm Sommro Albr d coprtur mnm pr grf pst Algortmo d Kruskl Algortmo d Prm Albro d coprtur mnmo Un problm d notvol mportnz consst nl dtrmnr com ntrconnttr fr d loro dvrs lmnt mnmzzndo crt

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Lo strato limite PARTE 11. Indice

Lo strato limite PARTE 11. Indice PARTE 11 a11-stralim-rv1.doc Rl. /5/1 Lo strato limit Indic 1. Drivazion dll qazioni indfinit di Prandtl pr lo strato limit sottil pag. 3. Intgrazion nmrica dll qazioni indfinit di Prandtl. 11 3. Lo strato

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

JOHANN SEBASTIAN BACH Invenzioni a due voci

JOHANN SEBASTIAN BACH Invenzioni a due voci JOH EBTI BCH Invnzon a u voc BWV 772 7 cura Lug Catal trascrzon ttuata con UP htt//ckngmuscarchvorg/ c 200 Lug Catal (lucatal@ntrrt) Ths ag s ntntonally lt ut urchtg nltung Wormt nn Lbhabrn s Clavrs, bsonrs

Dettagli

Conservatorio di Musica Giuseppe Tartini Trieste NUCLEO DI VALUTAZIONE

Conservatorio di Musica Giuseppe Tartini Trieste NUCLEO DI VALUTAZIONE Cnsrvari Musica Giuspp Tartini Trist NUCLEO DI VALUTAZIONE RELAZIONE ANNUALE DEL NUCLEO DI VALUTAZIONE sull dll a.a.2010/11 (DPR 28/2/03 n.132, art.10 cmma 2 ltt. b) Nucl valutazin Waltr Grbin Prsidnt

Dettagli

Probabilità e statistica. Veronica Gavagna

Probabilità e statistica. Veronica Gavagna Probabilità e statistica Veronica Gavagna Testa o croce? Immaginiamo di lanciare una moneta facendola cadere su un piano liscio chiunque dirà che la probabilità dell evento testa sarà del 50%, al pari

Dettagli

IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI

IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI D.Lgs. 192/2005 + D.Lgs. 311/2006 Vincnzo Corrado, Matto Srraino Dipartimnto di Enrgtica Politcnico Di Torino un progtto di:

Dettagli

INTRODUZIONE ALLA BUSINESS PROCESS MODELING NOTATION (BPMN) 1

INTRODUZIONE ALLA BUSINESS PROCESS MODELING NOTATION (BPMN) 1 ITRODUZIOE ALLA BUSIESS PROCESS MODELIG OTATIO (BPM) 1 1. Prsntazin La ntazin BPM (http://www.bpn.rg) è sviluppata dalla Businss Prcss Managnt Initiativ dall Objct Managnt Grup (http://www.g.rg), assciazini

Dettagli

Il presente Regolamento Particolare di Gara. è stato approvato in data con numero di approvazione RM / CR /2015.

Il presente Regolamento Particolare di Gara. è stato approvato in data con numero di approvazione RM / CR /2015. Vrsion 5 3 Agosto Valità 2015 la Manifstazion : Campionato Italiano Rally Assoluto Campionato Italiano Rally Junior Campionato Italiano Rally Costruttori Coppa ACI-SPORT Rally CIR Equipaggi Inpndnti Coppa

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Pasta per due. Capitolo 1. Una mattina, Libero si sveglia e accende il computer C È POSTA PER TE! e trova un nuovo messaggio della sua amica:

Pasta per due. Capitolo 1. Una mattina, Libero si sveglia e accende il computer C È POSTA PER TE! e trova un nuovo messaggio della sua amica: Pasta per due 5 Capitolo 1 Libero Belmondo è un uomo di 35 anni. Vive a Roma. Da qualche mese Libero accende il computer tutti i giorni e controlla le e-mail. Minni è una ragazza di 28 anni. Vive a Bangkok.

Dettagli

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO Le capacità cognitive richieste per far fronte alle infinite modalità di risoluzione dei problemi motori e di azioni di gioco soprattutto

Dettagli

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Rita Giuliano (Pisa) 0. Introduzione. È ormai acquisizione comune il fatto che uno

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

GUIDE ITALIA Un confronto sulle ultime tendenze a supporto della semplificazione e dell efficienza

GUIDE ITALIA Un confronto sulle ultime tendenze a supporto della semplificazione e dell efficienza GUIDE ITALIA Un confronto sull ultim tndnz a supporto dlla smplificazion dll fficza L voluzion dll architttur IT Sogi RELATORE: Francsco GERBINO 16 novmbr 2010 Agnda Prsntazion dlla Socità Architttur IT

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

METODO PER LA COMPILAZIONE DELLE CLASSIFICHE FEDERALI 2014

METODO PER LA COMPILAZIONE DELLE CLASSIFICHE FEDERALI 2014 METODO PER LA COMPILAZIONE DELLE CLASSIFICHE FEDERALI 2014 PERIODO TEMPORALE CONSIDERATO Viene considerata tutta l attività svolta dalla prima settimana di novembre 2012 (5 11 novembre 2012 ), all ultima

Dettagli

REGOLAMENTO DI GIOCO MASTER 2015

REGOLAMENTO DI GIOCO MASTER 2015 REGOLAMENTO DI GIOCO MASTER 2015 Art. 1 PRINCIPI GENERALI Il football a 9 contro 9 Master (o 7 contro 7) verrà giocato secondo le regole del regolamento ufficiale NCAA per i campionati a 11 giocatori,

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

T13 Oneri per Indennita' e Compensi Accessori

T13 Oneri per Indennita' e Compensi Accessori T13 Oneri per Indennita e Compensi Accessori Qualifiche per le Voci di Spesa di Tipo I IND. IND RZ. INDNNITÀ VACANZA STRUTT. ART. 42, D MARIA PROFSSION CONTRATTU COMP. SCLUSIVITA POSIZION POSIZION - RISULTATO

Dettagli

CARIBBEAN POKER. Come si gioca

CARIBBEAN POKER. Come si gioca CARIBBEAN POKER INDICE Caribbean Poker 2 Il tavolo da gioco 3 Le carte da gioco 4 Il Gioco 5 Jackpot Progressive 13 Pagamenti 14 Pagamenti con Jackpot 16 Combinazioni 18 Regole generali 24 CARIBBEAN POKER

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

CALCOLO COMBINATORIO E PROBABILITA

CALCOLO COMBINATORIO E PROBABILITA CALCOLO COMBINATORIO E PROBABILITA Con calcolo combinatorio si indica quel settore della matematica che studia i possibili modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l obiettivo

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

T13 Oneri per Indennita' e Compensi Accessori

T13 Oneri per Indennita' e Compensi Accessori T13 Oneri per Indennita e Compensi Accessori Qualifiche per le Voci di Spesa di Tipo I IND. IND RZ. INDNNITÀ VACANZA STRUTT. ART. 42, D MARIA PROFSSION CONTRATTU COMP. SCLUSIVITA POSIZION POSIZION - RISULTATO

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it La Bella Addormentata e altre illusioni probabilistiche Aljoša Volčič volcic@unical.it Firenze, 25 novembre 2009 1 Che cosa è la probabilità? La probabilità di un evento A è la misura del grado di fiducia

Dettagli

FIN - Comitato Regionale Ligure

FIN - Comitato Regionale Ligure FIN - 1. 0 NORMATIVE GENERALI Iscrizioni alle gare 1. Le iscrizioni alle gare vanno effettuate tramite procedura online dal sito http://online.federnuoto.it/iscri/iscrisocieta.php utilizzando il software

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

LINGUAGGI'CREATIVITA 'ESPRESSIONE' '

LINGUAGGI'CREATIVITA 'ESPRESSIONE' ' LINGUAGGICREATIVITA ESPRESSIONE 3 4ANNI 5ANNI Mniplrmtrilidivritipin finlizzt. Fmilirizzrindivrtntcnil cmputr Ricnsclmntidl mnd/rtificilcglindn diffrnzprfrmmtrili Distingugliggttinturlidqulli rtificili.

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Poteri/ funzioni attribuiti dalla norma

Poteri/ funzioni attribuiti dalla norma Compiti funzioni attribuiti dalla tiva all nazional Lgg Art. 6, comma 5 Art. 6, comma 7, ltt.a Art. 6, comma 7, ltt.b Potri/ funzioni attribuiti dalla Vigilanza su tutti i contratti pubblici (lavori, srvizi

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Progetto Baseball per tutti Crescere insieme in modo sano

Progetto Baseball per tutti Crescere insieme in modo sano Progetto Baseball per tutti Crescere insieme in modo sano Il baseball, uno sport. Il baseball, uno sport di squadra. Il baseball, uno sport che non ha età. Il baseball, molto di più di uno sport, un MODO

Dettagli

10. Risorse umane coinvolte nella prima fase del progetto Ceis comunità.

10. Risorse umane coinvolte nella prima fase del progetto Ceis comunità. 0. Risrs uman cinvl nlla prima fas dl prg Cis cmunià. funzini n. n. r Oprari di Prg Prgazin, pianificazin dl prg O p r a ri d l p r g prari di bas prari cnici cn qualifica prfssinal prari spcializzai Op.

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

CALENDARIO REGIONALE 2014/2015

CALENDARIO REGIONALE 2014/2015 CALENDARIO REGIONALE 2014/2015 www.federnuoto.piemonte.it nuoto@federnuoto.piemonte.it INDICE REGOLAMENTO ATTIVITÀ...pag.4 AVVERTENZE DI CARATTERE GENERALE...pag.5 ISCRIZIONI...pag.6 Norme generali...pag.6

Dettagli

Istituto Comprensivo Statale Viale Liguria

Istituto Comprensivo Statale Viale Liguria Istituto Comprensivo Statale Viale Liguria Ufficio di Segreteria: Viale Liguria Rozzano (MI) Tel. 02 57501074 Fax. 028255740 e-mail: segreteria@medialuinifalcone.it sito: www.icsliguriarozzano.gov.it Recapiti

Dettagli

QUESTIONARIO SULLA COORDINAZIONE MOTORIA (The DCDQ 07 B.N. Wilson) Traduzione e adattamento a cura di Barbara Caravale e Silvia Baldi

QUESTIONARIO SULLA COORDINAZIONE MOTORIA (The DCDQ 07 B.N. Wilson) Traduzione e adattamento a cura di Barbara Caravale e Silvia Baldi QUESTIONARIO SULLA COORDINAZIONE MOTORIA (The DCDQ 07 B.N. Wilson) Traduzione e adattamento a cura di Barbara Caravale e Silvia Baldi Nome e Cognome del/la bambino/a Nome e Cognome della persona che compila

Dettagli

1. Lo sport mens sana in corpore sano

1. Lo sport mens sana in corpore sano 1. Lo sport mens sana in corpore sano Mens sana in corpore sano è latino e vuol dire che lo sport non fa bene soltanto al corpo ma anche alla mente. E già ai tempi dei romani si apprezzavano le attività

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

TABELLA DEI COMPLEMENTI

TABELLA DEI COMPLEMENTI TABELLA DEI COMPLEMENTI REALIZZATA CON LA COLLABORAZIONE DELLA CLASSE II B DELLA SCUOLA SECONDARIA DALLA CHIESA E RUSSO DI BUSNAGO (MB) A. s. 2011/ 12 COMPLEMENTO DOMANDA A CUI RISPONDE ESEMPIO OGGETTO

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OpenLab - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

chiarezza delle aspettative dell organizzazione verso l individuo e chiara esplicitazione all individuo di tali aspettative

chiarezza delle aspettative dell organizzazione verso l individuo e chiara esplicitazione all individuo di tali aspettative FORMA 3: Valutazione dei comportamenti organizzativi Nozioni di base 1. LA VALUAZION DLL COMPNZ INDIVIDUALI 1.1 L COMPNZ INDIVIDUALI In base ai recenti contributi di numerosi autori, possiamo intendere

Dettagli

Analisi della comunicazione del gioco nella sua evoluzione

Analisi della comunicazione del gioco nella sua evoluzione Nel nostro Paese il gioco ha sempre avuto radici profonde - Caratteristiche degli italiani in genere - Fattori difficilmente riconducibili a valutazioni precise (dal momento che propensione al guadagno

Dettagli

Le schede di Sapere anche poco è già cambiare

Le schede di Sapere anche poco è già cambiare Le schede di Sapere anche poco è già cambiare LE LISTE CIVETTA Premessa lo spirito della riforma elettorale del 1993 Con le leggi 276/1993 e 277/1993 si sono modificate in modo significativo le normative

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi Funzioni tra insiemi niti Numeri di Stirling e Bell Davide Penazzi 2 Funzioni tra insiemi niti: i numeri di Stirling e Bell 1 Contare il numero delle funzioni tra insiemi 1.1 Denizioni e concetti preliminari

Dettagli

Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici

Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici Ogni qual volta si effettua una raccolta di dati di tipo numerico è inevitabile fornirne il valore medio. Ma che cos è il valore

Dettagli

REGIONE PUGLIA AZIENDA SANITARIA LOCALE DELLA PROVINCIA DI FOGGIA (Istituita con L.R. 28/12/2006, n. 39)

REGIONE PUGLIA AZIENDA SANITARIA LOCALE DELLA PROVINCIA DI FOGGIA (Istituita con L.R. 28/12/2006, n. 39) DELIBERAZIONE n.806 del 01/07/2014 REGIONE PUGLIA AZIENDA SANITARIA LOCALE DELLA PROVINCIA DI FOGGIA (Istituita con L.R. 28/12/2006, n. 39) DELIBERAZIONE DEL DIRETTORE GENERALE n.806 del 01/07/2014 Proposta

Dettagli

PERCENTUALI CON LE FRAZIONI

PERCENTUALI CON LE FRAZIONI Visto che il 20% di un numero è uguale a frazionario per calcolare le percentuali. 20 100 n allora possiamo utilizzare il calcolo DATI n= numero intero p= frazione (percentuale) r= numeratore (tasso di

Dettagli

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it 186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it Premessa Durante una mia visita al Palazzo Ducale di Mantova, nell ammirare i tanti capolavori che custodisce,

Dettagli

COMUNE DI CAMPIONE D ITALIA

COMUNE DI CAMPIONE D ITALIA COMUNE DI CAMPIONE D ITALIA REGOLAMENTO DI GIOCO DELLA ROULETTE (al Casino Municipale di Campione d Italia) adottato con delib. C.C. n. 83 del 2.12.1993 approvata dal CRC con atto n. 13 in data 4.1.1994

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

UFFICIO SCOLASTICO REGIONALE PER L'ABRUZZO UFFICIO SCOLASTICO PROVINCIALE : CHIETI

UFFICIO SCOLASTICO REGIONALE PER L'ABRUZZO UFFICIO SCOLASTICO PROVINCIALE : CHIETI GRADUATORIA TITOLARI SU DOTAZIONE ORGANICA PROVINCIALE - SC. SEC. DI II GRADO PAG. 1 SI COMUNICANO, ORDINATI PER DATI ANAGRAFICI E DISTINTI PER CLASSE DI CONCORSO, I SEGUENTI DATI RELATIVI AI DOCENTI TITOLARI

Dettagli

conquista il mondo in pochi minuti!

conquista il mondo in pochi minuti! conquista il mondo in pochi minuti! Il gioco di conquista e sviluppo più veloce che c è! Il gioco si spiega in meno di 1 minuto e dura, per le prime partite, non più di quindici minuti. Mai nessuno ha

Dettagli

( D) =,,,,, (11.1) = (11.3)

( D) =,,,,, (11.1) = (11.3) G. Ptrucci Lzioni di Cotruzion di Macchin. CRITERI DI RESISTENZA La vrifica di ritnza ha o copo di tabiir o tato tniona d mnto truttura anaizzato è ta da provocarn i cdimnto into com rottura o nrvamnto.

Dettagli